
Technische Universität Darmstadt
Intel Collaborative Research Institute for Secure Computing (ICRI-SC)
Prof. Dr.-Ing. Ahmad-Reza Sadeghi
Dr.-Ing. Lucas Davi
M.Sc. Christopher Liebchen

Tutorial, 31 August 2016, 15:00 - 17:00

The Continuing Arms Race:

A Journey in the World of Runtime Exploits and Defenses

16th International School on Foundations of Security Analysis and Design
(FOSAD)

Code-reuse attacks such as return-oriented programming constitute a powerful and prevalent attack class
that is frequently leveraged to exploit software programs. The goal of this exercise is to construct such
code-reuse attacks against vulnerable mobile Android applications.

First, you need to install VirtualBox1 and import the 4GB tutorial image2. On the Desktop of your
Ubuntu 10.04 VirtualBox image, you will find a sample Android application project called hello-jni. This
application leverages the Android NDK (Native Development Kit) to link to a shared library called libhello-
jni.so. The Android application invokes the shared library to output the string Hello from JNI! on the user’s
display. Further, the shared library contains several native functions (written in the C language) to open
and read a local file from the sd-card, called input, and store its content into a local buffer.

In the following Excercise No. 1 and No. 2, you need to identify the embedded vulnerability inside the
Android application, and exploit the vulnerability to open the Android Web-Browser providing the URL
http://www.stackoverflow.com as first argument. Due to the time limit, we included Exercise No. 3 as
optional. In this exercise, you will construct several advanced exploits to drop a phone call.

To correctly construct the attacks, it is necessary to debug the application with the standard Linux debugger
gdb. The debugger facilitates determining the correct memory addresses of functions and gadgets you desire
to invoke in your code-reuse attack. In Appendix A, we added an excerpt of the gdb command reference.

Before you start constructing your code-reuse attacks, please make yourself comfortable in using and debug-
ging the Android application.

1https://www.virtualbox.org/wiki/Downloads
2https://drive.google.com/open?id=0BxRA3a6PD_VDaUxlT2hhemdoX2c

1

Android Emulator, Debugging, and File Transfer

To launch the sample application on the Android emulator, proceed as follows.

a) Open a terminal

b) Start Eclipse: $ /home/android/eclipse/eclipse &

(the hello-jni project is loaded automatically)

c) Start the app:

d) Once the Android emulator is started, deactivate the screensaver to view the app’s main activity.

To debug an Android native code application, proceed as follows.

a) If not yet opened, open Eclipse as described above

b) Start the app in debug mode:

c) Open a terminal

d) Navigate to the project’s folder: $ cd Desktop/hello-jni/

e) Attach to the running app with gdb: $../../android-ndk-r8/ndk-gdb

f) Ignore the error messages concerning the debug symbols of shared libraries

At this stage, you can use the gdb commands listed in Appendix A. For the sake of demonstrating the
effects of breakpoints, set a breakpoint by executing break vulnerable in the gdb console. If you set a
breakpoint in gdb, you need to (i) continue the execution in the gdb console via the continue command,

and (ii) resume the execution in Eclipse by clicking on the Resume button: . Subsequently, you should
see in your gdb console that the breakpoint has been reached. For now, quit the gdb console by executing
the quit command and confirming that you quit a running program.

Since the Android application opens a file stored on the sd-card, we shortly describe the process of modifying
the file and uploading it to the Android emulator. To change the content of the input file, proceed as follows.

a) Open the input file in a hex editor: $ ghex2 input

b) Enable the ghex2 insert mode via the ghex2 navigation bar.

c) Replace the first four bytes with: 55 66 77 88

d) Always add an extra FF as last character of the file

e) Save your changes

To transfer the input file between your host machine and your Android emulator’s sd-card, execute the
following shell commands. A prerequisite for executing these commands is that the Android emulator is
running.

• Send file from host to emulator: $ adb push input /sdcard/

• (You can also send files from emulator to host: $ adb pull /sdcard/input)

• Open emulator shell to check for stored files: $ adb shell

Note that files are directly overwritten on the Android emulator. Hence, backup your files between the
exercises to avoid losing your exploit payloads.

2

1 Return-into-Library Attack

In this exercise you need to construct a return-into-library exploit that invokes the subroutine startBrowser().
In order to construct the attack, proceed as follows:

• Identify and examine the buffer overflow vulnerability in the native code part

• Determine the number of bytes your input file requires to overwrite the return address

• Debug the application to determine the memory address of startBrowser(). Please note that although
the application is compiled in THUMB mode, gdb displays disassembled THUMB code with even
memory addresses. However, internally the application still executes THUMB code from odd memory
addresses, i.e., always set the last significant bit when using THUMB code in your exploit.

• Construct your exploit by modifying the input file

• Upload the modified input file to your Android emulator and test your exploit

2 Basic Return-Oriented Programming Attack

In this exercise you need to construct a return-oriented programming attack that launches the browser
with http://www.stackoverflow.com but without invoking the startBrowser() subroutine. In contrast,
you have to generate the return-oriented programming payload based on the sequences provided in the
someArbitraryROPsequences() subroutine. In order to construct the attack, proceed as follows:

• Identify the memory addresses of the sequences embedded in someArbitraryROPsequences()

• Identify the memory address of the string:
am start -a android.intent.action.VIEW -d http://www.stackoverflow.com

• Identify the memory address of the libc function system()

• Reverse-engineer the application to determine the ARM register where system() expects its first func-
tion argument

• Construct your exploit by modifying the input file and leveraging the sequences from someArbitrary-
ROPsequences() and the libc function system()

• Upload the modified input file to your Android emulator and test your exploit

3

3 OPTIONAL: Advanced Return-Oriented Programming Attack

In this exercise, we construct several advanced exploits. In particular, we launch the browser with an
attacker-chosen URL, and construct an exploit that drops a call. While you perform this exercise do not
restart the emulator, and launch all the attacks by initiating a debug session, i.e., starting the application

in debug mode . The reason is twofold: first, when you restart the emulator, the stack base address
might change. Second, the stack base address differs from debug to run mode. This randomization did not
affect your exploits in the preceding exercises, but impacts your exploits in this exercise as we leverage stack
addresses.

In order to construct the exploits, proceed as follows:

• First, you should construct an attack that calls the browser with your own chosen URL. For this, you
need to provide the entire Android command am start -a android.intent.action.VIEW -d http://... on
the application’s stack. This is achieved by (i) providing the target string in the input file, (ii) de-
termining the stack address where the string is located in debug mode, and (iii) adjusting the exploit
payload in the input file.
Hint: You do not need to determine the hexadecimal representation of your target string, because
ghex allows you to enter ASCII characters.

• Next, instead of launching the browser, you should exploit the vulnerable application to dial a phone
number of your choice. Compared to the last attack, you only need to change the string android.intent.action.*
and provide the appropriate argument, i.e., your chosen telephone number. As an example, your new
string could be as follows: am start -a android.intent.action.DIAL -d tel:123456

• As you will recognize, the above attack still requires the user to explicitly click on the dial button.
However, Android offers the android.intent.action.CALL command to drop a call. Change your input
file to use the CALL command and test your exploit. Find out why this attack fails by inspecting the
Logcat messages in your Eclipse debug window.

• Change the hello-jni application accordingly to allow the phone call attack to succeed. Before doing
any changes to the application either consult Luca or Christopher to check if you are performing the
correct changes.

4

A GNU Debugger gdb

The following gdb commands may help you to solve this exercise:

• quit: Exit gdb

• list: Show lines of the source code

• disassemble function : Disassemble a function

– disassemble main: Disassemble the main function

• break: Set a breakpoint

– break *0x8000000F: Set a breakpoint at address 0x8000000F.

– break main: Set a breakpoint at the main function

• run [arglist] : Run the program with arguments arglist

• step instruction: Execute one assembler instruction

• continue: Continue program execution until the next breakpoint is hit

• info registers: Print the processor register values.

• display /3i $pc: Print on every step the next three instructions.

• print [expression] : Show value of expression

– print /x $sp: Print the value of the %sp register in in hexadecimal (x) notation

• x/[Nuf] expression : Examine memory at address expression, whereas N indicates the Number of
units to display, u the unit size, and f the printing format.

– x/4wx $sp: Print the top four (4) 32 bit words (w) on the stack ($sp) in hexadecimal (x)
notation

– x/1s $r0: Display one String (1s) starting from the address stored in ($r0).

5

