
Practical Distributed Authorization
Ankur Taly, Google Inc.

ataly@google.com

Two day course at the 2016 International School on Foundations of Security Analysis and
Design, Bertinoro, Italy (Aug. 29 - Sep. 2)

Internet of Things (IoT)

Physical devices made
accessible over the network

Exciting new possibilities!

img source: http://www.ti.com/lsds/media/images/wireless_connectivity/50BillionThings.png

Internet of Things Security

Goldmine for the bad guys

Scary new possibilities!

This is really scary!

source: http://img.wonderhowto.com/img/original/32/45/63534020036048/0/635340200360483245.jpg

Live feed from an airplane hangar in Norway!!

Found using shodan.io --- a
search engine for finding
devices (IoT), e.g., routers,
servers, cameras, SCADA
systems, HVAC systems etc.

https://www.shodan.io/
https://en.wikipedia.org/wiki/Search_engine
https://en.wikipedia.org/wiki/Search_engine

Securing IoT

Naming and Authentication
How do devices name and identify each other during any interaction?

Delegation
How do users delegate devices to act on their behalf ?

Access control
How are access control policies defined?

Securing IoT

Naming and Authentication
How do devices name and identify each other during any interaction?

Delegation
How do users delegate devices to act on their behalf ?

Access control
How are access control policies defined?

This is in essence the problem of authorization in
distributed systems

Authorization in distributed systems

Old problem with decades of amazing research
But, new hype around it (courtesy IoT)

Course overview
○ Explore existing ideas and techniques in distributed authorization

○ Evaluate their applicability to IoT and large, open distributed systems

○ Develop the applications in the context of the “Vanadium” framework
developed at Google Inc.

Agenda

Today
○ Foundations of distributed authorization

○ Authorization requirements for large distributed systems (e.g., IoT)

○ Overview of the Vanadium authorization model

Tomorrow

○ Access control policies in Vanadium

○ Privacy, discovery and authentication for Vanadium

Fundamentals of Distributed
Authorization

Authorization

Fundamental problem in computer security that deals with
whether a request to access a resource must be granted

Principal
(or subject)

Resource
(or object)

Request for access

Entity making
the request

Should this request
be granted?

Example: Door lock

Alice

Request is authorized only if the entered access code is valid

Request for access

access code: 4224

Example: Web login

Alice

Request for access

Username: alice
Password: *********

Login page grants access to Google properties (e.g., GMail)
only if the entered password is valid

Example where principal is non-user

Facebook API allows access to user’s profile only if provided
access token is valid and has the appropriate permissions

Post on user’s timeline

Facebook Graph API

AccessToken=xxx

Principals

Entity making the request, can be:
○ user

○ device

○ application

○ browser tab

○ or some combination of the above

Granularity varies across systems

Authorization model

Principal Request for access Reference
Monitor

Pass

Resource

Authorize request
based on policy

Fail

Policy

Process
request

Reject
request

Reference monitor (in closed systems)

Authentication + Access control

Authentication: Identify the principal
making the request
○ as a username, email, accountID, etc.

Access control: check if the identified
principal is allowed by the policy

file1 file2 file3

Alice r r rwx

Bob rw x

Carol rw rw x

Access control matrix
[Lampson, 1971]

Distributed authorization

Authorization is much more complicated in large, open, distributed systems
such as the Web, Internet-of-Things (IoT)

○ No relationship between reference monitor and principal prior to request
■ may have to rely on third-parties for issuing and/or validating credentials

○ Access control policies may be distributed

○ The resource itself may be distributed

○ Communication channels cannot be trusted

Delegation of authority and trust is essential

Example: >21 age check

Relying on a government
(third-party) issued ID for
verifying age > 21

Example: Third-party authentication

Alice

request

Problem

CandyCrush wants to service a
request from Alice

But, it doesn’t know how to
authenticate Alice

How does CandyCrush authorize a
request from Alice?

Example: Third-party authentication

Solution

Both CandyCrush and Alice have a
relationship with Facebook

CandyCrush redirects Alice to
Facebook and request an OAuth2
access token

It uses the token to obtain Alice’s
profile information at FacebookAlice

request

redire
ct

redirect

token

Example: Streaming videos on a TV

Alice Alice’s TV

Video
service

request

Problem

Alice wants to stream a video from
her Video server to her TV

Video service has a relationship
with Alice but NOT with Alice’s TV

How does the Video service
authorize a request from Alice’s
TV?

request

Solution

Alice authenticates the TV and
hands it a credential to access the
video service

TV presents this credential to the
video service proving that it is
authorized by Alice

Example: Stream a video on a TV

Alice Alice’s TV

Video
service

request

request
delegation

Credentials-based authorization

○ Authorization is based on credentials bound to the principal specifying
■ characteristics of the principal, e.g., identity, role, etc.
■ some other aspect of system state, e.g., time, location, etc.

Access control problem: Verify that a set of credentials C satisfy a
policy P in the context of a request r

Credentials-based authorization

○ Authorization is based on credentials bound to the principal specifying
■ characteristics of the principal, e.g., identity, role, etc.
■ some other aspect of system state, e.g., time, location, etc.

○ Different credential issuers are trusted for different purposes

○ Credentials are either:
■ presented by the principal OR
■ gathered by the reference monitor on demand

Access control problem: Verify that a set of credentials C satisfy a
policy P in the context of a request r

Authorization model

Principal Request for access
Reference
Monitor

Pass

Resource

Fail

Process
request

Reject
request

Authorize request
based on policy

Distributed authorization model

Principal Request for access
Reference
Monitor

Pass

Resource

Fail

Process
request

Reject
request

creds
server 1

creds
server n

credentials

Authorize request
based on policy

Distributed authorization model

Principal Request for access
Reference
Monitor

Pass

Resource

Fail

policy
server 1

Process
request

Reject
request

policy
server k

creds
server 1

creds
server n

credentials

Building blocks

○ Mechanisms for generating, distributing, and validating credentials

○ Languages for defining access control policies

○ Algorithms and logics for checking policies

○ Protocols for setting up secure communication channels

Web authorization model

Alice

request

response
 Server Client

Verify that the server’s
credentials identify it as
bankofamerica.com

Mutual authorization

Verify that the client’s
credentials identify it as
Alice

Server authorization on the Web (under TLS)

Servers possess

○ a digital signature public and secret
key pair (pk, sk)
■ ∀ m. Verify(pk, m, Sign(sk, m))

○ a signed x509 certificate binding a
domain name (bankofamerica.com)
to the public key pk

During TLS, the server presents its
certificate to a clientAlice

TLS

TLS

BOA.com
Key: pk
09/01/17

TLS protocol allows clients to authorize
the server and establishes an encrypted
channel between them

Server authorization on the Web (under TLS)

Server certificate is in the X509 format
which is very expressive but hard to
parse

Client verifies that the certificate

○ has not expired
○ has the expected domain name
○ has a recognized issuer

Server authorization on the Web (under TLS)

Server certificate is in the X509 format
which is very expressive but hard to
parse

Client verifies that the certificate

○ has not expired
○ has the expected domain name
○ has a recognized issuer

Web public-key infrastructure (PKI)

○ Root CA certifies intermediate CAs
which certify Web servers
■ Root CA certificate is self-signed

■ About 60 root CAs and 1200
intermediate CAs

○ CAs can issue certificates for any
domain

○ A wrongly issued certificate can be
used to impersonate a server

Root CA (e.g., Verisign)

Several layers of
Intermediate CAs
(e.g., Symantec)

…
boa
…

…
gmail
…

cnn
...

yahoo
…

sign

sign sign

Hierarchical network of CAs

Browsers maintain list of trusted CAs

Browsers maintain list of trusted CAs
Recent CA compromise incidents

2014: Indian NIC (intermediate CA trusted by
 the Indian CCA root authority) issued
 unauthorized certificates for several
 Google domains [link]

 Response
● Indian CCA revoked all NIC certificates
● Chrome restricted Indian CCA to 7 domains

2015: MCS Holdings (intermediate CA trusted by
 CNNIC root authority) issued unauthorized
 certificates for several Google domains [link]
 Response
● Chrome revoked the malicious certificates and

stopped recognizing CNNIC as a root CA

http://cca.gov.in/cca/index.php
https://security.googleblog.com/2014/07/maintaining-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html

Client authorization on the Web

Credentials are mostly bearer tokens but
have many flavors

○ Username/passwords
○ Cookies
○ OAuth2 tokens

■ delegated by an identity provider
○ Macaroons

■ delegated across multiple third-parties

Designing client credentials has been a far
more creative space than server credentials

Alice

request

token

Clients typically send their credentials
after TLS completes and an encrypted
channel is established

Token based authorization

Upsides:

○ Simple, efficient, easy to deploy

○ Tokens can be attenuated and delegated peer-to-peer (e.g., Macaroons)

○ Ubiquitous on the Web, standardized with lots of implementations

Downsides:

○ Roundtrip to issuer for token creation and verification

○ Proliferation of tokens at clients; one per issuer

Alternate public-key infrastructures (PKI)

Decentralized approach to certification

○ Pretty good privacy (PGP)

○ Simple Distributed Security Infrastructure (SDSI)

Pretty Good Privacy (PGP) [Zimmerman 94]

○ Framework for encrypting email

○ Principals have encryption public and secret pairs, and certificates
binding email address to encryption public keys

○ Web of trust: Egalitarian approach => anybody can sign certificates

■ Alice may sign a certificate for her friend Bob’s public key

■ Carol will recognize this certificate as long as she recognizes Alice

■ Trust grows organically rather than through a hierarchy of CAs

○ Related startup: https://keybase.io/

Simple Distributed Security Infrastructure (SDSI)

○ Also an egalitarian approach

○ Principals issue certificates binding local names to other principals
■ e.g., Alice issues a certificate binding “friend” to Bob’s public key

○ Linked local namespaces
■ Certificate can be linked to form chains of names
■ Alice’s TV (another principal) who refers to Alice as “Alice” may refer to

Bob as “Alice’s friend”

○ Name based access control policies
■ Alice’s TV may authorize anyone with a name matching “Alice’ s friend”

Simple Distributed Security Infrastructure (SDSI)

History of SDSI

○ Originally developed by Rivest and Lampson in 1996

○ Later merged with Elisson’s related Simple Public Key
Infrastructure (SPKI), and is now jointly referred as SPKI/SDSI

○ Followed by RFCs for standardization [2692, 2693], several
academic papers providing algorithms, semantics, logics, etc.

Distributed authorization history

80s and 90s: Lots of interesting distributed authorization research
Frameworks: KeyNote, PGP, SPKI/SDSI, X509, Active certificates, Macaroons, ...

Policy languages and logic: ABLP, RT, SecPal, Binder, ...

Late 90s: Web authorization model took off

○ Centralized x509 PKI for server authorization

○ Various token flavors for client authorization

Last few years: Distributed authorization research is back in demand,
thanks to Internet-of-Things (IoT)!

Internet of Things Security!

Top IoT Vulnerabilities

● Insufficient authentication and authorization (80%)
● Lack of transport encryption (70%)
● Insecure web interfaces (60%)
● Insecure software updates (60%)
● Insecure defaults (70%)

Top IoT Vulnerabilities

Security First: Bake in security mechanisms from the ground up

● Insufficient authentication and authorization (80%)
● Lack of transport encryption (70%)
● Insecure web interfaces (60%)
● Insecure software updates (60%)
● Insecure defaults (70%)

Authorization challenges for IoT

○ Devices can behave both as clients and servers

○ Far too many IoT devices than Web domains
■ Gartner: There will be 20 billion IoT devices by 2020 [link]

■ Centralized certificate mechanisms may not scale

○ Fragmented ecosystem, trust relationships are more nuanced

○ Limited network connectivity and bandwidth

○ Very little human administration

http://www.gartner.com/newsroom/id/3165317

Authorization Requirements

Summary

○ Decentralized deployment
○ Mutual authorization
○ Fine-grained delegation
○ Auditable access
○ Revocation
○ Ease of use

Decentralization

Decentralized deployment and peer-to-peer (p2p) communication
are the main guiding principles for this work

Why?

○ User privacy

○ Service provider liability

○ Support offline mode as a first-class citizen

Centralized models

Upsides
● Centralized access management

● Seamlessly jump across networks

● Automatic software updates

● Data storage and backups

● Account recovery

Connectivity
Authentication
Authorization

Centralized models

Downside 1: User privacy
○ Private data leakage

○ Tracking (in both digital and
physical worlds)

○ Growing concern all over the world

○ Being taken seriously now
■ e.g., end-to-end encryption in

WhatsApp and iMessage

Connectivity
Authentication
Authorization

Centralized models

Connectivity
Authentication
Authorization

Downside 2: Service provider liability

○ Subpoenas, break-ins, insiders threats

○ Secure storage of personally
identifiable information (PII) is a huge
pain!

Centralized models

Connectivity
Authentication
Authorization

can’t talk

Downside 3: Reliance on internet
connectivity

○ Loss of functionality when internet
access is not available

■ e.g., devices on an airplane

■ Internet is still a luxury for a
significant chunk of the world

○ Fundamentally inefficient

Our objective: Decentralization

○ Define an egalitarian system where any principal can become an
authority for some set of other principals
■ e.g., Alice may become an authority for all her home devices

○ Minimize dependence on global services, e.g., CAs, proxies, etc.

○ Maximize what can be achieved via peer-to-peer interactions

Use the cloud where it offers value!

○ Account Recovery
Delegate credentials to the cloud with usage restrictions

○ Transparent Proxy
Run a transparent cloud service that allows jumping across networks

○ Data backup
Backup a readonly / encrypted copy of the data in the cloud

○ Distributing credentials
Setup a cloud mailbox to distribute credentials, but NOT use them

Summary

○ Decentralized deployment
○ Mutual authorization
○ Fine-grained delegation
○ Auditable access
○ Revocation
○ Ease of use

Mutual authorization

During any interaction, each end must verify that the other end is
authorized in the context of the interaction

Mutuality is very important
Prove that you are
part of Alice’s
“friends” group.

Prove that you are
owned by Alice

Mutual authentication may be important as well depending on
the audit requirements

Alice’s TVBob

Delegation of authority

Model must support delegation of authority between principals

○ under fine-grained constraints
■ only until 6PM

■ only for this displaying photos

■ only when Alice is in nearby

○ across multiple hops
○ in a convenient manner

Bob

Alice

Alice’s TV

delegation

request

Model must support delegation of authority between principals

○ under fine-grained constraints
■ only until 6PM

■ only for this displaying photos

■ only when Alice is in nearby

○ across multiple hops
○ in a convenient manner

Delegation of authority

Bob

Alice

Alice’s TV

Carol

de
leg

ati
on

delegation

request

Auditable access

Principals must be able to audit the use of the delegations granted by them

Alice Alice’s TV

Auditing is the fallback when delegation restrictions cannot be properly
codified
e.g., only watch PG-13 movies on the TV

Audit Bob’s access
to the TV

Revocation

Principals must be able to revoke previously granted delegations

○ Revoke Bob’s access to all of Alice’s devices

○ Revoke all access held by a tablet, when it gets lost or stolen

This is a hard problem, lots of trade-offs

○ Instantaneous vs. eventual revocation

○ Communication, computation and storage overhead

○ Supporting the P2P (Offline) scenario

Ease of use

Systems with complex interfaces and mechanisms often have
degraded security as users look for insecure workarounds

Therefore, authorization mechanisms must be easy to understand
and use, both for end-users and system developers

Read: Why Johnny can’t encrypt? (J. D. Tygar and A. Whitten)

https://people.eecs.berkeley.edu/~tygar/papers/Why_Johnny_Cant_Encrypt/OReilly.pdf

Hardware constraints

IoT devices span a very wide hardware spectrum
For now, we do NOT restrict ourselves with hardware constraints

○ Instead, focus on designing a general authorization architecture

○ Hardware optimizations will hopefully follow

 (Read: CESEL: Securing a Mote for 20 Years)

Compute and bandwidth

ARM Cortex-M series; BLE Intel i7, Xeon, Wifi, 4G, BLE

https://sing.stanford.edu/site/publications/cesel-nextmote.pdf

Summary

○ Decentralized deployment
○ Mutual authorization
○ Fine-grained delegation
○ Auditable access
○ Revocation
○ Ease of use

Vanadium Authorization Model

Joint work with Asim Shankar, Gautham Thambidorai,
and Dave Presotto

What is Vanadium?

Components

○ Identity and authorization model

○ RPC framework

○ Naming and discovery framework

○ Peer-to-peer storage

Open source, cross-platform application framework for
building secure, multi-device experiences

What is Vanadium?

Components

○ Identity and authorization model

○ RPC framework

○ Naming and discovery framework

○ Peer-to-peer storage

Open source, cross-platform application framework for
building secure, multi-device experiences

Rest of the lecture

○ Vanadium authorization model primitives

■ Identity model

■ Delegation and revocation

■ Authentication protocols

■ Access control policies

○ Application: Physical lock

○ Practicalities and discussion

Principal

Represented by a unique digital signature public and private key pair
(P, S)
○ Private key is never shared over the network

○ Ideally held in a TPM on the device

Fine-grained: Each app, process, service is a different principal
○ Distinguish between Alice’s son Bob’s tablet’s Farmville app & Alice’s

daughter Carol’s phone’s Amazon app

Blessings

Each principal has a set of hierarchical human-readable strings
bound to it, called blessings
e.g., Alice’s television (PTV, STV) may have blessings:
○ Alice/TV
○ Samsung/Products/TV/123

Principals are authenticated and authorized based on their blessings
 e.g., Authorize all principals with blessings prefixed with Alice

Blessings

Blessings are certificate chains bound to the principal’s public key

Each certificate has a Name, PublicKey, Caveats and Signature

Alice

PAlice

Till 12/31/2017

Signed by SAlice

TV

PTV

Till 3/9/2016

Signed by SAlice

Very simple certificate format!

self-signed

(PTV, STV)

Extend one of your Blessings and bind it to another principal

The “Bless” operation

Bless(PAlice, SAlice) (PTV, STV)

Alice

PAlice

Till 12/31/2016

Signed by SAlice

Extend one of your Blessings and bind it to another principal

The “Bless” operation

Bless(PAlice, SAlice) (PTV, STV)

Alice

PAlice

Till 12/31/2016

Signed by SAlice

TV

PTV

Till 3/9/2016

Signed by SAlice

Extend one of your Blessings and bind it to another principal

The “Bless” operation

Bless(PAlice, SAlice) (PTV, STV)

Alice

PAlice

Till 12/31/2016

Signed by SAlice

TV

PTV

Till 3/9/2016

Signed by SAlice

Dynamic identity creation OR Bound capability grant!

Blessings: Auditability and Binding

Blessings:

○ Are bound to a private key that never leaves the device

○ Can only be delegated by extending to other private keys

○ Encapsulate an auditable delegation trail

But Alice wants her TV to only access Youtube, NOT her Bank!

Caveats

Alice

PAlice

Till 12/31/2016

Signed by SAlice

TV

PTV

Till 3/9/2016

Signed by SAlice

Caveats

Alice

PAlice

Till 12/31/2016

Signed by SAlice

TV

PTV

Till 3/9/2016

Signed by SAlice

Specify arbitrary
restrictions here

But Alice wants her TV to only access Youtube, NOT her Bank!

Caveats

Alice

PAlice

Till 12/31/2016

Signed by SAlice

TV

PTV

Till 3/9/2016

Signed by SAlice

TV

PTV

Till 3/9/2016: 6PM

Only to access Google/Youtube

Signed by SAlice

TV has the name Alice/TV
○ as long as the time is before 3/9/2016: 6PM
○ as long as the service being accessed is Google/Youtube

But Alice wants her TV to only access Youtube, NOT her Bank!

Caveats are powerful

Services can define their own caveats, e.g., bless the valet so that:
○ valet is only authorized to drive for < 5 miles
○ only for the next 3 hours
○ cannot access trunk or infotainment system
○ but can access GPS

Validated by the target service (first-party) when the blessing is
used to make a request (first-party caveats)

Macaroons: Cookies with Caveats for Decentralized Authorization,
Politz et al., NDSS 14

Third-party Caveats

○ Caveats that must be validated by a specific third-party

○ Target service (first-party) only expects a “discharge” (proof) that the
caveat has been validated by the specific third-party

Third-party Caveats

ID: <content hash>

Restriction: within 10m proximity

Loc: Alice/Proximity

Verification Key: PProximity

Third-party Caveat

○ Caveats that must be validated by a specific third-party

○ Target service (first-party) only expects a “discharge” (proof) that the
caveat has been validated by the specific third-party

Third-party Caveats

ID: <content hash>

Restriction: within 10m proximity

Loc: Alice/Proximity

Verification Key: PProximity

Third-party Caveat

ID: <same as caveat.ID>

Caveat: for next 1 minute

Signed by SProximity

Third-party Discharge

○ Caveats that must be validated by a specific third-party

○ Target service (first-party) only expects a “discharge” (proof) that the
caveat has been validated by the specific third-party

Mechanics

(PProximity, SProximity)

(PBob, SBob) (PTV, STV)

Alice’s proximity
discharger

Guest
…
…
...

proximity
 caveat

Alice
…
…
…

Mechanics

proximity
 caveat

(PProximity, SProximity)

(PBob, SBob) (PTV, STV)

1

Alice’s proximity
discharger

Guest
…
…
...

proximity
 caveat

Alice
…
…
…

Mechanics

proximity
 caveat

(PProximity, SProximity)

(PBob, SBob) (PTV, STV)

Perform proximity
checks

1

Alice’s proximity
discharger

Guest
…
…
...

proximity
 caveat

Alice
…
…
…

Mechanics

proximity
 caveat

proximity
discharge

(PProximity, SProximity)

(PBob, SBob) (PTV, STV)

1
2

Alice’s proximity
discharger

Guest
…
…
...

proximity
 caveat

Alice
…
…
…

Mechanics

proximity
 caveat

proximity
discharge

(PProximity, SProximity)

(PBob, SBob) (PTV, STV)

1
2

3

Alice’s proximity
discharger

Guest
…
…
...

proximity
 caveat

Alice
…
…
…

proximity
discharge+

Third-party Caveat Examples

○ Social networking restrictions
■ GooglePlus must assert membership in “work” circle
■ Or, must be my friend on Facebook

○ Parental controls
■ Kids can watch TV only if Mom approves
■ Mom may discharge with a third-party caveat to dad!

○ Revocation

Revocation

Revocation: Existing approaches

○ Certificate revocation lists (CRLs)
■ Validating principals must periodically update CRL
■ Revocation is not instantaneous
■ CRLs tend to get large (delta-CRLs offer a reasonable fix)

○ Online certificate status protocol (OCSP)
■ Onus of making OCSP queries is on the validating principal
■ Affects latency per request
■ Another vector for DOS attacks

Revocation: Existing approaches

○ Recency evidence

■ “Can we eliminate certificate revocation lists?” ---- Rivest 98

■ Certificate is valid only when accompanied with “recency
evidence” supplied by the requestor

■ Recency evidence may be re-validated certificate or a freshly
issued certificate

Revocation: Third-party caveat approach

In essence, Rivest’s recency proofs idea
○ Blessings carry third-party caveats specifying revocation requirements

○ Caveat is discharged by a revocation service trusted by the issuer

○ Requester must obtain the discharge and supply it along with the blessing

Supports instantaneous revocation

But, places a connectivity requirement on the requester

Validating Blessings

Validating blessings

Alice

PAlice

Till 12/31/2016

Signed by SAlice

Guest

PBob

Till 3/9/2016

TPCaveat: PProximity

Signed by SAlice

How does the TV validate Bob’s blessings?

TPDischarge+

Validating blessings

Alice

PAlice

Till 12/31/2016

Signed by SAlice

Guest

PBob

Till 3/9/2016

TPCaveat: PProximity

Signed by SAlice

How does the TV validate Bob’s blessings?

TPDischarge+

1. Verify Certificate Signatures

Validating blessings

Alice

PAlice

Till 12/31/2016

Signed by SAlice

Guest

PBob

Till 3/9/2016

TPCaveat: PProximity

Signed by SAlice

How does the TV validate Bob’s blessings?

TPDischarge+

1. Verify Certificate Signatures
2. Validate all first-party and third-party caveats

Validating blessings

Alice

PAlice

Till 12/31/2016

Signed by SAlice

Guest

PBob

Till 3/9/2016

TPCaveat: PProximity

Signed by SAlice

How does the TV validate Bob’s blessings?

TPDischarge+

1. Verify Certificate Signatures
2. Validate all first-party and third-party caveats
3. Verify that the blessing root is recognized

The first certificate of a blessing is self-signed
Anyone can forge a blessing by creating a self-signed certificate

Blessing root

Alice

PAttacker

Till 12/31/2016

Signed by SAttacker

How do we prevent this forgery?

Blessing root

Blessing root is the name and public of the first certificate of the blessing

Public key Name

PAlice Alice

PSamsung Samsung

Principals maintain a list of recognized
blessing roots

Only blessings with recognized roots are
considered valid
e.g., blessing with root (Pattacker, Alice) is
rejected by Alice’s TV

Roots recognized by
Alice’s TV

Blessing root

List of recognized roots is similar to the list of trusted CAs in Web
browsers

But there are some key differences

○ Any principal can become a blessing root

○ Different principals may recognize different roots
 e.g., Alice’ TV may recognize (PAlice, Alice) but Bob’s TV may not

○ A principal is recognized for a specific name
e.g., Alice’s TV recognizes PAlice for Alice and PSamsung for Samsung

Validating blessings

Alice

PAlice

Till 12/31/2016

Signed by SAlice

Guest

PBob

Till 3/9/2016

TPCaveat: PProximity

Signed by SAlice

How does the TV validate Bob’s blessings?

TPDischarge+

1. Verify Certificate Signatures
2. Validate all first-party and third-party caveats
3. Verify that the blessing root is recognized

Bob can be recognized as Alice/Guest

All communication must be encrypted,
mutually authenticated and authorized

Authentication and Authorization

Authentication and Authorization

Client: Initiator of request Server: Responder of request

Mutual Authentication
Each end learns the other end’s blessings and is convinced that the other
end possesses the corresponding private key

Mutual Authorization
Each end validates the other end’s blessings and evaluates the blessing
names against an access control policy

Mutual authentication protocol

gx

gy

SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman, Krawczyk et al., CRYPTO 03

Client Server

Derive (authenticated-encryption) key k from DH secret

Diffie-Hellman (DH) Exchange

Mutual authentication protocol

gx

gy

SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman --- Krawczyk et al., CRYPTO’03

Client Server

Derive (authenticated-encryption) key k from DH secret

{ BlessingsTV, SignTV(<"s",gx, gy>) }k

Diffie-Hellman (DH) Exchange

Bob learns BlessingsTV
and authorizes them

Mutual authentication protocol

gx

gy

Client Server

TV learns BlessingsBob
and authorizes them

Derive (authenticated-encryption) key k from DH secret

{ BlessingsTV, SignTV(<"s",gx, gy>) }k

{ BlessingsBob, SignBob(<"c", gx, gy>) }k

Diffie-Hellman (DH) Exchange

Bob learns BlessingsTV
and authorizes them

SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman --- Krawczyk et al., CRYPTO’03

Mutual authentication protocol

gx

gy

Client Server

Bob learns BlessingsTV
and authorizes them

TV learns BlessingsBob
and authorizes them

Derive (authenticated-encryption) key k from DH secret

{ BlessingsTV, SignTV(<"s",gx, gy>) }k

{ BlessingsBob, SignBob(<"c", gx, gy>) }k

Diffie-Hellman (DH) Exchange

Server presents its blessings before the client

SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman --- Krawczyk et al., CRYPTO’03

Mutual authentication protocol

gx

gy

Client Server

Bob learns BlessingsTV
and authorizes them

TV learns BlessingsBob
and authorizes them

Derive (authenticated-encryption) key k from DH secret

{ BlessingsTV, SignTV(<"s",gx, gy>) }k

{ BlessingsBob, SignBob(<"c", gx, gy>) }k

Diffie-Hellman (DH) Exchange

Server presents its blessings before the client

Formally
verified in
ProVerif

SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman --- Krawczyk et al., CRYPTO’03

Private mutual authentication

Neither the server nor the client wants to present its blessings first

I only reveal my
name to delegates
of Alice

I will only reveal
my name to Alice/TV

Can we resolve this deadlock?

Private Mutual Authentication

Neither the server nor the client wants to present its blessings first

Can we resolve this deadlock?
Yes, using identity-based encryption (tomorrow’s lecture)

I will only reveal
my name to Alice/TV

I only reveal my
name to delegates
of Alice

Authorization

Validate
Blessings

Reference
Monitor

Process
Request

+

PASS

FAIL

Authorization policies are based on blessing names

Authorization

Validate
Blessings

Reference
Monitor

+

PASS

FAIL

1) Verify certificate
 signatures
2) Validate caveats
3) Verify blessing
 roots

Authorization policies are based on blessing names

Process
Request

Authorization

Validate
Blessings

Reference
Monitor

+
Alice/Guest PASS

FAIL

1) Verify certificate
 signatures
2) Validate caveats
3) Verify blessing
 roots

Process
Request

Authorization policies are based on blessing names

Authorization

Validate
Blessings

Reference
Monitor

+

PASS

FAIL

1) Verify certificate
 signatures
2) Validate caveats
3) Verify blessing
 roots

Verify that blessing
name satisfies the
authorization policy
(e.g., ACL)

Alice/Guest

Authorization policies are based on blessing names

Process
Request

Access control policies

Explicitly specify set of authorized blessing names in an ACL

Policy for Alice’s TV

Label Policy

Photos Allow: Alice

Movies Allow: Alice/Friends

Access control policies

Explicitly specify set of authorized blessings

Policy for Alice’s TV
This is actually a blessing prefix
and is matched by extensions,
e.g., Alice/Guest, Alice/TV/app

(We will go over the rationale
for this tomorrow)

Label Policy

Photos Allow: Alice

Movies Allow: Alice/Friends

Case Study: Physical Lock

Why Smart Locks?

○ Remote locking/unlocking

○ Keyless proximity-based access

○ Maintain an audit log of who got in

○ Mint new (virtual) keys and share with others

○ Some also have a camera that will take the visitors picture

Lock setup

google/aliceBlessings

Alice

Blessings

LockCorp/1234

Lock setup

Out of Band
<token>, <LockWiFi>

google/alice Blessings

LockCorp/1234

Blessings

Alice

Lock setup

I am LockCorp/1234

Authorization Policy

Claim: Allow Everyone

google/aliceBlessings

Alice

Blessings

LockCorp/1234

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

Authorization Policy

Claim: Allow Everyone

google/aliceBlessings

Alice

Blessings

LockCorp/1234

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

Authorization Policy

Claim: Allow Everyone

google/aliceBlessings

Alice

Blessings

LockCorp/1234

Create self-signed
blessing with name
AliceDoor

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

Authorization Policy

Claim: Allow Everyone

google/aliceBlessings

Alice

Blessings

LockCorp/1234
AliceDoor

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

Authorization Policy

Claim: Allow Everyone

google/aliceBlessings

Alice

Blessings

LockCorp/1234
AliceDoor

Now I am AliceDoor

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

Authorization Policy

Claim: Allow Everyone

google/aliceBlessings

Alice

Blessings

LockCorp/1234
AliceDoor/Key AliceDoor

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

google/aliceBlessings

Alice

Blessings

LockCorp/1234
AliceDoor/Key AliceDoor

Authorization Policy

 Lock: AliceDoor/Key
Unlock: AliceDoor/Key

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

google/aliceBlessings

Alice

Blessings

LockCorp/1234
AliceDoor/Key AliceDoor

Authorization Policy

 Lock: AliceDoor/Key
Unlock: AliceDoor/Key

Lock using AliceDoor/Key

Unlock using AliceDoor/Key

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

google/aliceBlessings

Alice

Blessings

LockCorp/1234
AliceDoor/Key AliceDoor

Authorization Policy

 Lock: AliceDoor/Key
Unlock: AliceDoor/Key

Blessings

Bob

Lock using AliceDoor/Key

Unlock using AliceDoor/Key

Lock setup

Claim(“AliceDoor”, <token>, <Wifi>)

google/aliceBlessings

Alice

Blessings

LockCorp/1234
AliceDoor/Key AliceDoor

Authorization Policy

 Lock: AliceDoor/Key
Unlock: AliceDoor/Key

Blessings

Bob

B
L
E
S
S

AlcieDoor/Key/Bob Unlock using AliceDoor/Key/Bob

Lock using AliceDoor/Key

Unlock using AliceDoor/Key

Properties

○ Works Offline
No internet access required to interact with the lock

○ Fully Decentralized
No cloud server controls access to all locks

○ Fine-grained Auditing
Each lock device can keep track of who accessed it (plus
delegation trail)

○ No bearer tokens involved

Practicalities and discussion

Blessings Management

○ Devices and apps would accumulate multiple blessings over time
○ How should users visualize and grant blessings?

Blessings Management

○ Devices and apps would accumulate multiple blessings over time
○ How should users visualize and grant blessings?

Vanadium Blessings Manager App
● UI for visualizing blessings
● Grant blessings over NFC,

Bluetooth

Future work: Blessing mailbox in the
cloud

Private Key Management

○ Securely storing private keys on device
○ Many different hardware architectures and operating systems
○ Multiple private keys per device (one for each app)

Private Key Management

○ Securely storing private keys on device
○ Many different hardware architectures and operating systems
○ Multiple private keys per device (one for each app)

An Approach: Use a security agent (e.g., Plan9’s factotum)
○ Special process that holds private keys and performs crypto
○ May store private keys in a TPM, if available
○ May adjust itself based on the hardware

Vanadium authorization model: Summary

Principal and Blessings
Principal is a unique public/private key pair with human-readable names bound to it

All communication is encrypted & mutually authenticated
Forward-secrecy safe protocol, client and service identity privacy

Authorization is based on blessing names
Principals authenticated and authorized based on their blessing names

Fine-grained delegation and audit
Principals can bind an extension of their blessings to another principal under caveats

Vanadium authorization model: Summary

Distributed Authorization in Vanadium --- Taly and Shankar, FOSAD 16

Principal and Blessings
Principal is a unique public/private key pair with human-readable names bound to it

All communication is encrypted & mutually authenticated
Forward-secrecy safe protocol, client and service identity privacy

Authorization is based on blessing names
Principals authenticated and authorized based on their blessing names

Fine-grained delegation and audit
Principals can bind an extension of their blessings to another principal under caveats

Tomorrow

○ Access control policies in Vanadium

○ Privacy and service discovery mechanisms in Vanadium

Vanadium pointers

Homepage: https://vanadium.github.io/core.html
Concepts: https://vanadium.github.io/concepts/security.html
Tutorials: https://vanadium.github.io/tutorials/
Source: https://github.com/vanadium

https://vanadium.github.io/core.html
https://vanadium.github.io/concepts/security.html
https://vanadium.github.io/tutorials/
https://github.com/vanadium

Further reading

SDSI - A Simple Distributed Security Infrastructure --- Rivest and Lampson, 1996

Authentication in Distributed Systems: Theory and Practice --- Lampson et al., 1992

Delegation Logic: A Logic-based Approach to Distributed Authorization --- Li, 2003

Can we eliminate certificate revocation lists? --- Rivest, 2006

Macaroons: Cookies with Caveats for Decentralized Authorization --- Politz et al., 2014

http://research.microsoft.com/en-us/um/people/blampson/59-SDSI/WebPage.html
http://research.microsoft.com/en-us/um/people/blampson/59-SDSI/WebPage.html
http://research.microsoft.com/en-us/um/people/blampson/45-AuthenticationTheoryAndPractice/WebPage.html
http://research.microsoft.com/en-us/um/people/blampson/45-AuthenticationTheoryAndPractice/WebPage.html
https://www.cs.purdue.edu/homes/ninghui/abstracts/dl_tissec03.html
https://www.cs.purdue.edu/homes/ninghui/abstracts/dl_tissec03.html
https://people.csail.mit.edu/rivest/pubs/Riv98b.pdf
https://people.csail.mit.edu/rivest/pubs/Riv98b.pdf
http://www.internetsociety.org/sites/default/files/04_3_1.pdf
http://www.internetsociety.org/sites/default/files/04_3_1.pdf

Questions

email: ataly@google.com

Thank You!

Authorization requirements

Identity and Authorization

Decentralized deployment

Mutual authorization

Fine-grained delegation

Auditing and revocation

Ease of use

Other IOT security requirements

Identity and Authorization

Decentralized deployment

Mutual authorization

Fine-grained delegation

Auditing and revocation

Ease of use

Device Protection

No remote code execution

Automatic and secure updates

Verified boot

Privacy

Private discovery

Anonymous communication

Transparency

