
Introduction to Ethereum
Joseph Bonneau

FOSAD 2017

Bertinoro, Italy

Schedule
Monday: Intro to Ethereum
- Ethereum system design
- Overview of solidity
- Overview of applications

Tuesday: Practical Exercise
- Solidity coding tutorial

Wednesday: Security issues for Ethereum Development
- Secure smart contract programming
- Classic security bugs: reentrancy, unchecked sends
- DAO case study

Smart contracts & Bitcoin

“Smart contracts” conceptualized by Szabo in 1994

A smart contract is a computerized transaction protocol that
executes the terms of a contract. The general objectives are
to satisfy common contractual conditions (such as payment
terms, liens, confidentiality, and even enforcement), minimize
exceptions both malicious and accidental, and minimize the
need for trusted intermediaries. Related economic goals
include lowering fraud loss, arbitrations and enforcement
costs, and other transaction costs.

-Nick Szabo “The Idea of Smart Contracts”

A “dumb contract” example: pay for a hash pre-image

Alice will reveal to Bob a value x such that
SHA-256(x) = 0x2a...

In exchange, Bob will pay US$10.

If Alice does not reveal by July 1, 2017, then
she will pay a penalty of US$1 per day that
she is late, up to US$100.

Signed:

Traditional contracts vs. smart contracts

Traditional Smart

specification Natural language + “legalese” Code

assent Signatures Digital signatures

dispute resolution Judges, arbitrators Decentralized platform

nullification By judges ????

payment As specified built-in

escrow Trusted third party built-in

Recall: BTC contains a simple scripting language

 "tx_out":[
 {
 "value":"10.12287097",
 "scriptPubKey":"OP_DUP OP_HASH160 69e...3d42e
OP_EQUALVERIFY OP_CHECKSIG"
 },

 ...
]

Output “addresses” are really scripts

OP_DUP
OP_HASH160
<69e02e18...>
OP_EQUALVERIFY
OP_CHECKSIG

Input “addresses” are also scripts

OP_DUP
OP_HASH160
<69e02e18...>
OP_EQUALVERIFY
OP_CHECKSIG

<30440220...>
<0467d2c9...>

scriptSig

scriptPubKey

TO VERIFY: Concatenated script must execute completely with no errors

Bitcoin script instructions

256 opcodes total (15 disabled, 75 reserved)

● Arithmetic
● If/then
● Logic/data handling
● Crypto!

○ Hashes
○ Signature verification
○ Multi-signature verification

Bitcoin script execution example

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

✓
<pubKey>

<pubKey>

<pubKeyHash?>

<pubKeyHash>

true

Bitcoin scripting language (“Script”)

Design goals

● Built for Bitcoin (inspired by Forth)
● Simple, compact
● Support for cryptography
● Stack-based
● No looping

○ Not Turing-complete
● Time/memory usage bound by program size

image via Jessie St. Amand

I am not impressed

Some useful contracts can be done in Bitcoin

● Proof-of-burn
● MULTISIG/access control trees
● Pay-for-hash-preimage

○ Multi-party lotteries
○ Atomic cross-chain currency exchange

● Micropayment/payment channels
○ Greatly improved with OP_CHECKLOCKTIME

Extending Bitcoin functionality

Bitcoin script left developers wanting more

By adding a few opcodes to Bitcoin script, what if we could support:

● Distributed naming (Namecoin)
● Options, financial derivatives (OpenBazaar, MasterCoin)
● Prediction markets (Futurecoin)
● Open-ended, user-defined functionality?

Namecoin was the first fork of Bitcoin

Goal: distributed naming, similar functionality to DNS

3 new opcodes:

● NAME_NEW
● NAME_FIRST_UPDATE
● NAME_UPDATE

Namecoin introduces three new opcodes

NAME_NEW: H(r, “jbonneau”)

NAME_FIRST_UPDATE: r, “jbonneau”, {"ip" : "68.178.254.235"}

NAME_UPDATE: r, “jbonneau”, {"ip6" : "2001:4860:0:1001::68"}

12 block delay (frontrunning)

Namecoin introduces new global state

NAME_NEW y

NAME_FIRST_UPDATE jbonneau,r; 68...

NAME_UPDATE jbonneau, 2001:...

google → 172.217.18.110 [owner: Kg]
reddit → 151.101.65.140 [owner: Kr]

google → 172.217.18.110 [owner: Kg]
reddit → 151.101.65.140 [owner: Kr]
y → {pending} [owner: Kj]

google → 172.217.18.110 [owner: Kg]
reddit → 151.101.65.140 [owner: Kr]
jbonneau → 68.178.254.235 [owner: Kj]

google → 172.217.18.110 [owner: Kg]
reddit → 151.101.65.140 [owner: Kr]
jbonneau → 2001:... [owner: Kj]

Namecoin introduces new fees, incentives

%
 o

f a
ll N

am
ec

oi
n

re
gi

st
ra

tio
ns

#Names claimed
An empirical study of Namecoin and lessons for decentralized namespace design
Harry Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph Bonneau and Arvind Narayanan. WEIS 2015

Side note: Namecoin got the incentives badly wrong

http://randomwalker.info/publications/namespaces.pdf

Recap: several requirements for new functionality

new addition purpose in Namecoin in Futurecoin

Global state Track app-specific data name → value map list of markets, bets in
each market

Opcodes Express updates to
global state NAME_NEW etc. OPEN_MARKET etc.

Fees

Limit computation &
reads/writes to global
state

Registration fees to limit
squatting, maintenance
fees

transaction fees per
open market, exchange

Replicated State Machines

Recap: Bitcoin itself implicitly defines state

new addition purpose in Bitcoin

Global state Track app-specific data UTXO set

Opcodes Express updates to
global state transactions

Fees

Limit computation &
reads/writes to global
state not required

Bitcoin scripts only
succeed/fail. No side
effects on global state

Miners can produce
blocks which are very
costly to verify

This state is implicit

● Set of possible states S
● Set of possible inputs I
● Set of possible outputs O

● Transition function f: S × I → S × O

● Start state s ∈ S (genesis block)

Replicated state machines are the classic abstraction

consensus info input

nonce=0x456... A→B 17 signed(Alice)

“Blockchain” is an ordered list of inputs w/consensus

consensus info input

nonce=0x123... B→C 11 signed(Bob)

consensus info input

∅ ∅

“State” is really just a compression of history

Inputs: Ø
 Outputs: 25→Alice

Inputs: 1[0]

Outputs: 17→Bob, 8→Alice
SIGNED(Alice)

time

is this valid?

Inefficient: Scan
blockchain to
check for validity

Inputs: 2[0]

Outputs: 8→Carol, 7→Bob
SIGNED(Bob)

Inputs: 2[1]

Outputs: 6→David, 2→Alice
SIGNED(Alice)

1

2

3

4

Efficient: track UTXO set

{1[0]: 25, A}

{2[0]: 17, B; 2[1]: 8, A}

{2[1]: 8, A; 3[0]: 8, C, 3[1]: 7,B}

consensus info input state commitment

nonce=0x456... A→B 17 signed(Alice) {A: 33, B:17}

Blockchains may include explicit state commitments

consensus info input state commitment

nonce=0x123... B→C 11 signed(Bob) {A: 33, B:6, C: 11}

consensus info input state commitment

∅ ∅ s = {A: 50}

Explicit state commitments offer many advantages

● Inconsistencies surface immediately
● Light clients can quickly get current state
● Can efficiently verify sequence between any two blocks

consensus info input state commitment

nonce=0x123... B→C 11 signed(Bob) {A: 33, B:6, C: 11}

Ethereum: A universal RSM

To get Turing-completeness:

● Set of possible states S
● Set of possible inputs I
● Set of possible outputs O

● Transition function f: S × I → S × O

● Start state s ∈ S (genesis block)

Include arbitrary
programs

Interpret programs

Universality brings on classic OS problems

● What state can a tx change?
○ memory protection

● How many resources can a contract use?
○ resource contention

Ethereum in one slide
● States S = a map from addresses to state

● Inputs I (transactions)

● Transition f:
○ validate signature
○ run to.code(from, data, value, startgas, gasprice)

● Start state: ∅

address code storage balance nonce

from sig, n to data value startgas gasprice

may affect the state of
any address

The full* Ethereum blockchain structure

prev

nonce difficulty miner extra

height time

state root transaction root receipt root

address code storage balance nonce

The full* Ethereum blockchain structure

prev

nonce difficulty miner extra

height time

state root transaction root receipt root

from sig, n to data value startgas gasprice

The full* Ethereum blockchain structure

prev

nonce difficulty miner extra

height time

state root transaction root receipt root

final state gas used log output log bloom

Ethereum addresses can be accounts or contracts

address code storage balance nonce

account contract

address H(pub_key) H(creator, nonce)

code ∅ EVM code

storage ∅ Merkle storage root

balance ETH balance

nonce #transaction sent

Volatile fields

Note: no UTXOs in
Ethereum

Three* types of transaction in Ethereum

type from sig, n to data value startgas gasprice

create creator sig, n ∅ code start_bal 53000 ?

Three* types of transaction in Ethereum

type from sig, n to data value startgas gasprice

create creator sig, n ∅ code start_bal 53000 ?

send sender sig, n receiver ∅ transfer_val 30000 ?

Three* types of transaction in Ethereum

type from sig, n to data value startgas gasprice

create creator sig, n ∅ code start_bal 53000 ?

send sender sig, n receiver ∅ transfer_val 30000 ?

call caller sig, n contract f, args transfer_val ? ?

Example:
NameCoin in Ethereum

Ethereum code written in Solidity, compiled to EVM

Ethereum VM Bytecode
Stack Language

LLL

Viper, Serpent Solidity

Functional, macros,
looks like scheme

Types, invariants, looks
like Javascript

Looks like python

Looks like Forth.
Defined in Yellowpaper

Ethereum
Virtual
Machine

EVM is stack-based, like BTC script

PUSH1 0
CALLDATALOAD
SLOAD
NOT
PUSH1 9
JUMPI
STOP
JUMPDEST
PUSH1 32
CALLDATALOAD
PUSH1 0
CALLDATALOAD
SSTORE

Features

● 1024-depth stack
● 32-byte words
● Accelerated crypto

○ SHA-3
○ Big num multiply
○ GF-256 operations

EVM memory model offers a lot of space

Storage: {0,1}256→{0,1}256
 map (persistent)

Memory: {0,1}256→{0,1}256
 map (volatile between tx)

● in other words, both can represent 2264 bits!
● arranged in 256-bit words
● all memory is zero-initialized

Storage in Ethereum is very expensive. Limiting memory use is critical

EVM provides basic API for I/O

Input:

● tx info: sender, value, gas limit
● resource use: gas remaining, memory used
● block info: depth, timestamp, miner, hash

Output:

● send messages (call other contracts and/or send money)
● write to logs
● self destruct

Three levels of contract call in Ethereum

CALL CALLCODE DELEGATE CALL

msg.sender A B

value x’≤ B.balance

data (as specified)

startgas s’ ≤ gas remaining

storage updated C B

from sig, n to data value startgas gasprice

A sig B d x S g

Original message:

Results of a call to C:

Subtleties to contract calls
● Data: unlimited params/return values

○ Direct mapped to memory address + size

● Exceptions: out of gas, bad jump, etc.
○ No state changes persisted
○ Control returns to caller

● Call stack limit: 1024
○ Calls from 1024th frame will fail

Efficient map commitments

How can Ethereum commit to so much state?
Recall: storage is a {0,1}256→{0,1}256

 map

Requirements:

● 2n keys supported
● k keys with a non-zero value
● O(1) commitment size
● O(lg k) update cost
● O(lg k) proofs (even for zero values)

Key insight:
Optimize for efficient storage of zeroized values

Non-solution: use a binary tree, paths encode address

Alice

Bob

Carol

David

001 Alice

100 Bob

110 Carol

111 David
0

0

0

0

0

0

0

1

1

1

1

1

1

1

Problem:
Requires O(2n) computation

Optimization #1: pre-compute all sizes of empty tree

Empty[2]

Empty[1]

Alice

Bob

Empty[1]

Carol

David

001 Alice

100 Bob

110 Carol

111 David
0

0

0

0

0

0

1

1

1

1

1

1

This almost works!
Proofs are length O(lg n)

Optimization #2: shrink all single subtrees; store prefix

“01”, Alice

“0”, Bob

“”, Carol

“”, David

001 Alice

100 Bob

110 Carol

111 David
0

0

0

1

1

1
This works!

Proofs are length O(lg k)

“kv node”

“diverge node”

Ethereum’s “Merkle PATRICIA tree” has a few quirks

● Used in two main places
○ overall state
○ per-contract storage

● 16-ary
○ proofs ~4x longer

● paths can be < 256 bits
○ “1”, “01” are distinct
○ Really 2257-1 addresses

Gas and transaction limits

Ethereum is like Ryanair: pay to board, then keep paying

Gas in Ethereum is a necessary evil

● All miners must evaluate all transactions
○ limit computation cost

● All miners must store all state
○ limit storage use

● Short-cut the halting problem
○ Finite GAS_LIMIT ensures all programs halt

Observe:
Bitcoin also employs a (crude) means to pay for resources consumed

Every operation has a fixed gas cost
opcodes gas cost

Basic operations ADD, MUL, PUSH, JUMP 2-10

Storage read SLOAD 200

Storage write SSTORE 5000

Storage write (from zero) SSTORE 20000

Storage zeroize SSTORE -10000

Contract call CALL, CODECALL, etc. 700

Transaction overhead n/a 21000

Contract creation n/a 32000

Contract destruction SELFDESTRUCT -19000

Gas metering is complex

1. Transactions specify START_GAS, GAS_PRICE
2. If START_GAS ⨉ GAS_PRICE > caller.balance, halt
3. Deduct START_GAS ⨉ GAS_PRICE from caller.balance
4. Set GAS = START_GAS
5. Run code, deducting from GAS
6. For negative values, add to GAS_REFUND

a. GAS only decreases
7. After termination, add GAS + GAS_REFUND to caller.balance

Out-of-gas exceptions are bad news

● State reverts to previous value
○ Except that START_GAS * GAS_PRICE is still deducted

Callers can choose how much gas to send

A:
function a():
 assert(msg.gas == 100);
 x = B.b.gas(10)()
 return x + “ World!”

B:
function b():
 assert msg.gas == 10
 y = C.c.gas(5)()

 assert(y == 0);
 // out of gas
 return “Hello”

C:
function c():
 assert(msg.gas == 5);
 while (true) {
 Loop
 }

 return “Bonjour”

Out of gas
“Hello”

100
10 5

“Hello World!”

Gas today is typically 5⨉10-9 ether = 9⨉10-7
 USD

opcodes gas cost USD cost [Aug ‘17]

Basic operations ADD, MUL, PUSH, JUMP 2-10 ~10-5

Storage read SLOAD 200 0.0003

Storage write SSTORE 5000 0.008

Storage write (from zero) SSTORE 20000 0.032

Storage zeroize SSTORE -10000 -0.016

Contract call CALL, CODECALL, etc. 700 0.0011

Transaction overhead n/a 21000 0.033

Contract creation n/a 32000 0.051

Contract destruction SELFDESTRUCT -19000 -0.031

Economics of gas are similar to transaction fees

● Miners choose transactions based on GAS_PRICE

● In theory, they should not care which opcodes are used
○ In practice, some “overpriced” opcodes may be preferred

● Maximum gas limit per block
○ Miners can slowly raise it, each block votes

Solidity

Solidity should look familiar

● Syntax looks like C++, JavaScript etc.

● Contracts look like classes/objects
○ Can mark functions internal

● Static typing
○ Most types can be cast e.g. bool(x)

Solidity types

● bool, uint8, uint16, ... uint256, int8, ... int256

● address

● string

● byte[]

● mapping(keyType ==> valueType)

Clever implementation of maps in Solidity

mapping(string => uint256) balances;
Alice 15

Bob 15

Joe 100

0 2256

H(“balances”|”Bob”) H(“balances”|”Joe”) H(“balances”|”Alice”)

15 15100

● every item requires at least one 256-bit word
● balances[“Andrew”] is 0 if “Andrew” doesn’t exist or if “Andrew” has 0 balance
● to delete a key, set balances[“Andrew’] = 0
● Cannot delete an entire map!

Polite contracts call throw on errors
uint8 numCandidates;
uint32 votingFee;
mapping(address => bool) hasVoted;
mapping(uint8 => uint32) numVotes;

/// Cast a vote for a designated candidate
function castVote(uint8 candidate) {

if (msg.value < votingFee)
return;

if (hasVoted[msg.sender])
throw;

hasVoted[msg.sender] = true;
numVotes[candidate] += 1;

}

Throw ensures no effects persisted
except gas consumption

Modifiers ease repetitive safety checks
address public owner;
uint public electionEnd;

modifier onlyBy(address _account){
require(msg.sender == _account);
_;

}

modifier onlyAfter(uint _block) {
require(block.blocknumber >= _block);
_;

}

function endElection()
onlyBy(owner) onlyAfter(electionEnd){

Built-in support for calling other contracts

- Contract member variables if public, automatically defines a “getter”

- Modifiers payable, constant, returns(), also modifiers can be user defined

- Macros / Internal Functions internal modifier -> does not require a
“message”

- Type conversions int(x), uint256(x), bool(x)

- Structs, arrays, mappings, memory vs storage

array: int[2] x; hashmap mapping (int[2] => int);

- Throwing exceptions throw; // exceptions contain no data

- Units (currency: “eth”, “wei”, etc.) 3 * (2 eth)

● a.send(x) sends x to address a
○ returns 0 if this fails due to call stack

● foo.call.value(3).gas(20764)(bytes4(sha3("bar()")));

○ also callcode, delegatecall
○ default is 0 value, all available gas

● new constructor deploys a new contract
○ Careful, it’s expensive!

Remember:
Smart contracts code is fixed forever.
Calls required to update functionality

Solidity gotchas (many more tomorrow)

● Member variables public by default
○ Setters, getters automatically provided

● Functions must be marked payable to accept funds
● Member variables go to storage by default

○ Method variables go to memory
● Fallback function()

○ Called if no function specified (e.g. send)
○ Called if non-existent function called

● msg.sender vs. tx.origin

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

Solidity and EVM may outgrow Ethereum itself

- Enterprise Ethereum Alliance, still in infancy (Announced Feb 28)

-Goal: support EVM, Solidity and tools for private blockchains

- maintain compatibility with Ethereum network

Don’t like Solidity? Write your own language!

Ethereum VM Bytecode
Stack Language

Lower-Level Language

Viper Solidity

Typed, looks like JSUntyped, looks like python

Looks like Forth.
Defined in Yellowpaper

Your PhD here

Typed, looks like Go

Bamboo

Looks like Norse poetry

Ethereum project

Ethereum is “run” by the Ethereum Foundation

Compatible “alt-clients” exist (e.g. Parity, Consensys)

Ethereum blockchain is different than Bitcoins

Ethereum Bitcoin

Target time between blocks 14.5 seconds 10 minutes

Proof of work Equihash SHA-2562

Stale block rewards Uncle rewards none

Hard Forks are planned in Ethereum

release date

Frontier July 2015

Homestead March 2016

DAO hard fork July 2016

Metropolis 2017?

Serenity ??

Ethereum may soon overtake Bitcoin in market cap

Source:
Investopedia

Price has been a wild ride recently

http://eth.rollercoaster.one/
https://ethereumprice.org/

http://eth.rollercoaster.one/
https://ethereumprice.org/

Research challenges

Ethereum makes all data public

● Proposals:
○ Project Alchemy-exchange Eth for Zcash
○ SNARKs for token-issuing contracts

■ Acceleration within EVM?
○ Hawk: The blockchain model of cryptography and privacy-preserving

smart contracts [Khosba et al. 2016]

Verifying consistency of Ethereum implementations

● at least 7 EVM implementations
○ C++, Go, Haskell, Java,

Python, Ruby, Rust

● Inconsistency can be exploited
to cause a hard fork!

Verifying correctness of Ethereum contracts

Can you spot the bug?

Ethereum scaling limited as nodes verify all
contracts

● Can’t always determine which state a tx will change

● Goal is to support sharding
○ Most nodes track only a random subset of contracts
○ Super nodes process cross-shard communication
○ Details get complicated... great research topic!

https://github.com/ethereum/wiki/wiki/Sharding-FAQ

https://github.com/ethereum/wiki/wiki/Sharding-FAQ

Ethereum has long held plans to adopt
proof-of-stake

https://medium.com/@VitalikButerin/safety-under-dynamic-validator-sets-ef0c3bbdf9f6

Explore more!

Explore the blockchain: https://etherscan.io

https://etherscan.io

State of the Dapps: https://dapps.ethercasts.com/

https://dapps.ethercasts.com/

More this week!
● Tuesday: Practical programming exercise!

● Wednesday: Security issues in smart contract programming

Verifying consistency of Ethereum implementations

● There are at least 7 EVM implementations
○ C++, Go, Haskell, Java, Python, Ruby, Rust

● Any EVM inconsistency can be exploited to cause a hard fork!

