
Mathematical Models,
Analysis Tools, and
Internet Security

FOSAD 2016

Cas Cremers
University of Oxford

2

Information Security Group in Oxford

● Upcoming academic year:
– 6/7 PhD students, perhaps one PostDoc

● Theory
– Mathematical models of what security is

– Symbolic and computational approaches, as well as bridging
work between them

● Methodology and proofs
● Tools

– Scyther, Scyther-proof, Tamarin, ...

● Applications
– Not just toy examples!

3

Today and tomorrow

● Modeling, Automated tools, and Internet
Security
– Focus on symbolic methods

– Historical perspective

– Why we built some tools and what happened

– From theory and toy examples to real-world
practice over the years

4

May 2016

Mozilla HQ, Mountain View, CA, USA

May 2016

Mozilla HQ, Mountain View, CA, USA

5

2004

6

What is the problem?

7

99 problems...

● 2003: PKCS#11 crypto API attacks

● 2008: Google single-sign on protocol (SAML)
attack

● 2009: TLS renegotiation attack

● 2012: ISO 9798 authentication standard attacks

● 2014: TLS Triple handshake attack

● 2014: ISO 11770 key exchange standard attacks

● 2015: Freak attack on TLS

● Etc etc

● Result: insecure
● No problems with

cryptographic primitives
● No problems with

probabilities

● Result: insecure
● No problems with

cryptographic primitives
● No problems with

probabilities

8

9

10

11

 Internet Key Exchange (IKE, in IPv6)

““IKE is fairly complicated; to fully understand it, it’s IKE is fairly complicated; to fully understand it, it’s
helpful to possess helpful to possess multiple advanced degrees in multiple advanced degrees in
mathematics and cryptographymathematics and cryptography and to have and to have
copious amounts of sparecopious amounts of spare timetime to read many to read many
detailed yet highly valuable resources.”detailed yet highly valuable resources.”

Microsoft TechNet: How IPsec works

Source: http://technet.microsoft.com/en-us/library/cc512617.aspx

(Retrieved in 2011 and again on August 29, 2016)

http://technet.microsoft.com/en-us/library/cc512617.aspx

13

Example IKE exchange

14

IKEv1 Aggressive Mode with digital signatures IKEv1 Main Mode with digital signatures

15

IKEv1 Aggressive Mode with digital signatures IKEv1 Main Mode with digital signatures

IKEv1 Aggressive Mode with Pre-shared keys IKEv1 Main Mode with Pre-shared keys

IKEv1 Aggressive Mode with Public keys IKEv1 Main Mode with Public keys

IKEv1 Aggressive Mode with Public keys (2) IKEv1 Main Mode with Public keys (2)

Note: some minor variants omitted!

16

IKEv1 Aggressive Mode with digital signatures IKEv1 Main Mode with digital signatures

IKEv1 Aggressive Mode with Pre-shared keys IKEv1 Main Mode with Pre-shared keys

IKEv1 Aggressive Mode with Public keys IKEv1 Main Mode with Public keys

IKEv1 Aggressive Mode with Public keys (2) IKEv1 Main Mode with Public keys (2)

Phase 1

IKEv1 Quick Mode IKEv1 Quick Mode without PFS

IKEv1 Quick Mode without Identity

Phase 2

Note: some minor variants omitted!

17

IKEv1 Aggressive Mode with
digital signatures

IKEv1 Main Mode with digital
signatures

IKEv1 Aggressive Mode with
Pre-shared keys

IKEv1 Main Mode with Pre-
shared keys

IKEv1 Aggressive Mode with
Public keys

IKEv1 Main Mode with Public
keys

IKEv1 Aggressive Mode with
Public keys (2)

IKEv1 Main Mode with Public
keys (2)

Phase 1

IKEv1 Quick Mode IKEv1 Quick Mode without PFS

IKEv1 Quick Mode without
Identity

Phase 2

IKEv1

IKEv2 SIG IKEv2 SIG noid

IKEv2 MAC IKEv2 MAC noid

IKEv2 EAP IKEv2 EAP noid

IKEv2 SIG/MAC asymmetric
variants

IKEv2 SIG/MAC asymmetric
variants

Phase 1

IKEv2 child mode IKEv2 child mode without PFS

Phase 2

IKEv2

IKEv2 SIG/MAC asymmetric
variants

IKEv2 SIG/MAC asymmetric
variants

Note: some minor variants omitted!

18

Modern adversary/threat models

● Adversary can
– learn long-term keys,

– learn the randomness generated in sessions,

– learn session keys

– learn (part of) the session state

● Security guarantee holds for all clean sessions
– A complex condition that involves:

● All other sessions
● Checking partial authentication
● Temporal ordering of events

19

Can tools help out?

20

2006

21

Scyther (Cremers, 2006)

● Focusses on event structures
● Does not use abstraction

– Never finds ``false'' attacks

● Input language: domain-specific language
(SPDL)
– Linear role scripts

11.11.11 22

Basis: Dolev Yao adversary model

● Models an active intruder with
full network control and perfect recall

● Idealized black-box cryptography

Successful: interesting theory and powerful tools

11.11.11 23

Terms, roles, and protocols

● Terms: operators for constructing cryptographic
messages

● Roles: sequences of agent events

● Example

11.11.11 24

Threads

● A thread is a role instance (local session)

– No limit to number of threads

– Each thread assigned a unique identifier from the set TID.

– We instantiate names and syntactically bind fresh values and
variables to their owning thread, e.g. K#1, y#1

● For currently active threads, we store the remaining sequence
of steps in a thread pool th :

11.11.11 25

Core symbolic model
(slightly simplified)

● State (tr,IK,th)

– tr : trace of events that have occurred

– IK : “intruder knowledge” of adversary, initially IK0

– th : thread pool, mapping thread identifiers to remaining steps
● Transition system modeling agents' threads and adversary

Example of reachable state:

tr IK th

11.11.11 26

Reasoning about protocol semantics (TS)

● General complexity
– Reachability properties are undecidable, e.g.

secrecy
(Durgin, Lincoln, Mitchell, Scedrov 1999)

– NP-hard, even when number of sessions is bounded
(Rusinowitch, Turuani, 1999)

● Scyther tool often successful in protocol analysis

Description of
security protocol

+
security properties

(reachability)

Tool

Secure

Insecure
Attack

example

Bounded sessions

Unbounded

11.11.11 27

DEMO

28

2008

29

Scyther pros and cons

● Pros
– Unbounded analysis

by backwards
search

● no bound on the
number of possible
threads in attacks

– Fast, push-button

– Many case studies
– Support for different

adversary models

● Cons
– Linear role scripts

● No if/then
● No loops within

protocol

– No good support for
equational theories

– No mutable global
state

– Fixed set of security
properties

30

The Tamarin Prover

31

Family of small monkeys in South America

Choice: Emperor Tamarin

Important: Not
near extiction

The Tamarin Prover

Simon
Meier

Benedikt
Schmidt

David
Basin

Joint work with:

32

Tamarin prover: History

● Idea: generalize Scyther's approach
– Better support for Diffie-Hellman
– Loops, branches
– Property specification

● From vague idea to theory to tool between 2008 and
2012
– Simon and Benedikt: vast majority of the development

– Cedric Staub worked on the GUI
– Many people involved in models

– Several person years of work

33

2011

34

The ISO/IEC 9798 Standard

● Entity Authentication Mechanisms

● 18 base protocols
– Symmetric-key encryption,

Digital signatures,
Cryptographic check functions

– Unilateral or Mutual authentication

– Additional protocols with TTP

● Further variants from optional fields

35

The ISO/IEC 9798 Standard

● History
● Active development and updates since 1991
● Blueprints for protocol design
● Basis for ISO 11770 (Key Exchange) and NIST FIPS 196
● Mandated by other standards

– e.g. European Banking Commission's smart card standards

● Intended properties
● Entity authentication?
● E.g. Resistant to reflection attacks
● Encrypted/signed payloads?

36

ISO 9798-2-5

37

Analysis

● Request by CryptRec to evaluate standard

– Cryptography Research and Evaluation Committees

– Funded by the Japanese government

– Part of long-running program to evaluate cryptographic mechanisms

● Confirmation expected
● Standard has been improved since 1994
● Multiple previous analysis

38

Tools used

 Scyther

Symbolic analysis of
security protocols

● Falsification
(attack finding)

● Unbounded verification

 Scyther-proof
– Embedding of

protocol semantics and
protocol-independent
invariant in the
Isabelle/HOL theorem
prover

– Algorithm similar to
Scyther that outputs
proof script for
Isabelle/HOL

– Independent verifiability

39

Results

– No strong authentication properties
Aliveness < Agreement < Synchronisation

– Under some conditions no authentication

40

Mirrored assumptions on A and P players

KAP == KPA – mismatch not detected!

Thread 2 does not decrypt this and
therefore does not detect that it is not

KBA and IPete

Message does not
contain anything

of A/P assumptions

Alice

41

Root Causes of the Problems

● Message format is consistent and minimal

– Good design individually, but leads to possible confusion between
different messages

● No type information for fields

– Combined with above, can lead to type flaw attacks

● Identity of one agent always included to break symmetry of
shared keys

– Great but doesn't work for three parties

42

Repairing ISO/IEC 9798

● We proposed fixes and machine-checked
correctness proofs

● Fixes do not require additional cryptography

● Scyther-proof generates proof scripts for Isabelle-
HOL

● Minor extension over original [CSF2011] developed for
bidirectional keys

● Proofs even guarantee correctness when executing
all ISO 9798 protocols in parallel

● Exclude multi-protocol attacks

43

Effort

● Modeling effort: a couple of weeks
● Abstraction level of standard close to formal models
● Some iteration inevitable after initial analysis with

scyther

● Generating proof scripts using Scyther-proof
● 20 seconds

● Checking correctness in Isabelle/HOL
● 3 hours (correctness for all protocols in parallel)

44

ISO/IEC 9798: Conclusions

● Improving the standard
– Old version: only weak authentication,

sometimes none
– Succesful interaction between researchers and

standardization committee:

– New version of the standard has been released
which guarantees strong authentication
(synchronisation)

– Machine-checked symbolic proofs of standard

● We later similarly tackled ISO/IEC 11770

45

2012

46

Tamarin: model

● Term algebra
– enc(_,_), dec(_,_),

h(_,_),
^, _-1, _*_, 1, …

● Equational theory
– dec(enc(m,k),k) =E m,

– (x^y)^z =E x^(y*z),

– (x-1)-1 =E x, ...

● Facts
– F(t1,...,tn)

● Transition system
– State: multiset of facts
– Rules: l –[a]→ r

● Tamarin-specific
– Built-in Dolev-Yao

attacker rules
● In(), Out(), K()

– Special Fresh rule:
● [] --[]--> [Fr(x)]

– With additional constraints
on systems such that x
unique

47

Semantics

● Transition relation

S –[a]→ ((S \# l) È# r)

where l –[a]→ r is a ground instance of a rule and l Í# S

● Executions

Exec(R) = { Æ –[a1]→ … –[an]→ Sn

| "n . Fr(n) appears only once on rhs }

● Traces
Traces(R) = { [a1,…,an]

| Æ –[a1]→ … –[an]→ Sn ÎExec(R) }

48

Tamarin tackles complex interaction with adversary

DY-style adversary

a.k.a.

The network

Your protocol
modeled with
rewrite rules

Out(t)

In(t)

49

The Naxos protocol

50

rule generate_ltk:
 let pkI = 'g'^~i
 in
 [Fr(~i)]
 -->
 [Ltk($I, ~i)]

rule Init_1:
 let x2 = h1(<~x, ~i >)
 m1 = 'g'^x2
 in
 [Fr(~x), Ltk($I, ~i)]
 -->
 [Init_1(~x, $I, $R, ~i, m1) , Out(m1)]

rule Init_2:
 [Init_1(~x, $I, $R, ~i, m1), In(m2)]
 -->
 []

51

Property specification

52

Property specification

● 2-sorted (temp,msg) first order logic
interpreted over a trace
– False False

– Equality m1 =E m2

– Timepoint ordering #t1 < #t2

– Timepoint equality #t1 = #t2

– Action at timepoint #t A@#t

53

Property specification

● Rules:
– l –[a]→ r

– Instantiated actions stored as (action) trace
● Additionally: adversary knows facts: K()

rule Init_2:
 let pkR = 'g'^~r,
 x2 = h1(< ~x, ~i >),
 kI = h2(< m2^~i, pkR^x2, m2^x2, $I, $R >)
 in
 [Init_1(~x, $I, $R, ~i , m1), In(m2)]
 --[Accept(~x, $I, $R, kI)]-->
 []

Lemma key_secret:
 ''(All #t Test A B k. Accept(Test,A,B,k)@t => Not (Ex #t2. K(k)@t2))''

54

Advanced property
specification

55

eCK security model for key
exchange
● Adversary can

– learn long-term keys,

– learn the randomness generated in sessions,

– learn session keys

● But only as long as the Test session is clean:
– No reveal of session key of Test session or its matching

session, and

– No reveal of randomness of Test session as well as the long-
term key of the actor, and

– If there exists a matching session, then something is
disallowed...

– If there is no matching session, then something else...

56

Lemma eCK_key_secrecy:

 "(All #t1 #t2 Test A B k. Accept(Test, A, B, k) @ t1

 & K(k) @ t2 ==>

 (

 (Ex #t3. SesskRev(Test) @ t3)

 | (Ex MatchingSession #t3 #t4 ms.

 (Sid (MatchingSession, ms) @ t3

 & Match(Test, ms) @ t4)

 & (Ex #t5. SesskRev(MatchingSession) @ t5))

 | […]

)"

end

57

Demo

58

2014

59

Tamarin: Selected case studies
● Key exchange protocols

– Naxos

– Signed DH

– KEA+

– UM

– Tsx

– TLS handshake

● Group protocols
– GDH

– TAK

– (Sig)Joux

– STR

● ID-based AKE
– RYY

– Scott

– Chen-Kudla

● Protocols with loops
– TESLA1

– TESLA2

● Non-monotonic global state
– Keyserver

– Envelope

– Exclusive secrets

– Contract signing

– Security device

– YubiKey

– YubiHSM

● PKI with strong guarantees
– ARPKI (also global state)

● Transparency
– KUD/DECIM (also global state)

60

SAPIC

● Stateful applied Pi calculus + tool
– Steve Kremer & Robert Künnemann

● Compiles to Tamarin input

61

Tamarin summary

● We can now deal with:
– Any number of instances, even with loops and mutable global state

– Complex protocol details and property specifications

– Some support for observational (trace) equivalence (2016)

– But still much left to be handled and automated

● The Tamarin prover is freely available
– Theses Simon Meier & Benedikt Schmidt

– Papers: CSF 2012, CAV 2013,
IEEE S&P 2014, …

– Manual (PDF and website)

– Development on github

62

2015

63

Internet Security

Cas Cremers https://www.google.com/

?

64

Overview

● Case study: TLS 1.3
– What is it?

– Our analysis approach

– Some details

– Results

● Wrap up

65

These all implement the TLS protocol:
Transport Layer Security

previously known as SSL;
also the 'S' in 'https';
a.k.a. the green lock

The purpose of TLS:
To provide a secure channel to transfer messages

Cas Cremers https://www.google.com/

66

Security of TLS over time

67

TLS development

● Currently under development: TLS 1.3
– Led by the Internet Engineering Task Force

(IETF)

– Public mailing list discussions

– Long, complex process

68

TLS 1.3

(a) Initial (EC)DHE handshake (b) 0-RTT handshake

(c) PSK-resumption handshake (+PSK-DHE)

69

What we did (nutshell)

● Collaboration with Royal Holloway
– Cas with Marko Horvat, Sam Scott, and Thyla van der Merwe

● We built a symbolic model of the TLS 1.3 specification
currently under development (draft 10)

● We wanted to verify the core properties of TLS 1.3 as an
authenticated key exchange protocol
– secrecy of session keys

– unilateral (mutual) authentication

● We found a potential attack – disclosed this to the IETF
TLS WG

70

TLS 1.3 and Tamarin

● We built our model for use in the Tamarin
prover
– Reasons:

● Supports loops and branches well
● Good symbolic Diffie-Hellman support

71

Step 1: Building a model

72

Step 1: Building a model

73

Step 1: Building a model

74

Step 1: Building a model

75

Step 1: Building a model

76

Step 1: Building a model

77

Step 1: Building a model

78

Step 1: Building a model

79

Step 1: Building a model

80

Step 1: Building a model

81

Step 1: Building a model
rule C_1:
let
 // Default C1 values
 tid = ~nc

 // Client Hello
 C = $C
 nc = ~nc
 pc = $pc
 S = $S

 // Client Key Share
 ga = ’g’^~a

 messages = <nc, pc,ga>
in
 [Fr(nc)
 , Fr(~a)
]
 --[C1(tid)
 , Start(tid, C, ’client’)
 , Running(C, S, ’client’, nc)
 , DH(C, ~a)
]->
 [St_C_1_init(tid, C, nc, pc, S, ~a, messages, ’no_auth’)
 , Out(<C,nc, pc,ga>)
]

82

Step 1: Building a model

83

Step 2: Encoding security
properties
● TLS 1.3 goals include

– unilateral authentication of the server
(mandatory)

– mutual authentication (optional)

– confidentiality and perfect forward secrecy
of session keys

– integrity of handshake messages

84

Step 2: Encoding security
properties

secret_session_keys:
(1) „All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, 'authenticated'>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)
 | (Ex #r. RevLtk(actor)@r & #r < #i))
(4) ==> not Ex #j. KU(k)@j“

● This says…
– For all possible values of variables on the first line (1)
– if key k is accepted at time point i (2), and
– the adversary has not revealed the long term keys of the actor or the

peer before the key is accepted (3)
– then the adversary cannot derive the key (4)

Want to show that this holds for all combinations of client,
server, and adversary behaviours – ALL traces!

85

Step 3: Proving security
properties

SessionKey(...)

eventually will
boil down to
needing to
break DH

What can the
adversary do?

What can the
adversary do?and so on...

C2_No_Auth

C2_Auth

S2_Auth

S2

86

Step 3: Proving security
properties
● Not a straightforward application of Tamarin

– several man-months of work

– specification a moving target

– updating takes time, can be error-prone

● Need intimate knowledge of the protocol –
high degree of interaction with the tool in
some cases
– Not auto-provable

– We have 45 auxiliary lemmas

87

Step 3: Proving security
properties
● We verified the core properties of TLS 1.3

draft 10 as an authenticated key exchange
protocol:
– Secrecy of session keys

● holds for both client and server
● forward secrecy

– Mutual authentication

88

Attacking client authentication (revision
10+)

Analysis:

Tamarin finds an attack!

89

Attacking client authentication

90

Attacking client authentication

91

Attacking client authentication

92

Attacking client authentication

93

Attacking client authentication

94

Attacking client authentication

95

Attacking client authentication

96

Attacking client authentication

97

Attacking client authentication

98

Attacking client authentication

99

Attacking client authentication

100

Attacking client authentication

101

Attacking client authentication

102

Attacking client authentication

103

Attacking client authentication

104

Attacking client authentication

105

Attacking client authentication

106

Attacking client authentication

107

Attacking client authentication

108

Cause and mitigation

● Prime example of an attack that can arise
because of the interaction of modes

● No binding between the client signature and
session for which it is intended

● Complicated to find
– requires 18 messages to set up

– involves 2 handshakes, 2 resumptions, 1 client
auth...

● Communicated this to the IETF TLS Working
Group...

109

Cause and mitigation

https://www.ietf.org/mail-archive/web/tls/current/msg18215.html

Dear all,

We [1] are in the process of performing an automated symbolic analysis

of the TLS 1.3 specification draft (revision 10) using the Tamarin

prover [2], which is a tool for automated security protocol analysis.

While revision 10 does not yet appear to permit certificate-based client

authentication in PSK (and in particular resumption using PSK), we modelled

what we believe is the intended functionality. By enabling client

authentication either in the initial handshake, or with a post- handshake

signature over the handshake hash, our Tamarin analysis finds an attack. The

result is a complete breakage of client authentication, as the attacker can

impersonate a client when communicating with a server:

Suppose a client Alice performs an initial handshake with Charlie. Charlie,

masquerading as Alice, subsequently performs a handshake with Bob. Following a

PSK resumption, Bob requests authentication from Charlie (impersonating Alice).

Charlie then requests authentication from Alice, and the returned signature

will also be a valid signature for the session with Bob.

 Initial h/s Initial h/s

 |<-------------->| |<-------------->|

 | exchange PSK | | exchange PSK |

 | | | |

 |Start PSK resume| |Start PSK resume|

 |--------------->| |--------------->|

 |client_random nc| |client_random nc|

 | | | |

 | Accept resume | | Accept resume |

Alice|<---------------|(as Charlie) Charlie (as Alice)|<---------------|Bob

 |server_random ns| |server_random ns|

 | | | |

 | | | |

 |Client auth req | |Client auth req |

110

IETF WG mailing list reactions

“Nice analysis! I think that the composition of different
mechanisms in the protocol is likely to be where many
subtle issues lie, and analyses like this one support that
concern.”

“Thanks for posting this. It's great to see people doing
real formal analysis of the TLS 1.3 draft; this is really
helpful in guiding the design.”

“The result motivates and confirms the need to modify the
handshake hashes to contain the server Finished when we add
post-handshake authentication as is done in PR#316, which
of course we'll be discussing in Yokohama.”

111

May 2016

Mozilla HQ, Mountain View, CA, USA

May 2016

Mozilla HQ, Mountain View, CA, USA

112

The Future?

113

What I didn’t talk about...

● In parallel, we work on computational (cryptographic)
models and proofs

● More fine-grained guarantees…
… in the property and models

● BUT: Manual (pen and paper) proofs are often surprisingly
coarse
– many side cases not considered well

– ongoing work on automation, but often partial or hard to scale

● Ongoing: first cryptographic proof of the core of the Signal
Protocol
– As used by TextSecure, Facebook, WhatsApp, …

– Claims “future secrecy”… (See also our CSF 2016 paper on Post-
Compromise Security)

114

Take away

● People design complex systems; hard to be
confident

● Formal methods tools one way of increasing
confidence in solutions
– Now at a level where we impact real-world standards
– Careful: One methodology not enough to provide

high assurance; too error-prone

● Our tools all open source (github)
– see my webpage etc. or drop me a mail

(cas.cremers@cs.ox.ac.uk)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	2004
	Slide 6
	99 problems
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	D-Y adversary model
	Terms roles protocols
	Threads
	transition system rules
	semantics and tools
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	ISO 9798 overview
	ISO 9798 history
	ISO 9798 2-5 explain
	ISO 9798 analysis
	ISO 9798 tools
	ISO 9798 results
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	ex1: properties
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	sam and whiteboard
	origin
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114

