Data protection by means of fragmentation
FOSAD 2016

Katarzyna KAPUSTA
Telecom ParisTech
katarzyna.kapusta@telecom-paristech.fr

September 1, 2016
Self introduction

- **PhD Student at Telecom ParisTech Universite Paris-Saclay**
 Supervisor: Gerard MEMMI, Funded by the ITEA2 CAP project

- **Education**:
 - M.Eng. Telecom ParisTech Universite Paris-Saclay, Paris, France
 - M.Sc. AGH University of Science and Technology, Cracow, Poland

- **Previous work experience**:
 - Security consultant, E&Y, Paris
 - Software developer intern at Thales Communications & Security, Paris
 - Software developer intern at CERN, Geneva
1 Introduction: Why do we need fragmentation?

2 State of the art
 - Data fragmentation techniques
 - Academic and commercial systems using data fragmentation

3 Proposed keyless efficient algorithm for data fragmentation
 - Algorithm description
 - Security analysis
 - Performance results

4 Ongoing and future works
The security of encrypted data depends on the chosen algorithm, as well as on the strength and the secure storage of its key.

Fragmenting data into multiple fragments and dispersing these fragments over various locations aims at frustrating an attacker.

Nowadays, fragmentation is enabled by the cloud environment (large number of servers, multiple data centers).
Part 1: State of the art
Our division of data fragmentation techniques

1. **Bitwise**: fragmenting data without any consideration for their structure, their semantics, or their uneven level of confidentiality

2. **Structurewise**: exploiting data structures, multi-level confidentiality, and machine trustworthiness
Bitwise fragmentation techniques and systems

- Three levels of security:
 - Perfect or information-theoretic security: (i.e. Shamir’s secret sharing)
 - Computational security: standard encryption (i.e. AES)
 - Incremental security: Information Dispersal Algorithms (i.e. Rabin’s)

- Challenge: balancing memory and performance with security

- Systems using bitwise fragmentation:
 - Academic, i.e. PASIS, POTSHARDS, GridSharing, DepSky
 - Commercial, i.e. Cleversafe (IBM), SecureParser (Unisys), Symform
Structurewise fragmentation techniques

- **Object-oriented**
 - Fragmentation-Redundancy-Scattering
 - Breaking data into non-confidential fragments
 - Sensitive information encrypted and stored on trusted workstations, remaining pieces distributed over untrusted sites

- **Database-oriented**
 - Protecting relationships between relations
 - Preserving data unlinkability while executing queries
 - Searchable or partial encryption
Fragmentation in the cloud: issues and recommendations

1. Location control vs. virtualization
 - How to ensure secure data separation? Bare-metal clouds?
 - Coarse-grained solution: multi-cloud

2. Latency problems: combining fragmentation with parallelization

3. Defining security levels without user interaction for fragmentation of structured data
Fragmentation in the cloud: desired architectural traits

Public area with Virtual Machines (public cloud)

Storage area with direct access to machines (bare-metal clouds)

Private trusted area

Non-trusted environment

Data size

Strong level of protection

Weak level of protection

Huge data size

Small data size

High level of trust

Low level of trust
Part 2: Proposed fragmentation algorithm
Brief description of the idea

- **Problem** Perfectly secure fragmentation schemes increase memory, information dispersal algorithms have low security.

- **Goal**: a fragmentation scheme balancing memory use and performance with security.

Proposal of a keyless computationally secure \((k,n)\)-threshold algorithm:
- 1st step: \((k,k)\)-threshold fragmentation for security
- 2st step: adding redundant fragments to obtain a \((k,n)\)-threshold scheme.
Principle of the fragmentation scheme (1)

- Initial data is divided into sets of k smaller data chunks
- Encoding done set by set in a Shamir like fashion
- Perfect security traded for memory: reusing encoding results
- A random seed of k values serves as the first set
Principle of the fragmentation scheme (2)

- **Data fragmentation**: encoded data are *separated* into k fragments
- **All or nothing**: all k fragments are needed for data recovery
- $n - k$ redundant fragments are added if needed
CHARACTERISTICS

REMOTE USE: total overhead is of k bytes for one block of data, a fragment size is close to optimal value D_{size} / k

PERFORMANCE:

- Fragmentation: $O(k)$ complexity, partially parallelizable
- Defragmentation: complexity depends on the fragments used for recovery, highly parallelizable
Implementation

- **Matlab**: used for security analysis
- **JAVA**: single and 4-threaded version, multiple lookup tables, only logical operations (use of $GF(2^8)$), used for performance tests
Security analyses: fragments uniformity and independence

- Analyzing fragmentation results, comparing fragments to initial data
- **Uniformity**: chi-square test, data entropy, probability density function
- **Independence**: recurrence, correlation
- **Seed sensitivity**: same data fragmented using similar seeds

![Figure: Original data (a) and one of its fragment (b)](image)

Figure: Original data (a) and one of its fragment (b)
Security analyses: uniformity (1)

Figure: Chi-square test (a); Entropy comparison (b) \((k = 8, \text{ for } 1000 \text{ times})\)
Security analyses: uniformity (2)

Figure: Probability Density Function of original data (a) and one of its fragment (b) \((k = 8)\)
Security analyses: independence (1)

Figure: Recurrence plot of original data (a) and one of its fragment (b) ($k = 8$)
Security analyses: independence (2)

Figure: Correlation coefficients between original data and its fragmentation ($k = 8$, for 1000 times) (a) and among fragments (b)
Security analyses: seed sensitivity

Figure: Correlations (a) and differences (b) between fragments of the same data fragmented with different seeds ($k = 8$)
Performance results

Figure: Time vs. number of fragments k (a), Time vs. data size (b).
Ongoing and future works

- Make our code open-source
- Benchmark the fragmentation scheme
- Refine the security analysis toolbox
- Adapt the fragmentation scheme to concrete use cases: cloud environment, unattended wireless sensor networks
Publications

- G. Memmi, K. Kapusta, and H. Qiu, "Data protection by means of fragmentation in several distributed storage systems", in *Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC)*, 2015.
Questions?