'True Concurrency,
Logic and Verification

i

Paolo Baldan
University of Padova

joint work with
Silvia Crafa, Alberto Carraro

Outline

e Behavioural theory for true concurrency. Why?

e rom behavioural equivalences to a
behavioural logics for true concurrency

* Some open questions

Why?

True concurrency, why?

 True concurrency only as an abstraction

* A concurrent program executes in single-
processor machines (interleaving)

* No longer true since some time ...

e Distributed systems, multi-processors,
multi-core

True concurrency, why?

 True concurrency not observable

True concurrency, why?

 True concurrency not observable

- ..
m

True concurrency, why?

 True concurrency not observable

e might be, but even if not directly
observable it is there

e essential/convenient for characterising
properties like parallelism, races,
interferences, information-flow; ...

Example: Non-interference

e E.2. Non-interference { Goguen,Meseguer]
e hierarchy on actions (e.g., simplest low - high)

* a system is secure when activity at high level is
not visible at low level

Example: Non-interference

e E.2. Non-interference { Goguen,Meseguer]
e hierarchy on actions (e.g., simplest low - high)

* a system is secure when activity at high level is
not visible at low level

e (BINDC (Non-Deducibility on Composition)
VH. Sys ~jow Sys | H

Non interference

hy

{Busi, Gorrieril,
{Best,Darondeau,Gorrieri}

i
A

e Petri nets
\3?3
lo
NJIEY

hs I
ity

VH. N ~pw N | H

e Expressible as the absence of certain causal
dependencies from H to L {PN’14}

Example: Atomicity check

e Concurrent language with shared memory

il

gl=y

00 IR i
(s then iz =1y

I SCit s x =17

e Translation into Petri nets

Example: Atomicity check

e Atomicity assertion atomic{
X =y,
(= 1) then z/:= x
clse y i= 1;
j

e Reduced to the absence of a triple of events
e1 <e< 6’1

with ej, e;’ in the atomic block, while e outside

[Farzan, Madhusan, ... |

Reversible systems

e When a system is reversible, an action could be
reversed only after its causal consequences

e Causality and concurrency come naturally into
play in observational theories of reversible
systems

[Ulidowski’s talk]

True concurrency, why?

e Even though you are still not interested ...

e Properties expressible in an interleaving semantics
can be possibly expressed and checked much
more efhiciently using a true concurrent models

e Eg. Deadlocks, hazards, LTL on prefixes of the
unfolding {McMillanl, {Esparzal, { Voglerl, ...

Operational models &
Behavioural equivalences

Event structures

(E9 Sa #9 }\') Cs5 i

[Nielsen,Plotkin, Winskel}

Event structures

(E, <, #, M) AER
e I events Jl\Jz

[Nielsen,Plotkin, Winskel}

Event structures

(E9 Sa #9 }\') Cs5 i

GRS T C4
e K events] \]
ci C2

e < causality

[Nielsen,Plotkin, Winskel}

Event structures

(E, <, #, M) ¢

e E events] \]

e < causality

o # conflict
[Nielsen,Plotkin, Winskel}

Event structures

(E, <, #, M) i
o | events]‘\]

e < causality

o # conflict
[Nielsen,Plotkin, Winskel}

Event structures

(E9 =) #9 }\') €5 i
Computations as] /
configurations

(causally closed, conflict-free)] \]

Event structures

(Ea s, #7 }\') €5 i

Computations as] /
configurations

63'""ﬁ' """" C4
(causally closed, conflict-free)] \]
C1 C2

{eilt
@ 7 {61} ? {61,63}

Event structures

(E, <, #, M) ¢

CHTHEE TR i €6
Computations as I /
configurations "
GRS T C4
(causally closed, conflict-free)] \]
C1 C2
te1} les}
@ 7 {6 1 } ? { €1, €3 }
{61762} {63765}

0 ? {61762} 7 {61,62763765}

Event structures

(E, <, #, M) ¢

CHTHEE TR i €6
Computations as I /
configurations "
GRS T C4
(causally closed, conflict-free)] \]
C1 C2
te1} les}
@ ? {61 } ? {61 , €3 }
{61762} {63765}
) > 1e1,e2} > {e1,e2,€3,¢€5}

step

Event structures

(E, <, #, M) ¢

CHTHEE TR i €6
Computations as I /
configurations "
GRS T C4
(causally closed, conflict-free)] \]
C1 C2
te1} les}
@ ? {61 } ? {61 , €3 }
{61762} {63765}
) > 1e1,e2} > {e1,e2,€3,¢€5}

step pomset

Behavioural equivalence

e Defined on top of the operational model, taking
different observations ...

Irue concurrent spectrum

hereditary history-preserving
bisimilarity

interleaving bisimilarity

{van Glabbeek, Goltz}

Irue concurrent spectrum

hereditary history-preserving
bisimilarity
|

history-preserving
bisimilarity

interleaving bisimilarity

{van Glabbeek, Goltz}

Irue concurrent spectrum

hereditary history-preserving
bisimilarity
|

history-preserving
bisimilarity
\

pomset bisimilarity

interleaving bisimilarity

{van Glabbeek, Goltz}

Irue concurrent spectrum

hereditary history-preserving
bisimilarity
|

history-preserving
bisimilarity
\

pomset bisimilarity

v

step bisimilarity
\

interleaving bisimilarity

{van Glabbeek, Goltz}

Behavioural Logic?

Interleaving world

(interleaving) bisimilarity

trace equivalence

[van Glabbeek’s LTBT spectrum}

Interleaving world

Hennessy-Milner logic

(interleaving) bisimilarity
pu=T | (a)p | ~¢p | oAy

trace equivalence

[van Glabbeek’s LTBT spectrum}

Interleaving world

Hennessy-Milner logic

(interleaving) bisimilarity
pu=T | (a)p | ~¢p | oAy

trace equivalence

[van Glabbeek’s LTBT spectrum}

Interleaving world

Hennessy-Milner logic

(interleaving) bisimilarity
pu=T | (a)p | ~¢p | oAy

simulation equivalence pu=T | (a)p | Ay

trace equivalence

[van Glabbeek’s LTBT spectrum}

Interleaving world

Hennessy-Milner logic

(interleaving) bisimilarity
pu=T | (a)p | ~¢p | oAy

simulation equivalence pu=T | (a)p | Ay

trace equivalence

[van Glabbeek’s LTBT spectrum}

Interleaving world

Hennessy-Milner logic

(interleaving) bisimilarity
pu=T | (a)p | ~¢p | oAy

simulation equivalence pu=T | (a)p | Ay

trace equivalence pu=T | (a)p

[van Glabbeek’s LTBT spectrum}

Logics for true concurrency

e {DeNicola-Ferrari 9o}
Framework for several temporal logics.
Pomset bis. and weak hp-bis.

e [Hennessy-Stirling 85, Nielsen-Clausen 95}
Charaterise hhp-bis with past-tense/back step
modalities (no autoconcurrency)

o {Bradfield-Froschle o2, Gutierrez 09}
Modal logics for action independence/causality

Captures hp-bis.

A logic for true concurrency

pu=T |(a)p | 7o | pAyp

A logic for true concurrency

pu=T |(az)p | "¢ | oA

A logic for true concurrency

pu=T | (x,y<az)p | ¢ | @Ay

A logic for true concurrency

pu=T | (x,y<az)p [(2)¢ | 7@ | pAyp

A logic for true concurrency

pu=T | (x,y<az)p [(2)¢ | 7@ | pAyp

Interpreted over event structures

C =y

A logic for true concurrency

pu=T | (x,y<az)p [(2)¢ | 7@ | pAyp

Interpreted over event structures

C =y

configuration /

state of the computation

A logic for true concurrency

pu=T | (x,y<az)p [(2)¢ | 7@ | pAyp

Interpreted over event structures

C =y

configuration \ describes some futures

state of the computation for C

A logic for true concurrency

pu=T | (x,y<az)p [(2)¢ | 7@ | pAyp

Interpreted over event structures

C =y

configuration / ‘ \ describes some futures

state of the computation for C

n: Var - E
records the events
bound to variables

Semantics

=, (X, ¥ < az)yp
exists an event e in the future of C s.t.

n(x) <e, ny)lle AMe) =aand C =y se ¢

Semantics

C =, (XY < az)p

exists an event e in the future of C s.t.

n(x) <e, n(y)|le, A(e) =aand C

if C » C' and C' =, ¢

—nlz—e] ¥

Examples

Examples

) =g (cx)T

D =g (cz)T A(dy)T

0D Eg (cx)T A(dy)T

Examples

=

=

=9 (az)(z)(z < dy)(y) T

7~ (ax)(z)(z < dy)(y)(cz) T

Examples

=

=9 (az)(z)(z < dy)(y) T

=

7~ (ax)(z)(z < dy)(y)(cz) T

=

=0 (az)(T < by)(cz)(z)(y){z) T

A logic for hhp-bisimilarity
Theorem: Logical equivalence is hhp-bisimilarity

Vo. (E1 =@ & E; E @) iff E1 ~nnp BEo

A logic for hhp-bisimilarity
Theorem: Logical equivalence is hhp-bisimilarity

Vo. (E1 =@ & E; E @) iff E1 ~nnp BEo

Fragments of the logics corresponds to
coarser equivalences in the true
concurrent spectrum

Abbreviations

e Immediate execution

(x,y <azy

(x, ¥ <az)(z)¢

Abbreviations

e Immediate execution

(x,y <az)e
(x, ¥ <az)(z)¢

e Step

({az) ® (bz"D)e

(az){z < bz')y

Step Bisimilarity

e Step transitions: observes concurrency

Step Bisimilarity

e Step transitions: observes concurrency

Step Bisimilarity

p = ((a171)® - ®@{anzn)) 0 | pA@ | = | T

Step Bisimilarity

p = ((a171)® - ®@{anzn)) 0 | pA@ | = | T

Step Bisimilarity

p = ((a171)® - ®@{anzn)) 0 | pA@ | = | T

- # ({az)e(bz')T =

Pomset bisimilarity

e Observes also causality

Pomset bisimilarity
e Observes also causality

Pomset Bisimilarity

p = (x,y<az)o | mo | oA | T

propositional connectives only on closed subformulae

Pomset Bisimilarity

p = (x,y<az)o | mo | oA | T

propositional connectives only on closed subformulae

Pomset Bisimilarity

p = (x,y<az)o | mo | oA | T

propositional connectives only on closed subformulae

(az){z<by)T H e

History-preserving Bisim

e An event of a system must be simulated by an event
of the other with the same history (causal links)

History-preserving Bisim

e An event of a system must be simulated by an event
of the other with the same history (causal links)

History Preserving Bisim

p = (x,y<az)o | mo | oA | T

coppectiesenle s eloced formylae

History Preserving Bisim

p o= (xy<azhe [e [wAe [T
coppectiver ol anelores fopmploe
| f
b -

History Preserving Bisim

p = (x,y<az)o | mo | oA | T

b b
2 F (az)((T<by)T Az <bz)T) = |-

a b

Hereditary HP-bisim.

e Matching between events in the simulation does
not depend on the order of concurrent events
(which can thus be reversed)!

Event Id Logic
[Phillips,Ulidowski}
e d c. .d
‘ T | / { %hhp ‘ /x\\ ‘
a, b, # azl b, a;’ by # a b,

((az) ® (by))((z < cz) A (y <d2'))T

Adding recursion

e In order to have an expressive specification logic

o =T | oA | mp | (x,y<az)p | (2)¢]
X(x) | pX(x).0

Adding recursion

e In order to have an expressive specification logic

o =T | oA | mp | (x,y<az)p | (2)¢]
X(x) | pX(x).0

e Invariant ¢

vX.(p A [Act] X)

Adding recursion

e In order to have an expressive specification logic

o =T | oA | mp | (x,y<az)p | (2)¢]
X(x) | pX(x).0

e Invariant ¢
vX.(p A [Act] X)
e Eventually ¢
uX.(oV ((Act)T A [Act | X)

Further examples

e There is a causal chain of &-labelled events
ending with an @-labelled event

(bah (uX(z).({z <az)TV |z <by) X(y)))

Further examples

e There is a causal chain of &-labelled events
ending with an @-labelled event

(bah (uX(z).({z <az)TV |z <by) X(y)))

* There is a sequence of steps “@ in parallel with 47,
and finally an @-labelled event:

pX.({az)TV ({ay) ®(bz))X)

Further examples

* A high event is never a cause for a low event

e An atomic block is never causally interleaved with
an external action

Model-checking?

e Model-checking is decidable on regular event

structures
e Not obvious i) < Ayl
e By reduction to { Madhusan}

e More direct technique? Unfolding prefixes?

Satistiability?

e Not obvious: no finite model property

e Internalized in a Guarded Fragment of FOL
{Andreka, van Benthem, and Nemeti}

e Decidable with a transitive operator [Kieronskil,
undecidable with two

o GF + fixed point {Gradel-Walukiewicz]

Simpler logic?

pu=T | (az)p |{z)p | 7p | oAy

e No explicit reference to causality/concurrency

e The logic traces the history of events in time
(can only check for identity/labels)

e Connection with HD-automata/nominal automata

Connection with HD-
automata’

e Encoding of any event structure E into an
HD-automata H(E)

H(E) ~-HE’) it E bbp-bisimilar to E’

e Proof via logic (two PES satisfy the same formulae
iff the corresponding automata do)

e With a finite horizon (bounded lookup) one gets
effective approximations of hhp-bisimilarity

Open problem

Can true concurrent models be of use
for analysing true concurrent systems?

