
Executability Theory

Jos Baeten

(joint work with Bas Luttik and Paul van Tilburg)

Centrum Wiskunde & Informatica, Amsterdam, and
Computer Science, Eindhoven University of Technology

OPCT, Bertinoro June 18, 2014



What is computer science?

Computer science is no more about computers
than astronomy is about telescopes.

Informatics = Information + Computation



Information

Shannon information theory (1948)

Kolmogorov information theory (1963)

Quantum information theory (1998)



Computation

Church-Turing computation theory (1936)

Executability theory (2007)



What is a computation?

� Church-Turing Thesis
� Given by a Turing machine: input at begin,
deterministic steps, output at end

� A computation is a function
� Models a computer of the ’70s (program, CPU, RAM)
� Criticism possible on suitability as a theoretical model
of a modern-day computer



Reactive Systems
“A Turing machine cannot fly a plane, but a real
computer can!”



Interaction

User interaction: not just initial, final word on the tape.

Make interaction between control and memory explicit.

. . . a theory of concurrency and interaction
requires a new conceptual framework, not just a
refinement of what we find natural for sequential
computing.

Robin Milner, Turing Award Lecture, 1993



Transition Systems vs. Automata

� Non-termination and termination both important
� Infinitely many states and transitions possible
� Language equivalence too coarse for interaction
� Divergence-preserving branching bisimulation



Executability Theory

Computability + Concurrency

Real integration, aim is not to increase the computational
power of the traditional model nor to investigate the extra
expressivity of interaction



Regular languages, processes

� A regular language is a language equivalence class of
transition systems containing a finite one

� A regular process is a divergence-preserving
branching bisimilarity class of transition systems
containing a finite one



Finite automata

c

a

a a

a
τ

b

b

a

a

aa
b

b



Regular Expressions

� Milner 1984: not every regular process given by a
regular expression

0 1 a.1 1
a

� Use SOS to give automata for all regular expressions
(0,1, a., τ., ·, ∗,+)



Structural Operational Semantics

1 ↓ p∗ ↓ a.p
a−→ p

p a−→ p′

(p+ q) a−→ p′
q a−→ q′

(p+ q) a−→ q′
p ↓

(p+ q) ↓
q ↓

(p+ q) ↓

p
a−→ p′

p · q a−→ p′ · q
p ↓ q

a−→ q′

p · q a−→ q′
p ↓ q ↓
p · q ↓

p
a−→ p′

p∗
a−→ p′ · p∗



Regular Expressions

s t

a

b

s = (ts?b.(st!a.1+ 1))∗ t = (st?a.(ts!b.1+ 1))∗

∂st,ts(((st!a.1+ 1) · s) ‖ 1 · t)

st!?a

ts!?b



Structural Operational Semantics

p
a−→ p′

p ‖ q a−→ p′ ‖ q
q

a−→ q′

p ‖ q a−→ p ‖ q′
p ↓ q ↓
p ‖ q ↓

p
c!d−−→ p′ q

c?d−−→ q′

p ‖ q c!?d−−−→ p′ ‖ q′
p c?d−−→ p′ q c!d−−→ q′

p ‖ q c!?d−−−→ p′ ‖ q′

p a−→ p′ a 6= c?d, c!d

∂c(p)
a−→ ∂c(p

′)

p ↓
∂c(p) ↓

p c!?d−−−→ p′

τc(p)
τ−→ τc(p

′)

p a−→ p′ a 6= c!?d

τc(p)
a−→ τc(p

′)

p ↓
τc(p) ↓



Regular Grammar

S T

U

V

a

b

a

a

a

S = a.T

T = a.U + b.V

U = a.T + a.V + 1

V = 0

Only works with action prefix, not with action postfix



Regular Grammar

S T

U

V

a

b

a

a

a

S = a.T

T = a.U + b.V

U = a.T + a.V + 1

V = 0

Only works with action prefix, not with action postfix



Structural Operational Semantics

p
a−→ p′ (N = p) ∈ E

N
a−→ p′

p ↓ (N = p) ∈ E
N ↓



Pushdown Automaton

s t u v
a[∅/1]

a[1/11]

b[1/ε]

b[1/ε]

τ [∅/ε]

Language {anbn | n ≥ 0}

(s, ε) (t, 1) (t, 11) (t, 111)

(v, ε) (u, ε) (u, 1) (u, 11)

a a a

b b b

bbτ

a

b



Pushdown language, process

� Use acceptance by final state, not by empty stack
� A pushdown language is a language equivalence class
of transition systems containing one of a pushdown
automaton

� A pushdown process is a divergence-preserving
branching bisimilarity class of transition systems
containing one of a pushdown automaton



Context-free Grammar

A recursive specification for the example pushdown
process is

X = 1+ a.X · b.1

Several problems occur concerning the relation with
pushdown processes



Context-free Grammar

A recursive specification for the example pushdown
process is

X = 1+ a.X · b.1

Several problems occur concerning the relation with
pushdown processes



Grammar for Pushdown Processes

The Stack Stio

i?d[∅/d]
i?d[e/de]

o!∅[∅/ε]
o!d[d/ε]

Topiojp∅ St jp
i

o

j

p

St io ↔∆
b τjp(∂jp(Top

io
jp∅ ‖ St jp))



Specification of the Stack

St io = 1+ o!∅.St io +
∑
d∈D

i?d.τjp(∂jp(Top
io
jpd ‖ St jp))

Topiojp∅ = 1+ o!∅.Topiojp∅+
∑
d∈D

i?d.Topiojpd

Topiojpd = 1+ o!d.(p?∅.Topiojp∅+
∑
e∈D

p?e.Topiojpe) +∑
f∈D

i?f.j!d.Topiojpf



Grammar for Pushdown Processes

Every pushdown process can be written as a regular
process communicating with a stack, so in the form

τio(∂io(p ‖ St io))

and vice versa



Reactive Turing Machine

τ [�/�]L τ [�/�]R

a[�/1]R b[1/�]L

a a a

τ τ τ

bbτ

a

τ

b



Executable language, process

� A executable language is a language equivalence class
of transition systems containing one of an RTM

� A executable process is a divergence-preserving
branching bisimilarity class of transition systems
containing one of an RTM

� For language, function: executable = computable



Reactive Turing Machine: Queue

i?0[n/n]L

o!n[n/�]L

i?1[n/n]L

τ [n/n]L

τ [n/n]L τ [n/n]R

τ [�/0]R

τ [�/1]R

τ [�/�]L

i?n[�/n]R



Conclusion

� Executability = Computability + Concurrency
� Unified framework for computation and interaction
� Undergraduate course in computer science:
Models of Computation: Automata, Formal Languages
and Communicating Processes


