
Solidity tutorial
Joseph Bonneau

FOSAD 2017

Bertinoro, Italy

Schedule
Monday: Intro to Ethereum
- Ethereum system design
- Overview of solidity
- Overview of applications

Tuesday: Practical Exercise
- Solidity coding tutorial

Wednesday: Security issues for Ethereum Development
- Secure smart contract programming
- Classic security bugs: reentrancy, unchecked sends
- DAO case study

Solidity

Solidity should look familiar

● Syntax looks like C++, JavaScript etc.

● Contracts look like classes/objects
○ Can mark functions internal

● Static typing
○ Most types can be cast e.g. bool(x)

Solidity types

● bool, uint8, uint16, ... uint256, int8, ... int256

● address

● string

● byte[]

● mapping(keyType ==> valueType)

Clever implementation of maps in Solidity

mapping(string => uint256) balances;
Alice 15

Bob 15

Joe 100

0 2256

H(“balances”|”Bob”) H(“balances”|”Joe”) H(“balances”|”Alice”)

15 15100

● every item requires at least one 256-bit word
● balances[“Andrew”] is 0 if “Andrew” doesn’t exist or if “Andrew” has 0 balance
● to delete a key, set balances[“Andrew’] = 0
● Cannot delete an entire map!

Polite contracts call revert() on errors
uint8 numCandidates;
uint32 votingFee;
mapping(address => bool) hasVoted;
mapping(uint8 => uint32) numVotes;

/// Cast a vote for a designated candidate
function castVote(uint8 candidate) {

if (msg.value < votingFee)
return;

if (hasVoted[msg.sender])
revert();

hasVoted[msg.sender] = true;
numVotes[candidate] += 1;

}

revert() ensures no effects
persisted except gas consumption

Polite contracts call selfdestruct()

/// Cast a vote for a designated candidate
function finishElection() {

selfdestruct(creator);
}

creator receives remaining funds

Modifiers ease repetitive safety checks
address public owner;
uint public electionEnd;

modifier onlyBy(address _account){
require(msg.sender == _account);
_;

}

modifier onlyAfter(uint _block) {
require(block.blocknumber >= _block);
_;

}

function endElection()
onlyBy(owner) onlyAfter(electionEnd){

Built-in support for calling other contracts

- Contract member variables if public, automatically defines a “getter”

- Modifiers payable, constant, returns(), also modifiers can be user defined

- Macros / Internal Functions internal modifier -> does not require a
“message”

- Type conversions int(x), uint256(x), bool(x)

- Structs, arrays, mappings, memory vs storage

array: int[2] x; hashmap mapping (int[2] => int);

- Throwing exceptions throw; // exceptions contain no data

- Units (currency: “eth”, “wei”, etc.) 3 * (2 eth)

● a.send(x) sends x to address a
○ returns 0 if this fails due to call stack

● foo.call.value(3).gas(20764)(bytes4(sha3("bar()")));

○ also callcode, delegatecall
○ default is 0 value, all available gas

● new constructor deploys a new contract
○ Careful, it’s expensive!

Remember:
Smart contracts code is fixed forever.
Calls required to update functionality

Solidity gotchas (many more tomorrow)

● Member variables public by default
○ Setters, getters automatically provided

● Functions must be marked payable to accept funds
● Member variables go to storage by default

○ Method variables go to memory
● Fallback function()

○ Called if no function specified (e.g. send)
○ Called if non-existent function called

● msg.sender vs. tx.origin

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

Solidity and EVM may outgrow Ethereum itself

- Enterprise Ethereum Alliance, still in infancy (Announced Feb 28)

-Goal: support EVM, Solidity and tools for private blockchains

- maintain compatibility with Ethereum network

Don’t like Solidity? Write your own language!

Ethereum VM Bytecode
Stack Language

Lower-Level Language

Viper Solidity

Typed, looks like JSUntyped, looks like python

Looks like Forth.
Defined in Yellowpaper

Your PhD here

Typed, looks like Go

Bamboo

Looks like Norse poetry

Exercises

Instructions: goo.gl/Gp2dyw
Code: goo.gl/3ACrVr

