A TRUST-BY-DESIGN FRAMEWORK FOR THE INTERNET OF THINGS

ESR3 - Davide Ferraris
PhD Student @ University of Malaga, NICS lab
Tutors: Prof. Javier Lopez, Dr. Carmen Fernandez Gago
Contents

- Introduction
 - Trust
 - Internet of Things
- Architecture Framework
 - K Model
 - Transversal Activities
- Use Case Scenario
- Conclusion
Introduction

- Introduction
 - Trust
 - Internet of Things

- Architecture Framework
 - K Model
 - Transversal Activities

- Use Case Scenario

- Conclusion
Trust is difficult to define because:

- “To believe that someone is good and honest and will not harm you, or that something is safe and reliable”.

Trustor and Trustee
20.4 billions of devices will be connected by 2020 (https://www.gartner.com/newsroom/id/3598917)

- Heterogeneity
- Dynamicity
- Communication

Trust is **needed**
Architecture Framework

- Introduction
 - Trust
 - Internet of Things

- Architecture Framework
 - K Model
 - Transversal Activities

- Use Case Scenario

- Conclusion
K Model

Diagram showing the relationships between Need, Utilization, Requirements, Validation, Model, Verification, Development, and Context.
Context

- **Always** present
- Environment
- Services
- Properties (alone or composition)
- Dynamic
Need

- Characteristics of trust
- Type of Architecture
- Protocols

A) Centralized IoT
B) Collaborative IoT
C) Connected Intranets of Things
D) Distributed IoT

29 August 2018
Requirements

- IEEE 830-1993 specification
Model

- SysML

- Trust Models
 - Evaluation
 - Decision
Development

- Top Down approach
- Bottom Up approach
- Depending on the previous and following phases
- Core of the framework
- Developer centric approach
Verification

- Check if “the entity has been built right”
- Verification of the functionalities
- Verification of the requirements related to the system
- Developer point of view
- Intermediate product
K Model
Validation

- Check if “the right entity has been built”
- The need must be met
- Validation of the requirements related to Real system environment
- Customer point of view
- Final product
Utilization

- Trust@run.time
- Dynamicity of IoT must face with devices that (Join, Stay, Leave) the System
Architecture Framework

- Introduction
 - Trust
 - Internet of Things
- Architecture Framework
 - K Model
 - Transversal Activities
- Use Case Scenario
- Conclusion
Transversal Activities

- Documentation
- Metrics
- Decision Gates
- Traceability
- Threat Analysis
- Risk Management
- Decision-Making
Documentation

- Connection
- Justification
- Procedures
- Guide
- “Verba volant, scripta manent”
Metrics

- Trust Metrics
- Performance
- Efficiency
- Measures

If You Can't Measure It, You Can't Improve It

(William Thomson, Lord Kelvin)
Decision Gates

- They permit to move between phases
- Back-Up in case something goes wrong
Traceability

- Connection between
 - Phases
 - Requirements
 - Activities and Phases

- Control Domino effects
- Help against Unintended Consequences
Threat Analysis

- Attacks
 - Internal
 - External
- Malfunctions
- Malwares
Risk Management

- Likelihood
- Severity
- Detectability
Decision Making

- Connected to many phases
 - Requirement
 - Model
 - Development
 - Utilization
Use Case Scenario

- Introduction
 - Trust
 - Internet of Things

- Architecture Framework
 - K Model
 - Transversal Activities

- Use Case Scenario

- Conclusion
Smart Cake Machine
Smart Cake Machine

- **Context**
 - Smart Home
 - Trusted Smart entities

- **Need**
 - Smart Cake Machine

- **Requirements**
 - Security Requirement
 - Trust Requirement
 - Usability Requirement

- **Models**
 - Trusted ClassDiagram
 - Trusted RequirementDiagram
Smart Cake Machine

- Development
 - Top Down

- Verification
 - Verify the correct functionalities of the Smart Cake Machine

- Validation
 - Validate it in the cooperation with Smart Fridge and Smart Supermarkets

- Utilization
 - Join the Smart Home
 - Deal with join and leaving Smart devices
Conclusion

- Introduction
 - Trust
 - Internet of Things

- Architecture Framework
 - K Model
 - Transversal Activities

- Use Case Scenario

- Conclusion
Conclusion

- IoT has brought new security challenges
- Trust as a key
- Software, Security and System Engineering approach to ensure trust in an entity
- Trust and other security properties are included in the whole life cycle
- K-Model
- Transversal Activities
Future Work

- Validation of the Framework
- We will expand the phases of the framework
- Application to a real complex IoT scenario
- Application in an IoT System
Thanks to the European Commission, NeCS Project and to the university of Malaga for the opportunity given to me.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 675320.

This work reflects only the author’s view and the Research Executive Agency is not responsible for any use that may be made of the information it contains.