
Integrity Verification

of Software-defined Infrastructures

Prof. Antonio Lioy

< lioy@polito.it >

Politecnico di Torino

FOSAD (Bertinoro, IT)

August 29-30, 2019

Acknowledgement

Part of this presentation is based on material prepared by
Ludovic Jacquin of Hewlett Pack.ard Enterprise

Antonio Lioy - Politecnico di Torino 2

router

The "classic" network approach

specified in more than 8000 RFCs
millions of LOC

500 M gate, 10 GB RAM
high energy consumption

specialized
packet forwarding

hardware

specialized
packet forwarding

hardware

Operating
System

appapp

OSPF, BGP, multicast, differentiated services,
Traffic Engineering, NAT, firewall, MPLS, …

appapp appapp

Antonio Lioy - Politecnico di Torino 3

Classic Internet and the innovation problem

specialized
packet forwarding

hardware

Operating System

app1 app2 app3

router

specialized
packet forwarding

hardware

Operating System

app1 app2 app3

router

specialized
packet forwarding

hardware

Operating System

app1 app2 app3

router

no control over
the applicationis

impossible
to extend the OS

limited control over
network paths

impossible (or very difficult)
to innovate in the infrastructure

Antonio Lioy - Politecnico di Torino 4

 introduces the ability to program the network itself (!)

 based on three pillars:

 separation of the control and forwarding functions

 centralization of the control part

 clear and well-defined interfaces (northbound, southbound)

Software Defined Network(ing)

simple
packet forwarding

hardware

SDN switch

Operating System

app1 app2 app3

SDN controller

simple
packet forwarding

hardware

SDN switch
simple

packet forwarding
hardware

SDN switch

Antonio Lioy - Politecnico di Torino 5

Execution environment for
control applications

(controller)

SDN components

Operating System

firewall
WAN load
balancer

“routing”
protocol

Open interface to the hardware
• standard protocol between

controller and switches
• southbound API

Well-defined API
• open?
• northbound API

Operating system
(NetOS or NOS)
• extensible
• open-source?

Complex (user-defined)
applications

Simple forwarding switch
(~ lookup table): simpler,

faster, cheaper

simple packet
forwarding hardware

simple packet
forwarding hardware

simple packet
forwarding hardware

Antonio Lioy - Politecnico di Torino 6

Service Function Chaining

 often (particularly at the network edge) we need to
chain different dedicated hardware appliances to
provide added-value services

 this is what is called a chain of network functions

ISP edge
router

Internet
W

AN
 a

cc
el

er
at

or

Fi
re

w
al

l

ID
S

N
et

w
or

k
M

on
ito

r

Q
oS

Antonio Lioy - Politecnico di Torino 9

Several (practical) problems with SFC

 hardware resources not used at best
 some appliances may sustain an heavy load, while

other may be almost unloaded and we are not able to
share the available hardware resources (e.g. CPU,
memory) between different services

 service disruption when modifying the service chain
 each time we add/remove a middlebox, we have to

disrupt the service
 not easy to differentiate services among tenants

 what if a tenant buys a “secure access to the Internet”,
but others don’t? How can we avoid that the traffic of the
second tenant goes through the FW as well?
 the firewall must support explicit configuration of the

user privileges (i.e. per-application configuration)

Antonio Lioy - Politecnico di Torino 10

Controller

Service Function Chaining with SDN

WAN accelerator

Firewall

IDS

Network monitor

QoS

Flow table
If ip.src=X and input
port=LAN goto
Firewall_in

OpenFlow switch

App1 App2 App3

Internet

Antonio Lioy - Politecnico di Torino 11

SFC with SDN: characteristics

 agility in provisioning new services
 install the box, then “routing” is done via sw, instead of

connecting the box to the others with physical wires
 maintenance and reliability

 cabling is done once
 different customers can have different service chains

 “routing” via software
 possible to change routing decisions based on other

parameters (e.g. application layer content)
 still difficult to partition a physical appliance among

different tenants
 many small business customers, each asking for a

firewall service

Antonio Lioy - Politecnico di Torino 13

Network Functions Virtualization

 four main components:
 fast standard hardware (e.g. Intel servers)
 Commercial-off-the-shelf (COTS) hardware

 software-based network functions
 network functions, previously running on a dedicated

appliance, now become a software image, running on
a standard server

 computing virtualization (e.g. Linux KVM)
 all virtualization pros (quick provisioning, scalability,

mobility, reduced CapEx/OpEx, multitenancy, …)
 standard API (i.e. ETSI framework)

 NFV is the capability to run any network function on a
standard hardware, possibly with computing
virtualization to achieve an efficient use of resources

Antonio Lioy - Politecnico di Torino 14

Service functions chaining with NFV

VM Hypervisor

Firewall

VM 1

WAN
accelerator

VM 2

VM Hypervisor

IDS

VM 1

NetMon

VM 3

QoS

VM 2

Controller

Flow table

OpenFlow switch

App1 App2

Antonio Lioy - Politecnico di Torino 16

NFV and cloud

 NFV can be seen as a way to bring network services in
the world of cloud technologies
 cloud: hosts web servers, database servers, big data

applications, etc.
 NFV: adds also network services to that picture

 although apparently NFV can be realized mostly with
existing technologies, in practice:
 cloud frameworks may not support well traffic steering,

although they support well traditional LAN services
 network services are I/O intensive, while traditional

cloud services are mostly CPU intensive
 some technologies need to be tuned (and/or modified)

to support the high amount of network traffic that is
generated by network services

Antonio Lioy - Politecnico di Torino 19

NFV and SDN

 NFV is about computing, SDN is about network paths
 NFV requires SDN for flexible traffic steering

 although, a point-to-point Ethernet is often enough for
most of the purposes

 NFV and SDN are complementary
 one does not depend upon the other
 you can do SDN only, NFV only, or SDN and NFV

 a lot of discussions about SDN, not much debate
about NFV

Antonio Lioy - Politecnico di Torino 20

 plenty of them 
 new bugs uncovered or introduced as a result of bug

fixing  
 bad news:

 scarce attention to security in software development
 complexity increases vulnerability

 good news:
 situation is improving (but more awareness is needed)
 (some) software modules are small enough that formal

verification is possible
 … but interactions and large components are still risky

Software bugs
.

25Antonio Lioy - Politecnico di Torino 25

 management / control / data plane components
 software interfaces / APIs
 network channels
 host system, hypervisor, containers, …
 humans (network managers, hardware technicians, …)
 hardware bugs (!) and backdoors (!!)
 what / who can you trust?

SDN / NFV attack surface

Antonio Lioy - Politecnico di Torino 26

Trust (and integrity)

HOST

HARDWARE

component #1

conf #1 RAM

component #2

conf #2 RAM

Antonio Lioy - Politecnico di Torino 27

Hardware root of trust

 useful to have a stronger foundation (can still be
attacked by physical access, unless made tamper-
resistant/proof)

 platform-dependent or -independent
 TPM (Trusted Platform Module)
 Intel TXT
 AMD Secure Processor
 ARM TrustZone
 UEFI secure / trusted boot

 important to create a TEE (Trusted Execution
Environment)
 chain of trust (from firmware up to applications)

Antonio Lioy - Politecnico di Torino 28

The security CIA triad

 three main security properties:
 Confidentiality
 Integrity
 Availability

 Trusted Computing (TC) focus on the first two, plus
 Privacy

Antonio Lioy - Politecnico di Torino 29

Symmetric key cryptography

 same key used by different parties
 encryption – decryption

 usually fast operations
 challenge: key distribution
 main algorithms:

 AES, ChaCha20
 HMAC

Antonio Lioy - Politecnico di Torino 30

Asymmetric key cryptography

 private/public key pair
 public key meant for large distribution

 encryption (for the receiver)
 signature verification

 private key must be kept secret
 decryption (by the receiver)
 signature generation

 usually slow
 main algorithms:

 RSA, ECC

Antonio Lioy - Politecnico di Torino 31

Digests (hashes)

 cryptographic one-way function
 arbitrary length input
 fixed length output
 easy to calculate
 infeasible to reverse
 resistant to collision (different data, same hash)

 main algorithms:
 SHA-2, SHA-3
 HMAC (for symmetric "signature" i.e. keyed-digest)

Antonio Lioy - Politecnico di Torino 32

Authenticity is more than signature

 we want to make sure information is fresh:
 timestamps
 but they need to be secure

 nonces
 fresh random large number
 must be unpredictable to the attacker

Antonio Lioy - Politecnico di Torino 33

Introduction to Trusted
Computing

34

What is Trusted Computing?

 a trusted component/platform is a component/platform
that behaves as expected

 trust is not the same as good/secure
 the behaviour needs to be verified against the expected

behaviour
 attestation

 presentation of verifiable evidence of the platform’s
state

 Root of Trust
 inherently trusted component

Antonio Lioy - Politecnico di Torino 35

What is Trusted Computing? (cont.)

 Trusted Computing defines schemes for establishing
trust in a platform that are based on identifying its
hardware and software components

 The Trusted Platform Module (TPM) provides methods
for collecting and reporting these identities
 TPM can be a physical chip, a portion of an IC, or a

piece of software (typically firmware)
 different implementations offer different levels of trust,

based on attacker and trust models
 a TPM used in a computer system reports on the

hardware and software in a way that allows
determination of expected behaviour and, from that
expectation, establishment of trust

Antonio Lioy - Politecnico di Torino 36

Trusted Computing Base (TCB)

 collection of system resources (hardware and
software) that is responsible for maintaining the
security policy of the system
 an important attribute of a TCB is that it be able to

prevent itself from being compromised by any hardware
or software that is not part of the TCB.

 the TPM is not the trusted computing base of a
system, rather, a TPM is a component that allows an
independent entity to determine if the TCB has been
compromised
 in some uses, the TPM can help prevent the system

from starting if the TCB cannot be properly instantiated

Antonio Lioy - Politecnico di Torino 37

Root of Trust

 a component that must always behave in the expected
manner because its misbehaviour cannot be detected
 building blocks for establishing trust in a platform

 Root of Trust for Measurement (RTM)
 measure and send integrity measurement to RTS
 usually the CPU executes the CRTM (Core Root of

Trust for Measurement)
 Root of Trust for Storage (RTS)

 shielded/secured storage
 Root of Trust for Reporting (RTR)

 entity that securely reports the content of RTS
 the TPM chip is both RTS and RTR, appropriate

firmware is RTM

Antonio Lioy - Politecnico di Torino 38

Measurements

 TPM used:
 to store keys (identity, encryption)
 to store critical values
 to report values in a trustworthy manner
 signature over value+challenge

 values stored in PCR (Platform Configuration
Registers) that act as accumulators with the measure-
and-extend operation
 M = hash(component)
 PCR.new = hash(PCR.old || M)
 exec(component)

 if execution sequence is fixed (e.g. boot) the final
value is predictable and can be easily checked, else
we need also the list of executed components

Antonio Lioy - Politecnico di Torino 39

Chain of trust

 component A measures component B
 stores the measurement in RTS

 component B measures component C
 stores the measurement in RTS

 using RTR, a verifier can securely retrieve B’s and C’s
measurements from the RTS
 B and C can only be trusted if A is trustworthy

Antonio Lioy - Politecnico di Torino 40

Primer on TPM and attestation

41

Trusted Platform Module (TPM) overview

 inexpensive (< $1)
 available on most servers, laptop, PC

 tamper-resistant (i.e. difficult to tamper)
 but not tamper-proof (i.e. impossible to tamper)

 crypto-engine (slow) + protected storage (limited, but
can be extended externally)
 + sealing (!) = keys can be used only when the system

is in a certain "state"
 certified Common Criteria EAL4+
 “passive component”

 actually it's an active one
 … but needs to be driven by the CPU
 cannot prevent boot, but can protect data

 two main versions: 1.2 and 2.0
Antonio Lioy - Politecnico di Torino 42

TPM alternative implementations

 software (!) simulator
 in firmware (required before boot)
 in the OS (only for the applications)
 implemented in a co-processor (e.g. Intel SGX)

 embedded in the CPU

 baseline: who / what do YOU trust?

Antonio Lioy - Politecnico di Torino 43

TPM 1.2 functionalities overview

 fixed set of algorithms
 one storage hierarchy for platform user
 sealing to PCR value

Source Wikipedia
Author: Eusebius (Guillaume Piolle)

Antonio Lioy - Politecnico di Torino 44

TPM 2.0 functionalities overview

 cryptographic agility
 three key hierarchies
 policy-based authZ

(generalized sealing)

Source TCG specification

Antonio Lioy - Politecnico di Torino 45

Using a TPM for a platform’s identity

 cryptographically strong and hardware-
based/protected identities

 the TPM is designed to create secure identities
 identity = private key of an asymmetric key pair

 the TPM can hold the private key, making it tamper-
resistant to host attacks (trojan, side-channel, etc.)
 it's important to restrict access/use of the private key
 TPM’s authorization mechanisms (password, policy)

 the public key of an identity is usually certified,
creating a chain of trust rooted in a trusted CA
 platform’s identity + public key certificate = platform’s

credentials

Antonio Lioy - Politecnico di Torino 46

TPM 2.0 three hierarchies

 platform hierarchy
 for platform’s firmware (for the manufacturer)
 NV storage, keys, and data

 endorsement hierarchy
 for the privacy administrator
 keys and data

 storage hierarchy
 for the platform’s owner (usually also the privacy

administrator)
 NV storage, keys and data

 each hierarchy has:
 dedicate Authorization (password) and Policy
 specific seed for generating the primary keys

Antonio Lioy - Politecnico di Torino 47

Ephemeral hierarchy

 also named the "null" hierarchy
 useful when the TPM is used as crypto co-processor
 deleted every time the TPM goes through a power

cycle

Antonio Lioy - Politecnico di Torino 48

Using a TPM for securely storing data

 physical isolation
 storage in the TPM
 Non-Volatile (NV) RAM
 primary keys
 permanent keys

 very limited space
 Mandatory Access Control

Antonio Lioy - Politecnico di Torino 49

Using a TPM for securely storing data

 cryptographic isolation
 storage outside of the TPM
 platform HDD/SSD
 keys or data
 BEWARE! blob needs to be protected

 encrypted by the TPM
 Mandatory Access Control

Antonio Lioy - Politecnico di Torino 50

TPM objects

 primary keys:
 endorsement keys, storage keys
 derived from one of the primary seeds
 the TPM does not return the private value

 can be re-created by using the same parameters
 assuming the primary seed has not been changed

 keys & Sealed Data Objects:
 protected by a Storage Parent key
 storage parent key needed in the TPM to load/create

a key/SDO
 randomness comes from the TPM RNG
 the TPM returns the private part – protected by the

storage parent key
 the private part needs to be stored somewhere

Antonio Lioy - Politecnico di Torino 51

TPM object’s area

 public area
 use to uniquely identify an object

 private area
 object’s secrets
 only exists in the TPM

 sensitive area
 encrypted private area
 use for storage outside of the TPM

Antonio Lioy - Politecnico di Torino 52

TPM’s object public area (and names)

 object’s type
 hash algorithm used for the name
 object’s attributes
 authorisation policy
 parameters (e.g. key size for RSA)
 unique (e.g. public key for a asymmetric key pair)

 Object’s Name = nameHashAlg || Hash(public area)
 Qualified Name (QN) = Hash(QN_Parent || Object’s

Name)
 these names are important because they are used in

the HMAC computation for authorization and this
prevents substitution attacks (performed by a MITM at
external operations)

Antonio Lioy - Politecnico di Torino 53

TPM object's attributes

Usage (for a key K):
 sign: K can be used for generating a signature
 decrypt: K can be used for decrypting ciphertext
 restricted: K can only operate on TPM internal data

s
ig

n

d
e

c
ry

p
t

re
s

tr
ic

te
d

Quick description
0 0 0 A data blob. Can be accessed using TPM2_Unseal().

0 0 1 Not allowed. The TPM will not load or create an object with this setting.
0 1 0 A decryptinng key, but not a storage key.

0 1 1 A storage key.

1 0 0 A signing key.

1 0 1 A key for signing TPM generated data (e.g. PCR quote).

1 1 0 A general-purpose key, but not a Storage Key.

1 1 1 Not allowed. No useful purpose and incompatible with FIPS specifications

Antonio Lioy - Politecnico di Torino 54

TPM object’s attributes (continued)

 Authorization:
 userWithAuth: User role can be done with the authValue

of the object
 adminWithPolicy: Admin role must fulfill authPolicy
 noDA: dictionary attack protection disabled

 Duplication:
 fixedParent: the object can not be duplicated under

another storage parent
 note: one of the parents could be duplicated though

 fixedTPM: the object can not be used outside of this
TPM that created the object

 encryptedDuplication: controls if the private part can be
extracted in plaintext

Antonio Lioy - Politecnico di Torino 55

TPM object’s attributes (continued)

 Creation:
 sensitiveDataOrigin: for symmetric keys, specifies if the

TPM – or the caller – generates the key
 Persistence:

 stClear: the object needs to be reloaded after a TPM
reset or restart (the object can not be made persistent)

Antonio Lioy - Politecnico di Torino 56

TPM Platform Configuration Register (PCR)

 core mechanism for recording integrity of the platform
 only reset at platform reset (or with hardware signal)
 malicious code cannot take its measurement back

 PCRs are extended using a cumulative hash
 D = hash(something_to_be_protected)
 PCR.new = hash(PCR.old || D)

 can be used to gate access to other TPM objects
 e.g. BitLocker seals disk encryption keys to PCR values

Antonio Lioy - Politecnico di Torino 57

Measured boot using TPM

First Stage Boot Loader
BootROM = Core Root of Trust

for Measurement

Second Stage Boot Loader
UEFI/BIOS

OS

App App

App

Load Measure

Store in PCR

Store in PCR

b83fac83fb9286

a82057ac840d83

f9392c876d55a8

a34fc80fde83f1

Load Measure

Load Measure

Load Measure

Antonio Lioy - Politecnico di Torino 58

Remote attestation using TPM

1. Challenge (nonce)

2. Signed measurements

3. Verification
 validate signature
 check measurements against Reference

Measurements (golden values)

PCR0: b83fac83fb9286
PCR1: a34fc80fde83f1
PCR2: f9392c876d55a8
PCR3: a82057ac840d83

TPM
DevID

Platform

2

1
Remote
verifier

3

Antonio Lioy - Politecnico di Torino 59

TCG PC Client PCR utilization (architecture)
OPERATING SYSTEM

Legacy OS Loader UEFI OS LOADER

UEFI BOOT SERVICES

Boot Devices

Drivers in System
Board Flash

Protocols +
Handlers

UEFI RUNTIME
SERVICES D

rivers loa
ded

from
 H

B
A

’s, disk,
etc.

PLATFORM FIRMWARE FROM SYSTEM BOARD ROM

INTERFACES
FROM OTHER

REQUIRED
SPECS

ACPI

SMBIOS

OTHER

PLATFORM HARDWARE

OS PARTITION

UEFI SYSTEM
PARTITION

GPT /
PARTITION

TABLE

PCR0

PCR1
PCR0

PCR2

PCR0

PCR4

PCR5

PCR4

PCR8
+

Secure Boot
Policy

PCR7

Antonio Lioy - Politecnico di Torino 60

TCG PC Client PCR usage (detail allocation)

PCR Index PCR Usage

0
SRTM, BIOS, Host Platform Extensions, Embedded
Option ROMs and PI Drivers

1 Host Platform Configuration
2 UEFI driver and application Code
3 UEFI driver and application Configuration and Data

4
UEFI Boot Manager Code (usually the MBR) and Boot
Attempts

5
Boot Manager Code Configuration and Data (for use
by the Boot Manager Code) and GPT/Partition Table

6 Host Platform Manufacturer Specific
7 Secure Boot Policy

8-15 Defined for use by the Static OS
16 Debug
23 Application Support

Antonio Lioy - Politecnico di Torino 61

Dynamic Root of Trust for Measurement
(DRTM)
 special processor command

 SINIT (Intel TXT) or SKINIT (AMD SVM)
 stops all processing on the platform
 DRTM hashes contents of memory region

 stores measurement in dynamic PCR
 transfer control to specified location in memory
 also called Late Launch

Antonio Lioy - Politecnico di Torino 62

Credentials chain of trust

 from the TPM vendor to a customer-usable certificate
 IEEE 802.1AR – Secure Device Identity using TPM

 allows Zero-Touch management of a platform

Antonio Lioy - Politecnico di Torino 63

EK
cert
TPM

vendor

EK

Platform

IDevID
cert

OEM

IDevID

Platform

LDevID
cert

Customer

LDevID

Platform
Manufacturing
provisioning of
IDevID based on
EK + TPM vendor
certificate

In-field LDevID
provisioning
based on IDevID +
OEM certificate

TPM 2.0 Make/Activate Credentials

Antonio Lioy - Politecnico di Torino 64

TPM TPM’s host platform Certification
Authority

1) Please create a key

2) Here’s the newKey you wanted

3) Please create a
certificate for this newKey.
Here’s my TPM’s
Endorsement Credential

4) Here’s the certificate
you wanted. It’s encrypted

under your TPM’s EK5) Please decrypt and check
that it certifies newKey

6) Here’s the certificate you
wanted

TPM basic authorization mechanism

 password-like authorization

 the password can be protected using HMAC sessions
 coupled with asymmetric encryption of salt

 but the TPM knows a lot about the platform states and
can be configured:
 prevent object usage unless selected PCRs have

specific values
 prevent object usage after a specific time
 prevent object usage unless authorized by multiple

entities (i.e. key holders)

Antonio Lioy - Politecnico di Torino 65

TPM 2.0 enhanced authorisation policies

 a policy can be written as an equation using AND and
OR, based on atomic policies

(A & B & C) | (D & E & F)
 AND is based on cumulative hash (similar to PCR

extend)
 Digest_left = H(H(H(0||A)||B)||C)
 Digest_right = H(H(H(0||D)||E)||F)

 BEWARE: the order of the atomic policies matters!
 (A & B & C) != (C & B & A)

 OR is the hash all “input” policies
 only one of them needs to be matched

 the final hash of the authorisation policy is in the
public area

Antonio Lioy - Politecnico di Torino 66

TPM 2.0 atomic policy (examples)

 TPM2_PolicyPCR: selected PCRs need to match a
given value

 TPM2_PolicyTicket: check that a valid ticket is signed
by a given entity (i.e. holder of a given private key)

 TPM2_PolicyNV: selected NV index should match a
given value

 TPM2_PolicyCC: restrict a policy to a given TPM2
command

 TPM2_PolicyCpHash: restrict to given parameters
 But a object’s policy is part of the public area!
 TPM2_PolicyAuthorized: allow an entity to sign a

policy
 any policy signed by the entity – and being validated –

is valid

Antonio Lioy - Politecnico di Torino 67

Getting started with TPM 2.0

 Microsoft TPM2.0 reference implementation
 Software simulator
 https://github.com/Microsoft/ms-tpm-20-ref

 Intel et al. Trusted Software Stack for TPM2.0
 https://github.com/tpm2-software/tpm2-tss

 associated TPM2.0 TSS tools
 Script friendly tools
 https://github.com/tpm2-software/tpm2-tools

 IBM has open-source software
 software TPM, pseudo-TSS, etc.

 free book by Springer
 http://dx.doi.org/10.1007/978-1-4302-6584-9

Antonio Lioy - Politecnico di Torino 68

Linux’s Integrity Measurement Architecture
(IMA)
 standard Linux module
 Collect

 measure a file before it is accessed (for read, execute,
existence, …)

 Store
 add the measurement to a kernel-resident list
 extend the IMA PCR with this measurement

 Appraise
 enforce local validation of a measurement against a

“good” value stored in an extended attribute of the file
 Protect

 protect a file's security extended attributes
(including appraisal hash) against off-line attack

Antonio Lioy - Politecnico di Torino 70

Linux IMA details

 extension of UEFI measured boot to the OS and apps
 Linux IMA uses PCR10
 1st measurement: boot_aggregate
 hash of TPM’s PCR 0 to 7 (i.e. UEFI-related PCRs)

 measurement configuration through IMA template
 mostly ima-ng, but can be customized

 exposed in the kernel’s securityfs
 /sys/kernel/security/ima/ascii_runtime_measurements

Antonio Lioy - Politecnico di Torino 71

PCR template-hash template filedata-hash filename-hint

10 91f34b5[…]ab1e127 ima-ng sha1:1801e1b[…]4eaf6b3 boot_aggregate

10 8b16832[…]e86486a ima-ng sha256:efdd249[…]b689954 /init

10 ed893b1[…]e71e4af ima-ng sha256:1fd312a[…]6a6a524 /usr/lib64/ld-2.16.so

10 9051e8e[…]4ca432b ima-ng sha256:3d35533[…]efd84b8 /etc/ld.so.cache

Remote attestation with TPM+IMA

state?software
components

TPM

Attester

Verifier

whitelist

verify
list

OK / fail

execute

ALARM

Antonio Lioy - Politecnico di Torino 72

 download time
 check signature

 load time
 measure components when loaded for execution
 what is "executable"?

 run time (components that change their behaviour
while running)
 measure configuration files (when loaded or re-loaded)
 beware of caching!

 measure in-memory configuration (e.g. filtering or
forwarding rules modified by CLI or network protocol)
 needs appropriate firmware/host

Which is your trust perimeter?

Antonio Lioy - Politecnico di Torino 73

 VM vs. containers, OS-level vs. hw-level virtualization,
virtualization inside virtualization, …

 problems for integrity monitoring of virtualized
components:
 hardware root of trust
 virtual boot
 inspection of actions inside the component

What about virtualization?

Antonio Lioy - Politecnico di Torino 74

 containers better than VMM for monitoring
 same kernel as host
 hence container operations can be monitored by the

host
 remote attestation for containers

 extended IMA (Integrity Measurement Architecture)
 CoreOS trusted container

 store container state and configuration into TPM event
log

 does not cover modules executed inside container
 Intel Clear containers

 uses Intel VT to run Container as VM w/ better
performance

 only load-time integrity of container image

Integrity monitoring in v-environments

Antonio Lioy - Politecnico di Torino 75

 node (e.g. ECU) / network behaviour cannot be given
for granted any more

 increasingly important as more intelligence /
computation is moved into the vehicle / network

 open questions:
 state at time T?
 network path+processing for user U at time T?

Audit and forensic analysis

Antonio Lioy - Politecnico di Torino 76

SHIELD design and
architecture

Antonio Lioy - Politecnico di Torino 77

SHIELD project mission

Antonio Lioy - Politecnico di Torino 78

SHIELD aims to deliver an open solution for dynamically
establishing and deploying virtual security

infrastructures in ISP and corporate networks.

Big Data
Analytics
Big Data
Analytics

Trusted
Computing

Trusted
Computing

Network
Functions

Virtualisation

Network
Functions

Virtualisation

SHIELD architecture

79Antonio Lioy - Politecnico di Torino

The virtualization gap

 virtual security functions alone cannot be verified,
evaluated.
 the state is remotely controlled by the orchestration

 how to verify if a virtual function is working as
intended?
 securely
 automatically

Antonio Lioy - Politecnico di Torino 80

The network data/control separation gap

 the network is also dynamic
 use of the Software-Defined Network paradigm.

 impossible to locally assess the SDN configuration.
 but the controller has full visibility of the network

topology!

Antonio Lioy - Politecnico di Torino 81

SDN threat assessment

T1: Modification of control plane packs (from NE to the
controller, i.e. table miss).

T2: Modification of control plane packs (from the
controller to NE, i.e. rule update).

T3: Passive eavesdropping of the control plane.
 TLS tunnel between SDN control and NEs

T4: Malicious or faulty administration of network
elements.

T5: Zero-day exploitation of network element firmware
vulnerabilities
 code analysis

Antonio Lioy - Politecnico di Torino 82

SDN threat assessment (cont.)

T6: Rule override by an SDN application
 hardened SDN controller (policy on new rule creation)

T7: Flashing of NE firmware (malicious software,
persistent bootkits)

T8: Physical attacks (chip replacement, bus probing)
 out of scope

T9: Rogue SDN controller that alters configurations of
network elements

T10: Downgrade of NE’s firmware (or simply out-of-date
version)

Antonio Lioy - Politecnico di Torino 83

SHIELD's Trust Monitor

 Remote Attestation verifier
 using TPM-based measured boot

 Trust Monitor attests
 physical server & vNSFs (container)
 SDN-enabled physical switches
 firmware, software & configuration verification

Antonio Lioy - Politecnico di Torino 84

Golden value for virtual security functions

 golden value created by the developers
 part of the security manifest

Antonio Lioy - Politecnico di Torino 85

Initial deployment of a security function

 security functions (and physical nodes) are verified
before use

Antonio Lioy - Politecnico di Torino 86

Periodic attestation of security functions

 continual attestation through the security functions
lifecycle

Antonio Lioy - Politecnico di Torino 87

Remote Attestation of SDN rules

Antonio Lioy - Politecnico di Torino 88

Network Element

Trusted Computing Base (TCB)

CRTM

CRTMon
SDN switch

SDN
context

Report

RA
agent

SDN

verifier

(TM)

SDN

controller

(vNSFO)

Sync

Memory inspection

TPM
Store

Measure Get RA
proof

Get SDN conf.

SDN switches attestation

 detection of unauthorised firmware, software and
configuration

 detection of rogue SDN controller, incorrect SDN rules
 can handle 10k OpenFlow rules

 bottleneck between SDN controller & Trust Monitor
 gap: no common (SDN controller-switch) identifier for

rules
 around 2 to 3 seconds RTT

 600ms for the TPM signature itself

Antonio Lioy - Politecnico di Torino 89

SDN threats addressed

T1: Modification of control plane packs (from NE to the
controller, i.e. table miss)

T2: Modification of control plane packs (from the
controller to NE, i.e. rule update)

T4: Malicious or faulty administration of network elements

T7: Flashing of NE firmware (malicious software,
persistent bootkits)

T9: Rogue SDN controller that alters configurations of
network elements

T10: Downgrade of NE’s firmware (or simply out-of-date
version)

Antonio Lioy - Politecnico di Torino 90

SHIELD attestation and remediation demo

https://www.youtube.com/watch?v=yKK9dYEyL-o

Antonio Lioy - Politecnico di Torino 91

THANKS FOR YOUR ATTENTION !

QUESTIONS ?

