\ CWL_

Executability Theory

Jos Baeten
(joint work with Bas Luttik and Paul van Tilburg)

Centrum Wiskunde & Informatica, Amsterdam, and
Computer Science, Eindhoven University of Technology

OPCT, Bertinoro June 18, 2014

\ CWL_

What is computer science?

Computer science is no more about computers
than astronomy is about telescopes.

Informatics = Information + Computation

\ CWL_

Information

Shannon information theory (1948)
Kolmogorov information theory (1963)

Quantum information theory (1998)

\ CWL_

Computation

Church-Turing computation theory (1936)

Executability theory (2007)

\ CWL_

What is a computation?

Church-Turing Thesis

Given by a Turing machine: input at begin,
deterministic steps, output at end

= A computation is a function
Models a computer of the ‘70s (program, CPU, RAM)

Criticism possible on suitability as a theoretical model
of a modern-day computer

Reactive Systems

“"A Turing machine cannot fly a plane, but a real
computer can!”

\ CWL_

Interaction

User interaction: not just initial, final word on the tape.

Make interaction between control and memory explicit.

... a theory of concurrency and interaction
requires a new conceptual framework, not just a
refinement of what we find natural for sequential
computing.

Robin Milner, Turing Award Lecture, 1993

\ CWL_

Transition Systems vs. Automata

Non-termination and termination both important
Infinitely many states and transitions possible
Language equivalence too coarse for interaction
Divergence-preserving branching bisimulation

\ CWL_

Executability Theory

Computability + Concurrency

Real integration, aim is not to increase the computational
power of the traditional model nor to investigate the extra
expressivity of interaction

\ CWL_

Regular languages, processes

® A regular language is a language equivalence class of
transition systems containing a finite one

m A regular process is a divergence-preserving
branching bisimilarity class of transition systems
containing a finite one

\ CWL_

Finite automata

\ CWL_

Regular Expressions

® Milner 1984: not every regular process given by a
regular expression

-0 O D0

m Use SOS to give automata for all regular expressions
(0,1,a.,7.,,%,+)

A CWL_

Structural Operational Semantics

1] P a.p—=p
p—=p -4 pl ql
(p+q) =p (p+q) % q (p+aq) | (p+q) !
p—=p pl ¢ ¢ Pl gl p——p

pqg-p-q pqg--q p-qi p* % p*

\ CWL_

Regular Expressions
-
b
s = (ts?b.(stla.1 +1))* t = (st?a.(ts!b.1+1))*
Ostts(((stlal +1) - s) || 1-1)

stha
tst?’b

\ CWL_

Structural Operational Semantics

p-—=p g4 pl gl
plla—=0p g plla=pld pllal
D cld p/ q c?d q/ D c?d p/ q cld q/
rd rd
plla==7p ¢ plla==7p ¢
p-p a#cld cld pl
de(p) % 8.(p) Oe(p) 4
pL p—=p a#chd pl

T

Te(p) — 7e(p") Te(p) == 7(p') e(p) 4

\ CWL_

Regular Grammar

S=aT
T=aU+0bV
U=aT+aV+1
V=0

\ CWL_

Regular Grammar

S=aT
T=aU+0bV
U=aT+aV+1
V=0

Only works with action prefix, not with action postfix

\ CWL_

Structural Operational Semantics

p—=p (N=p ek pl (N=p ek

N % pf N

\ CWL_

Pushdown Automaton

a[l/11] [1/5]
5 ald/1] E% b[1/¢] u @/EVO_>

Language {a"b" | n > 0}

\ CWL_

Pushdown language, process

m Use acceptance by final state, not by empty stack

m A pushdown language is a language equivalence class
of transition systems containing one of a pushdown
automaton

m A pushdown process is a divergence-preserving
branching bisimilarity class of transition systems
containing one of a pushdown automaton

\ CWL_

Context-free Grammar

A recursive specification for the example pushdown
process is
X=14aX 01

\ CWL_

Context-free Grammar

A recursive specification for the example pushdown
process is

X=14+aX 01

Several problems occur concerning the relation with
pushdown processes

\ CWL_

Grammar for Pushdown Processes

The Stack St

i?7d[0/d]
i?dle/de]

) I T e R
4%- — ‘Topw@—” Stip

o T N S
ol0[0/¢]
old[d/e]

Stio <—>€ T]p(ajp(Top 0 St]p))

\ CWL_

Specification of the Stack

St = 1+ 0.5t + > " i?2d.7;p(9jp(Toplpd || StP))

deD
Topol = 1+ 00.Top’n0 + Z i?d. Toplgd
deD
Toplyd = 1+ old.(p?0.Top’p+ Y p?e. Toplpe) +

eeD

> i?f.5'd. Top’s f

feDd

\ CWL_

Grammar for Pushdown Processes

Every pushdown process can be written as a regular
process communicating with a stack, so in the form

Tio(io(p || SE°))

and vice versa

\ CWL_

Reactive Turing Machine

a[Od/1]R b[1/0lL
Q r[o/ojL () r[o/O)R -

1\

\ CWL_

Executable language, process

m A executable language is a language equivalence class
of transition systems containing one of an RTM

m A executable process is a divergence-preserving
branching bisimilarity class of transition systems
containing one of an RTM

» For language, function: executable = computable

\ CWL_

Reactive Turing Machine: Queue

oln[n/0]L 7[n/n]L

‘_Q i?70[n/n|L Q

i?1[n/n]L 7[O/0]R

B oaR O

T[n/n]L T[n/n]R

\ CWL_

Conclusion

m Executability = Computability + Concurrency
= Unified framework for computation and interaction

= Undergraduate course in computer science:
Models of Computation: Automata, Formal Languages
and Communicating Processes

