Introduction to Ethereum

Joseph Bonneau
FOSAD 2017

Bertinoro, Italy

Schedule

Monday: Intro to Ethereum

- Ethereum system design
- Overview of solidity
- Overview of applications

Tuesday: Practical Exercise
- Solidity coding tutorial

Wednesday: Security issues for Ethereum Development
- Secure smart contract programming

- Classic security bugs: reentrancy, unchecked sends
- DAO case study

Smart contracts & Bitcoin

“Smart contracts” conceptualized by Szabo in 1994

A smart contract is a computerized transaction protocol that
executes the terms of a contract. The general objectives are
to satisfy common contractual conditions (such as payment
terms, liens, confidentiality, and even enforcement), minimize
exceptions both malicious and accidental, and minimize the
need for trusted intermediaries. Related economic goals
include lowering fraud loss, arbitrations and enforcement
costs, and other transaction costs.

-Nick Szabo “The Idea of Smart Contracts”

A “dumb contract” example: pay for a hash pre-image

‘@)

Alice will reveal to Bob a value x such that
SHA-256(x) = 0x2a...

In exchange, Bob will pay US$10.

If Alice does not reveal by July 1, 2017, then
she will pay a penalty of US$1 per day that
she is late, up to US$100.

@Signed: ﬁﬂw BOB)

Traditional contracts vs. smart contracts

specification

assent

dispute resolution

nullification

payment

escrow

Traditional

Natural language + “legalese”

Signatures

Judges, arbitrators

By judges

As specified

Trusted third party

Smart

Code

Digital signatures

Decentralized platform

2?7?77

built-in

built-in

Recall: BTC contains a simple scripting language

"tx_out”:[
{
"value":"10.12287097",

“scriptPubKey":"OP_DUP OP_HASH160 69e...3d42e
OP_EQUALVERIFY OP_CHECKSIG"

b

Output “addresses” are really scripts

Input “addresses” are also scripts

scriptSig
scriptPubKey

Bitcoin script instructions

256 opcodes total (15 disabled, 75 reserved)

Arithmetic
If/then
Logic/data handling
Crypto!
o Hashes

o Signature verification
o Multi-signature verification

Bitcoin script execution example

yvyewyy \/ \/

<sig> <pubKey> OP DUP OP_ HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_ CHECKSIG

Bitcoin scripting language (“Script”)

Design goals | am not impressed

e Built for Bitcoin (inspired by Forth)

e Simple, compact

e Support for cryptography w7
e Stack-based

e No looping -

o Not Turing-complete
e Time/memory usage bound by program size

Some useful contracts can be done in Bitcoin

e Proof-of-burn
e MULTISIG/access control trees
e Pay-for-hash-preimage
o Multi-party lotteries
o Atomic cross-chain currency exchange
e Micropayment/payment channels
o Greatly improved with OP_CHECKLOCKTIME

Extending Bitcoin functionality

Bitcoin script left developers wanting more

By adding a few opcodes to Bitcoin script, what if we could support:

Distributed naming (Namecoin)

Options, financial derivatives (OpenBazaar, MasterCoin)
Prediction markets (Futurecoin)

Open-ended, user-defined functionality?

Namecoin was the first fork of Bitcoin

Goal: distributed naming, similar functionality to DNS
3 new opcodes:

e NAME NEW
e NAME FIRST UPDATE
NAME_UPDATE

Namecoin introduces three new opcodes

} 12 block delay (frontrunning)

NAME_FIRST_UPDATE: r, “jbonneau”, {"ip" : "68.178.254.235"}

NAME_NEW: H(r, “jponneau”)

NAME_UPDATE: r, “jbonneau”, {"ip6" : "2001:4860:0:1001::68"}

Namecoin introduces new global state

] google — 172.217.18.110 [owner: K]
reddit — 151.101.65.140 [owner: K]
NAME_NEW y

google — 172.217.18.110 [owner: K]
T reddit — 151.101.65.140 [owner: K
y — {pending} [owner: K]

NAME_FIRST_UPDATE jbonneau,r; 68...
google — 172.217.18.110 [owner: K]
T e reddit — 151.101.65.140 [owner: K]
jponneau — 68.178.254.235 [owner: Ki]

NAME_UPDATE jbonneau, 2001:...

google — 172.217.18.110 [owner: K
D reddit — 151.101.65.140 [owner: Kg]
jponneau — 2001:... [owner: K]

Namecoin introduces new fees, incentives

How much does it cost

You can register a .bit domain for 0.02 NMC using the Namecoin software namecoind or Namecoin-Qt. The fee consists of two parts: a) the registration
fee, and b) the transaction fees for the name new and the name_firstupdate transactions.

Registration Transaction

Command Summary Notes
fee fee
name_new 0.01 NMC 0.0056 NMC Pre-order a domain name You still don't own the domain!
name: hrdiipdiaks 0.00 NMC 0.005 NMC Finalize the reg:stration. The name You own the domain during the next 36000 blocks (six
becomes public. months, approx.)

name_update 0.00 NMC 0.005 NMC Renew, update, or transfer aname Gives you another ~6 months of ownership

Side note: Namecoin got the incentives badly wrong

100%

T

80%

60% |

40%

20%

% of all Namecoin registrations

l"J.-i' i i i
% 0 5000 10000 15000 20000

#Names claimed

An empirical study of Namecoin and lessons for decentralized namespace design
Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau and Arvind Narayanan. WEIS 2015

http://randomwalker.info/publications/namespaces.pdf

Recap: several requirements for new functionality

new addition purpose in Namecoin in Futurecoin

list of markets, bets in

Global state Track app-specific data name — value map each market

Express updates to

global state NAME_NEW etc. OPEN_MARKET etc.

Opcodes

Limit computation &
reads/writes to global
state

Registration fees to limit
squatting, maintenance
fees

transaction fees per

Fees open market, exchange

Replicated State Machines

Recap: Bitcoin itself implicitly defines state

new addition purpose in Bitcoin
This state is implicit
Global state Track app-specific data UTXO set
Bitcoin scripts only
Express updates to , succeed/fail. No side
Opcodes transactions
P global state ! effects on global state

Limit computation &
reads/writes to global
state

Miners can produce
blocks which are very
costly to verify

Fees not required

Replicated state machines are the classic abstraction

e Set of possible states S
e Set of possible inputs |
e Set of possible outputs O

e Transition functionf: S x| —-Sx0O

o Startstates € S (genesis block)

“Blockchain™ is an ordered list of inputs w/consensus

consensus info input
(%) (%)
consensus info input
nonce=0x456... A—B 17 signed(Alice)
consensus info input

nonce=0x123... B—C 11 signed(Bob)

“State” is really just a compression of history

time

Inputs: @
Outputs: 25—Alice

Inputs: 1[0]
Outputs: 17—Bob, 8—Alice

SIGNED(Alice)

Inputs: 2[0]
Outputs: 8—Carol, 7—Bob

SIGNED(Bob)

Inputs: 2[1]
Outputs: 6—David, 2—Alice

SIGNED(Alice)

Efficient: track UTXO set

{1[0]: 25, A}

{AeicidnBS2HN: 8, A}
blockchain to
check for validity

e

1 {2[1]: 8, A; 3[0]: 8, C, 3[1]: 7,B}

Blockchains may include explicit state commitments

consensus info

consensus info

nonce=0x456...

consensus info

nonce=0x123...

input

T

input

A—B 17 signed(Alice)

T

input
B—C 11 signed(Bob)

state commitment

s = {A: 50}

state commitment

{A: 33, B:17}

state commitment

{A: 33, B:6, C: 11}

Explicit state commitments offer many advantages

consensus info input state commitment

nonce=0x123... B—C 11 signed(Bob) {A: 33, B:6, C: 11}

e Inconsistencies surface immediately
e Light clients can quickly get current state
e (Can efficiently verify sequence between any two blocks

Ethereum: A universal RSM

To get Turing-completeness:

e Set of possible states S Include arbitrary
e Set of possible inputs | programs

e Set of possible outputs O

e Transition functionf: S x| —-Sx 0O

Interpret programs }

o Startstates € S (genesis block)

Universality brings on classic OS problems

“~ SILBERSCHATZ
: GALVIN

e \What state can a tx change?
o memory protection

e How many resources can a contract use?
o resource contention

Ethereum in one slide

e States S = a map from addresses to state

address code storage balance nonce

e Inputs | (transactions)

may affect the state of
any address ce

from sig, n to

e Transition f:
o validate sig
o run to.code(from, data, value, startgas, gasprice)
e Start state: ©

The full* Ethereum blockchain structure

<
prev height time
nonce difficulty miner extra
state root transaction root receipt root
f
address code storage balance nonce

The full* Ethereum blockchain structure

from

<
prev height time
nonce difficulty miner extra
state root transaction root receipt root
*
sig, n to data value startgas gasprice

The full* Ethereum blockchain structure

prev height time
nonce difficulty miner extra
state root transaction root receipt root
*
final state gas used log output log bloom

Ethereum addresses can be accounts or contracts

address code storage balance nonce

account contract
Note: no UTXOs in H(pub_key) H(creator, nonce)
Ethereum
% EVM code
storage @ Merkle storage root :
balance ETH balance |
nonce | #transaction sent :

Volatile fields

Three™ types of transaction in Ethereum

type from sig, n to data value startgas gasprice

create | creator sig, n 2 code start_bal 53000 ?

Three™ types of transaction in Ethereum

type from sig, n to data value startgas gasprice
create | creator sig, n 2 code start_bal 53000 ?

send | sender sig,n | receiver @ transfer_val = 30000 ?

Three™ types of transaction in Ethereum

type from sig, n

create | creator sig, n

send | sender | sig, n

call caller @ sig, n

to

receiver

contract

data

code

)

f, args

value

start_bal

transfer_val

transfer_val

startgas

53000

30000

gasprice

?

?

Example:
NameCoin in Ethereum

contract Namespace {

struct NameEntry {
address owner;
bytes32 value;

}

uint32 constant REGISTRATION_COST = 100;
uint32 constant UPDATE_COST = 10;
mapping(bytes32 => NameEntry) data;

function nameNew(bytes32 hash){
if (msg.value >= REGISTRATION_COST){
data[hash].owner = msg.sender;

}

function nameUpdate(bytes32 name, bytes32 newValue, address newOwner){
bytes32 hash = sha3(name);
if (data[hash].owner == msg.sender && msg.value >= UPDATE_COST){
data[hash].value = newValue;
if (newOwner != 0){
data[hash].owner = newOwner;

}

function nameLookup(bytes32 name){
return data[sha3(name)];
}

Ethereum code written in Solidity, compiled to EVM

Functional, macros,
looks like scheme

Looks like python

Types, invariants, looks
like Javascript

Viper, Serpent SOlldlty

v

LLL

\

Ethereum VM Bytecode
Stack Language

Looks like Forth.
Defined in Yellowpaper

Ethereum
Virtual
Machine

EVM is stack-based, like BTC script

'PUSH1 0 ~ Features

 CALLDATALOAD

E;:;gAD e 1024-depth stack
pUSHL 9 e 32-byte words

Eg?odlpal e Accelerated crypto

. JUMPDEST g o SHA-3

. PUSH1 32 = . .
EgzIs..iDATALOAD | o Big num multiply
'PUSH1 0 o GF-256 operations
 CALLDATALOAD !

' SSTORE

EVM memory model offers a /ot of space

Storage: {0,1}?°°*—{0,1}?*° map (persistent)
Memory: {0,1}?°°—{0,1}?°® map (volatile between tx)

e in other words, both can represent 2%°* bits!
e arranged in 256-bit words
e all memory is zero-initialized

{ Storage in Ethereum is very expensive. Limiting memory use is critical }

EVM provides basic API for |/O

Input:

e tx info: sender, value, gas limit
® resource use: gas remaining, memory used
e Dblock info: depth, timestamp, miner, hash

Output:

e send messages (call other contracts and/or send money)
e write to logs
e self destruct

Three levels of contract call in Ethereum

Original message:
from sig, n
A sig

Results of a call to C:

msg.sender
value

data
startgas

storage updated

to

CALL

data

value startgas gasprice
X S g
CALLCODE DELEGATE CALL
B

x'< B.balance
(as specified)

s’ < gas remaining

Subtleties to contract calls

e Data: unlimited params/return values
o Direct mapped to memory address + size

e Exceptions: out of gas, bad jump, etc.
o No state changes persisted
o Control returns to caller

e Call stack limit: 1024 ,
o Calls from 1024th frame will fail é/

Efficient map commitments

How can Ethereum commit to so much state?

Recall: storage is a {0,1}*°°—{0,1}?>® map
Requirements:

2" keys supported

Kk keys with a non-zero value
O(1) commitment size

O(lg k) update cost

O(lg k) proofs (even for zero values)

Key insight:
Optimize for efficient storage of zeroized values

) & e e o o

Non-solution: use a binary tree, paths encode address

001 Alice

0
100 Bob <
0 1 Alice

110 Carol

111 David x 0<
0
1

\

X 0 Carol
Problem: <
Requires O(2") computation 1 David

Bob

=,
PAN

Optimization #1: pre-compute all sizes of empty tree

001 Alice

0 Empty[1]
100 Bob <
0 1 Alice

110 Carol

111 David x
0 Empty[2]

0 Bob
1 <
y 1 Empty[1]

X 0 Carol
~

David

This almost works!
Proofs are length O(lg n)

Optimization #2: shrink all single subtrees; store prefix

001 Alice
100 Bob
“kv node”
10 Carol “01”, Alice 2
111 David
0

“diverge node”

| .

This works!
Proofs are length O(lg k)

0 “ Carol
1< (13] g

, David

Ethereum’s “Merkle PATRICIA tree” has a few quirks

Ethereum
An interpr

Block Header, H or B,

Hash function:

KECCAK256 ()

|<=; Simplified World State, o

Keys Values

e Used in two main places
[a]7]2]1]3]s]s] 4s0em
[a]7[7]d[3]3]7] 200wel

o overall state
shared nibble(s) next node ‘ a | 7 ‘ f l 9 ‘ 3 | 6 ‘ 5 1.1ETH

prefix

o per-contract storage

World State Trie

0(1(2|3|4|5|6(7|8|9|a|b|c|d]|e|f]| value
e 16-ary : : :
Leaf Node Extension Node Leaf Node
prefix | key-end value prefix shared nibble(s) next node prefix | key-end value
o proofs ~4x longer : | s soera| [0 | oo e
Prefixes
0 - Extension Node, Branch Node
. even number of nibbles
e paths can be < 256 bits
odd number of nibbles, Vel

2 - Leaf Node, even
number of nibbles

30 - Leaf Node, odd Leaf Node Leaf Node

£ ” ke ” 1 1 number of nibbles - .
o 17, 701" are distinct Pl e | e
o Really 22°’-1 addresses

Gas and transaction limits

Ethereum is like Ryanair: pay to board, then keep paying

Table - Optional fees
Online price (O Airport price D More info
2% 2%, The credit card fee is based on the total value of your transaction,
Credit card fee . : "
of transaction total of transaction total and is charged at the standard 2%.

£€11.00/ £11.00 £€11.00/ £11.00 Please note that an increased charge is applicable for allocated

Priority with extra legroom seats seating & priority boarding on selected routes.

£€7.00/ £7.00 £7.00/ £7.00 Please note that an increased charge is applicable for allocated

seating & prority boarding on selected routes.

Priority Seats

€2.00/ £2.00 €3.00/ £3.00 Please note that an increased charge is applicable for allocated
seating & priority boarding on selected routes.

ﬁvﬂﬂ PLRY -~

Gas in Ethereum is a necessary evil

e All miners must evaluate all transactions
o limit computation cost

e All miners must store all state
o limit storage use

e Short-cut the halting problem
o Finite GAS_LIMIT ensures all programs halt

Observe:
Bitcoin also employs a (crude) means to pay for resources consumed

Every operation has a fixed gas cost

opcodes gas cost
Basic operations ADD, MUL, PUSH, JUMP 2-10
Storage read SLOAD 200
Storage write SSTORE 5000
Storage write (from zero) | SSTORE 20000
Storage zeroize SSTORE -10000
Contract call CALL, CODECALL, etc. 700
Transaction overhead n/a 21000
Contract creation n/a 32000

Contract destruction SELFDESTRUCT -19000

Gas metering is complex

Transactions specify START_GAS, GAS PRICE

If START_GAS x GAS_PRICE > caller.balance, halt

Deduct START _GAS x GAS_PRICE from caller.balance

Set GAS = START_GAS

Run code, deducting from GAS

For negative values, add to GAS_REFUND

a. GAS only decreases

After termination, add GAS + GAS REFUND to caller.balance

SRS

~

Out-of-gas exceptions are bad news

e State reverts to previous value
o Exceptthat START _GAS * GAS_PRICE is still deducted

Callers can choose how much gas to send

A: . C:
100 B: .
/function a(): 10 function b () : 5 function c () :
assert (msg.gas == 100); / assert msg.gas == 1(/ assert (msg.gas == 5)

\x = B.b.gas (10) () y = C.c.gas (5) () while (true) {

“H return x + “ World!” Loop

Worlgy- T~ e o aar Outorg,
“ // out of gas S _
He/lo” return “Hello” return “BOl’ljour"

Gas today is typically 5x10® ether = 9x10" USD

Basic operations
Storage read

Storage write

Storage write (from zero)
Storage zeroize
Contract call

Transaction overhead
Contract creation

Contract destruction

opcodes

ADD, MUL, PUSH, JUMP
SLOAD

SSTORE

SSTORE

SSTORE

CALL, CODECALL, etc.
n/a

n/a

SELFDESTRUCT

gas cost

2-10
200
5000
20000
-10000
700
21000
32000

-19000

USD cost [Aug “17]
~10°
0.0003
0.008
0.032
-0.016
0.0011
0.033
0.051

-0.031

Economics of gas are similar to transaction fees

e Miners choose transactions based on GAS PRICE

e |n theory, they should not care which opcodes are used
o |In practice, some “overpriced” opcodes may be preferred

e Maximum gas limit per block
o Miners can slowly raise it, each block votes

Solidity

Solidity should look familiar

e Syntax looks like C++, JavaScript etc.

e Contracts look like classes/objects
o Can mark functions internal

e Static typing
o Most types can be cast e.g. bool(x)

Solidity types

e bool, uint8, uintl6, ... uint256, int8, ... int256
e address

e string

o byte[]

e mapping(keyType ==> valueType)

Clever implementation of maps in Solidity

Alice 15
mapping(string => uint256) balances; Bob 15
Joe 100
100
0 2256
H(“balances”|”"Bob”) H(“balances’|’Joe”) H(“balances”|"Alice”)

every item requires at least one 256-bit word

balances[‘Andrew”] is 0 if “Andrew” doesn’t exist or if “Andrew” has 0 balance
to delete a key, set balances[*Andrew’] = 0

Cannot delete an entire map!

Polite contracts call throw on errors

uint8 numCandidates;

uint32 votingFee;

mapping(address => bool) hasVoted;
mapping(uint8 => uint32) numVotes;

/// Cast a vote for a designhated candidate
function castVote(uint8 candidate) {
if (msg.value < votingFee)

return;
if (hasVoted[msg.sender])
throw: Throw ensures no effects persisted
? except gas consumption

hasVoted[msg.sender] = true;
numVotes[candidate] += 1;

Modifiers ease repetitive safety checks

address public owner;
uint public electionEnd;

modifier onlyBy(address _account){
require(msg.sender == _account);

.
)

}

modifier onlyAfter(uint _block) {
require(block.blocknumber >= block);

.
)

}

function endElection()
onlyBy(owner) onlyAfter(electionEnd){

Built-in support for calling other contracts

e a.send(x) sends x to address a
o returns O if this fails due to call stack

e foo.call.value(3).gas(20764)(bytes4(sha3("bar()")));
o also callcode, delegatecall
o default is 0 value, all available gas

Remember:
Smart contracts code is fixed forever.

® new constructor deploys a new contract [Calls required to update functionality

o Careful, it's expensive!

Solidity gotchas (many more tomorrow)

e Member variables public by default
o Setters, getters automatically provided
e Functions must be marked payable to accept funds
e Member variables go to storage by default
o Method variables go to memory
e Fallback function()
o Called if no function specified (e.g. send)
o Called if non-existent function called
e msg.sender vs. tx.origin

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

Solidity and EVM may outgrow Ethereum itself

‘REUM
ANCE

3

~

- Enterprise Ethereum Alliance, still in infancy (Announced Feb 28)

-Goal: support EVM, Solidity and tools for private blockchains

- maintain compatibility with Ethereum network

Don’t like Solidity? Write your own language!

Untyped, looks like python Typed, looks like JS Typed, looks like Go Looks like Norse poetry

Viper Solidity Bamboo Your PhD here

!

Lower-Level Language

Ethereum VM Bytecode Looks like Forth.
Stack Language Defined in Yellowpaper

Ethereum project

Ethereum is “run” by the Ethereum Foundation

ethereum

Compatible “alt-clients” exist (e.g. Parity, Consensys)

Ethereum blockchain is different than Bitcoins

Ethereum Bitcoin
Target time between blocks 14.5 seconds 10 minutes

Proof of work Equihash SHA-2562

Stale block rewards Uncle rewards none

Hard Forks are planned in Ethereum

release date
Frontier July 2015
Homestead March 2016
DAO hard fork July 2016
Metropolis 20177

Serenity ?7?

Ethereum may soon overtake Bitcoin in market cap

Percentage of Total Market Capitalization (Dominance)

Zoom 1d 7d 1m 3im Iy ¥TD ALL From @ Apr 28, 2013 Ta | Jum 15, 2017 E

Jul'l3 Jan'l4 Jul'14 Jan '13 Jul *15 Jan "16 Jul '16 Jan'17

Source:
Bitcoin [l Ethereurn M Litecoin [l Ripple 1l Dash MEM [Ethereum Classic [l Monero Investoped ia

Price has been a wild ride recently

ETH/USD
Exchange: Weighted Average

https://ethereumprice.orqg/

http://eth.rollercoaster.one/

http://eth.rollercoaster.one/
https://ethereumprice.org/

Research challenges

Ethereum makes all data public

e Proposals:
o Project Alchemy-exchange Eth for Zcash CASH
o SNARKS for token-issuing contracts
m Acceleration within EVM?
o Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts [Khosba et al. 20106]

Verifying consistency of Ethereum implementations

Security alert [Implementation of BLOCKHASH instruction in C++ and Go clients can
potentially cause consensus issue - Fixed. Please update.]

Introduction

Summary: Erroneous implementation of BLOCKHASH can trigger a chain reorganisation leading to

consensus problems

Affected configurations: All geth versions up to 1.1.3 and 1.2.2. All eth versions prior to 1.0.0.

Likelihood: Low

Severity: Medium

Impact: Medium

Details: Both C++ (eth) and Go (geth) clients have an erroneous implementation of an edge case in the
Ethereum virtual machine, specifically which chain the BLOCKHASH instruction uses for retrieving a

block hash. This edge case is very unlikely to happen on a live network as it would only be triggered in
certain types of chain reorganisations (a contract executing BLOCKHASH(N - 1) where N is the head of
a non-canonical subchain that is not-yet reorganised to become the canonical (best/longest) chain but

will be after the block is processed).

e atleast 7 EVM implementations
o C++, Go, Haskell, Java,
Python, Ruby, Rust

e Inconsistency can be exploited
to cause a hard fork!

Verifying correctness of Ethereum contracts

function splitDAO(
uint _proposallD,
address newCurator

) noEther onlyTokenholders returns (bool success) {

Can you spot the bug?

uint fundsToBeMoved =

(balances[msg.sender] * p.splitData[0].splitBalance) /
p.splitData[0].totalSupply;

if (p.splitData[0].newDAO.createTokenProxy.value(fundsToBeMoved)

(msg.sender) == false)

throw;

// Burn DAO Tokens

Ethereum scaling limited as nodes verify all
contracts

e (Can't always determine which state a tx will change

e Goalis to support sharding
o Most nodes track only a random subset of contracts
o Super nodes process cross-shard communication
o Details get complicated... great research topic!

https://github.com/ethereum/wiki/wiki/Sharding-FAQ

https://github.com/ethereum/wiki/wiki/Sharding-FAQ

Ethereum has long held plans to adopt
proof-of-stake

Vote on neither Vote on A Vote On*B Vote on both
EV =0 EV = 0.9 EV=0.1-09*5=-44 EVy=01+4+09-5=-4

p=0.9 p=0.1 p=0.9 p=0.1 p=0.9 p=0.1 p=0.9 p=0.1

N/ N/ N/ N/
| | | |

https://medium.com/@VitalikButerin/safety-under-dynamic-validator-sets-ef0c3bbdfof6

Explore more!

Explore the blockchain: hitps://etherscan.io

The Ethereum Block Explorer

Etherscan
<’

HOME

Sponsored Link: iDice.io - World's First Mobile Dice App. Join the Revalution. ICO Live Now.

MARKET CAP OF §30.271 BIL
$326.66 @ 0.1228 BTC/ETH

LAST BLOCK TRANSACTIONS

3907629 (17.41s Avg) 31452919

H
30.614.71 GH/s

& Blocks

Mined By ethfans.org
Block 3807629

33 txns in 2 secs

> 31 secs ago

Block Reward 5.23673 Ether

Mined By 0x96338149e816¢26...
Block 3907626

>33 secs ago

34 txns in 16 secs

Block Reward 5.27632 Ether

Mined By f2pool

Block 3907627

25 txns in 14 secs
> 49 secs ago

Block Reward 5.04446 Ether

Block 3907626 e =

LOGIN® | Search by Address / Txhash / Block / Token / Ens

BLOCKCHAIN ~ ACCOUNT ~ TOKEN ~ CHART

14 day Ethereum Transaction History
350k
300k
250Kk
200k
150k
&8 67 610 611 612 613 614 615 6M16 6817 6M8 620 619 6720

MISC]

Transactions

& TH# OX4065E9CBF527E11ECDOB2CT...
From 0x08b3413546400923... To 0x55d34b6862aabcl..

Amount 167 Ether

& TX# OX3FB9C2BD16D10FA32ADOTEF...
From 0x308593430e6e35... To OxOf7db7e8722a04a.

Amount 0.049 Ether

& TX# 0X3F7269E07CBDF7D18AEDECS...
From 0x05f3f31198a6baed... To 0x55d34b686aabcl..
Amount 8.699716103479999458 Ether

& TX# OX39FECOCTB16BZEEC3A649D4..,

> 31 secs ago

> 31 secs ago

> 31 secs ago

> 31 secs ago

https://etherscan.io

State of the Dapps: https://dapps.ethercasts.com/

5683 dapps listed

BlATE OF THE BAPFPS

ClimateCoin

Dennis Peterson
Coins for those who offset carbon

Q@

Concept 2017-06-20

Token Creation Ser...

Minereum Team
Create your own Ethereum Token with
justa Minereum Transaction

Qv

Live 2017-06-20

HitFin
Patrick Salami
OTC Derivatives Settlement

Qv

Demo

Seglos

Maytham Naei
Spend your Ethereum without losing
out on the future grow

QO &Y i

Ether.Camp

Roman Mandeleil
Blockchain explorer

Q@

TimeBank

Isaac Ibiapina
Store Ether enforceably with a time
lock

Q O & i

2017-06-20 Working Prototype 2017-06-20 Live 2017-06-20 Live 2017-06-20
Vevue PowerBall cyber-Fund WeilLend Truffle TrustlessPrivacy
Thomas Olson Peter Borah Dima Starodubcev Massi Terzi Tim Coulter sam@trustlessprivacy.com

Bringing Google Street View to life "Powerball"-style lottery wiake digital investments P2P Lending Development framework for Ethereum Interoperable electronic health records

comprehensible, accessible, easy and
safe
QFO% f 0 QO&aEmyY 0 QOEY Q
Concept 2017-06-20 Work In Progress 2017-06-20 Concept 2017-06-20 Work in Progress 2017-06-20 Waorking Prototype 2017-06-20 Waork In Progress 2017

https://dapps.ethercasts.com/

More this week!

e Tuesday: Practical programming exercise!

e \Wednesday: Security issues in smart contract programming

Verifying consistency of Ethereum implementations

e There are atf least 7 EVM implementations
o C++, Go, Haskell, Java, Python, Ruby, Rust

e Any EVM inconsistency can be exploited to cause a hard fork!

