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What is computer science?

Computer science is no more about computers
than astronomy is about telescopes.

Informatics = Information + Computation
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Information

Shannon information theory (1948)
Kolmogorov information theory (1963)

Quantum information theory (1998)
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Computation

Church-Turing computation theory (1936)

Executability theory (2007)
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What is a computation?

Church-Turing Thesis

Given by a Turing machine: input at begin,
deterministic steps, output at end

= A computation is a function
Models a computer of the ‘70s (program, CPU, RAM)

Criticism possible on suitability as a theoretical model
of a modern-day computer



Reactive Systems

“"A Turing machine cannot fly a plane, but a real
computer can!”
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Interaction

User interaction: not just initial, final word on the tape.

Make interaction between control and memory explicit.

... a theory of concurrency and interaction
requires a new conceptual framework, not just a
refinement of what we find natural for sequential
computing.

Robin Milner, Turing Award Lecture, 1993
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Transition Systems vs. Automata

Non-termination and termination both important
Infinitely many states and transitions possible
Language equivalence too coarse for interaction
Divergence-preserving branching bisimulation
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Executability Theory

Computability + Concurrency

Real integration, aim is not to increase the computational
power of the traditional model nor to investigate the extra
expressivity of interaction
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Regular languages, processes

® A regular language is a language equivalence class of
transition systems containing a finite one

m A regular process is a divergence-preserving
branching bisimilarity class of transition systems
containing a finite one
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Finite automata
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Regular Expressions

® Milner 1984: not every regular process given by a
regular expression

-0 O D0

m Use SOS to give automata for all regular expressions
(0,1,a.,7.,,%,+)
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Structural Operational Semantics
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Regular Expressions
-
b
s = (ts?b.(stla.1 +1))* t = (st?a.(ts!b.1+1))*
Ostts(((stlal +1) - s) || 1-1)

stha
tst?’b
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Structural Operational Semantics
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Regular Grammar

S=aT
T=aU+0bV
U=aT+aV+1
V=0
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Regular Grammar

S=aT
T=aU+0bV
U=aT+aV+1
V=0

Only works with action prefix, not with action postfix
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Structural Operational Semantics

p—=p (N=p ek pl (N=p ek

N % pf N
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Pushdown Automaton

a[l/11] [1/5]
5 ald/1] E% b[1/¢] u @/EVO_>

Language {a"b" | n > 0}
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Pushdown language, process

m Use acceptance by final state, not by empty stack

m A pushdown language is a language equivalence class
of transition systems containing one of a pushdown
automaton

m A pushdown process is a divergence-preserving
branching bisimilarity class of transition systems
containing one of a pushdown automaton
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Context-free Grammar

A recursive specification for the example pushdown
process is
X=14aX 01
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Context-free Grammar

A recursive specification for the example pushdown
process is

X=14+aX 01

Several problems occur concerning the relation with
pushdown processes
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Grammar for Pushdown Processes

The Stack St
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Specification of the Stack

St = 1+ 0.5t + > " i?2d.7;p(9jp( Toplpd || StP))
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Topol = 1+ 00.Top’n0 + Z i?d. Toplgd
deD
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eeD
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Grammar for Pushdown Processes

Every pushdown process can be written as a regular
process communicating with a stack, so in the form

Tio(io(p || SE°))

and vice versa
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Reactive Turing Machine

a[Od/1]R b[1/0lL
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Executable language, process

m A executable language is a language equivalence class
of transition systems containing one of an RTM

m A executable process is a divergence-preserving
branching bisimilarity class of transition systems
containing one of an RTM

» For language, function: executable = computable
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Reactive Turing Machine: Queue
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Conclusion

m Executability = Computability + Concurrency
= Unified framework for computation and interaction

= Undergraduate course in computer science:
Models of Computation: Automata, Formal Languages
and Communicating Processes



