
True Concurrency,  
Logic and Verification 

Paolo Baldan 
University of Padova!

!
joint work with!

Silvia Crafa, Alberto Carraro



Outline

• Behavioural theory for true concurrency. Why?!

• From behavioural equivalences to a  
behavioural logics for true concurrency!

• Some open questions



Why?



True concurrency, why?

• True concurrency only as an abstraction!

• A concurrent program executes in single-
processor machines (interleaving)!

• No longer true since some time ...!

• Distributed systems, multi-processors, 
multi-core



True concurrency, why?

• True concurrency not observable

a || b

ab+ ba



True concurrency, why?

• True concurrency not observable

ba

b a
a || b

ab+ ba



True concurrency, why?

• True concurrency not observable

• might be, but even if not directly 
observable it is there!

• essential/convenient for characterising 
properties like parallelism, races, 
interferences, information-flow, …



Example: Non-interference

• E.g. Non-interference [Goguen,Meseguer]!

• hierarchy on actions (e.g., simplest low - high)!

• a system is secure when activity at high level is 
not visible at low level



Example: Non-interference

• E.g. Non-interference [Goguen,Meseguer]!

• hierarchy on actions (e.g., simplest low - high)!

• a system is secure when activity at high level is 
not visible at low level

8H. Sys ⇠
low

Sys | H

• (B)NDC (Non-Deducibility on Composition)



Non interference

• Petri nets  
[Busi, Gorrieri], 
[Best,Darondeau,Gorrieri]

• Expressible as the absence of certain causal 
dependencies from H to L   [PN’14]

•
s0

��

•
s1

}}

h1

!!

��

s2

����

s3

✏✏

h2

//

l1 l2

oo

8H. N ⇠
low

N | H



Example: Atomicity check

• Concurrent language with shared memory!

• Translation into Petri nets

x := y; 
if ( x = 1) then z := x 
                else y := 1;

•
✏✏

x := y

✏✏xx

•
y

•
x

88

✏✏
x = 1?
✏✏

''ww
z := xOO
✏✏ ''

y := 1
~~

ii

ww•
z



Example: Atomicity check

• Atomicity assertion atomic{ 
  x := y; 
  if ( x = 1) then z := x 
                  else y := 1; 
}

• Reduced to the absence of a triple of events 

with e1, e1′ in the atomic block, while e outside
e1  e  e01

[Farzan, Madhusan, ... ]



Reversible systems

• When a system is reversible, an action could be 
reversed only after its causal consequences!

• Causality and concurrency come naturally into 
play in observational theories of reversible 
systems

[Ulidowski’s talk]



True concurrency, why?

• Even though you are still not interested ...!

• Properties expressible in an interleaving semantics 
can be possibly expressed and checked much 
more efficiently using a true concurrent models!

• Eg. Deadlocks, hazards, LTL on prefixes of the 
unfolding  [McMillan], [Esparza], [Vogler], …



Operational models & 
Behavioural equivalences



Event structures

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

[Nielsen,Plotkin, Winskel]



Event structures

• E events

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

[Nielsen,Plotkin, Winskel]



Event structures

• E events

• ≤ causality

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

[Nielsen,Plotkin, Winskel]



Event structures

• E events

• ≤ causality

• # conflict

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

[Nielsen,Plotkin, Winskel]



Event structures

• E events!

• ≤ causality!

• # conflict

(E, ≤, #, λ) d f

c

aa

b #

#

[Nielsen,Plotkin, Winskel]



Event structures

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

Computations as !
configurations  
(causally closed, conflict-free)



Event structures

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

⇤
{e1}
���⇥ {e1}

{e3}
���⇥ {e1, e3}

Computations as !
configurations  
(causally closed, conflict-free)



Event structures

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

⇤
{e1}
���⇥ {e1}

{e3}
���⇥ {e1, e3}

⇤
{e1,e2}
�����⇥ {e1, e2}

{e3,e5}
�����⇥ {e1, e2, e3, e5}

Computations as !
configurations  
(causally closed, conflict-free)



Event structures

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

⇤
{e1}
���⇥ {e1}

{e3}
���⇥ {e1, e3}

⇤
{e1,e2}
�����⇥ {e1, e2}

{e3,e5}
�����⇥ {e1, e2, e3, e5}

Computations as !
configurations  
(causally closed, conflict-free)

step



Event structures

(E, ≤, #, λ) e5 e6

e4

e2e1

e3 #

#

⇤
{e1}
���⇥ {e1}

{e3}
���⇥ {e1, e3}

⇤
{e1,e2}
�����⇥ {e1, e2}

{e3,e5}
�����⇥ {e1, e2, e3, e5}

Computations as !
configurations  
(causally closed, conflict-free)

step pomset



Behavioural equivalence

• Defined on top of the operational model, taking 
different observations ...



True concurrent spectrum
hereditary history-preserving !

bisimilarity

interleaving bisimilarity

[van Glabbeek, Goltz]



True concurrent spectrum
hereditary history-preserving !

bisimilarity

interleaving bisimilarity

history-preserving !
bisimilarity

[van Glabbeek, Goltz]



True concurrent spectrum
hereditary history-preserving !

bisimilarity

interleaving bisimilarity

history-preserving !
bisimilarity

pomset bisimilarity

[van Glabbeek, Goltz]



True concurrent spectrum
hereditary history-preserving !

bisimilarity

interleaving bisimilarity

history-preserving !
bisimilarity

pomset bisimilarity

step bisimilarity

[van Glabbeek, Goltz]



Behavioural Logic?



Interleaving world

(interleaving) bisimilarity

trace equivalence

[van Glabbeek’s LTBT spectrum]



Interleaving world

(interleaving) bisimilarity
Hennessy-Milner logic

' ::= > | hai' | ¬' | ' ^ '

trace equivalence

[van Glabbeek’s LTBT spectrum]



Interleaving world

(interleaving) bisimilarity
Hennessy-Milner logic

' ::= > | hai' | ¬' | ' ^ '

trace equivalence

[van Glabbeek’s LTBT spectrum]



Interleaving world

(interleaving) bisimilarity
Hennessy-Milner logic

' ::= > | hai' | ¬' | ' ^ '

simulation equivalence ' ::= > | hai' | ' ^ '

trace equivalence

[van Glabbeek’s LTBT spectrum]



Interleaving world

(interleaving) bisimilarity
Hennessy-Milner logic

' ::= > | hai' | ¬' | ' ^ '

simulation equivalence ' ::= > | hai' | ' ^ '

trace equivalence

[van Glabbeek’s LTBT spectrum]



Interleaving world

(interleaving) bisimilarity
Hennessy-Milner logic

' ::= > | hai' | ¬' | ' ^ '

simulation equivalence ' ::= > | hai' | ' ^ '

trace equivalence ' ::= > | hai'

[van Glabbeek’s LTBT spectrum]



Logics for true concurrency
• [DeNicola-Ferrari 90]  

Framework for several temporal logics.  
Pomset bis. and weak hp-bis.!

• [Hennessy-Stirling 85, Nielsen-Clausen 95] 
Charaterise hhp-bis with past-tense/back step 
modalities (no autoconcurrency)!

• [Bradfield-Froschle 02, Gutierrez 09]  
Modal logics for action independence/causality  
Captures hp-bis.!

• ….



A logic for true concurrency

' ::= > | hai' | ¬' | ' ^ '



A logic for true concurrency

' ::= > | hazi' | ¬' | ' ^ '



A logic for true concurrency

' ::= > | hx,y < azi' | ¬' | ' ^ '



A logic for true concurrency

' ::= > | (x,y < az)' | hzi' | ¬' | ' ^ '



A logic for true concurrency

' ::= > | (x,y < az)' | hzi' | ¬' | ' ^ '

Interpreted over event structures

C |=⌘ '



A logic for true concurrency

' ::= > | (x,y < az)' | hzi' | ¬' | ' ^ '

configuration 
state of the computation

Interpreted over event structures

C |=⌘ '



A logic for true concurrency

' ::= > | (x,y < az)' | hzi' | ¬' | ' ^ '

configuration 
state of the computation

describes some futures !
for C

Interpreted over event structures

C |=⌘ '



A logic for true concurrency

' ::= > | (x,y < az)' | hzi' | ¬' | ' ^ '

configuration 
state of the computation

!⌘ : Var ! E
records the events!
bound to variables

describes some futures !
for C

Interpreted over event structures

C |=⌘ '



Semantics

C |=⌘ (x,y < az)'

exists an event e in the future of C s.t.
⌘(x) < e, ⌘(y)|| e, �(e) = a and C |=⌘[z 7!e] '



Semantics

C |=⌘ (x,y < az)'

exists an event e in the future of C s.t.
⌘(x) < e, ⌘(y)|| e, �(e) = a and C |=⌘[z 7!e] '

C |=⌘ hzi'

if C
⌘(z)

���! C 0 and C 0 |=⌘ '



Examples
f g

d

ab

c #

#



Examples
f g

d

ab

c #

#

; |=; (cx)>



Examples
f g

d

ab

c #

#

; |=; (cx)>

; |=; (cx)> ^ (dy)>



Examples
f g

d

ab

c #

#

; |=; (cx)>

; |=; (cx)> ^ (dy)>

; 6|=; (cx)hxi>



Examples
f g

d

ab

c #

#



Examples
f g

d

ab

c #

#

; |=; (ax)hxi(x < dy)hyi>



Examples
f g

d

ab

c #

#

; 6|=; (ax)hxi(x < dy)hyi(cz)>

; |=; (ax)hxi(x < dy)hyi>



Examples
f g

d

ab

c #

#

; 6|=; (ax)hxi(x < dy)hyi(cz)>

; |=; (ax)hxi(x < dy)hyi>

; |=; (ax)(x̄ < by)(cz)hxihyihzi>



A logic for hhp-bisimilarity

Theorem: Logical equivalence is hhp-bisimilarity

8'. (E1 |= ' , E2 |= ') E1 ⇠hhp E2iff



A logic for hhp-bisimilarity

Theorem: Logical equivalence is hhp-bisimilarity

8'. (E1 |= ' , E2 |= ') E1 ⇠hhp E2iff

Fragments of the logics corresponds to 
coarser equivalences in the true 
concurrent spectrum



Abbreviations

• Immediate execution

h|x,y < a z|i'

(x,y < a z)hzi'



Abbreviations

• Immediate execution

h|x,y < a z|i'

(x,y < a z)hzi'

• Step

(h|az|i ⌦ h|bz0|i)'

h|az|ih|z̄ < bz0|i'



Step Bisimilarity

• Step transitions: observes concurrency



Step Bisimilarity

• Step transitions: observes concurrency



Step Bisimilarity
' ::= (h|a1 x1|i⌦ · · ·⌦h|an xn|i) ' | ' ^ ' | ¬' | T



Step Bisimilarity
' ::= (h|a1 x1|i⌦ · · ·⌦h|an xn|i) ' | ' ^ ' | ¬' | T

b a

a b a b



Step Bisimilarity
' ::= (h|a1 x1|i⌦ · · ·⌦h|an xn|i) ' | ' ^ ' | ¬' | T

b a

a b a b
�� (��a z��⊗ ��b z′��)T �



Pomset bisimilarity

• Observes also causality



Pomset bisimilarity

• Observes also causality



Pomset Bisimilarity
' ::= h|x,y < a z|i' | ¬' | ' ^ ' | T

propositional connectives only on closed subformulae



Pomset Bisimilarity

a b

b

a b

' ::= h|x,y < a z|i' | ¬' | ' ^ ' | T

propositional connectives only on closed subformulae



Pomset Bisimilarity

a b

b

a b
�� ��ax����x < b y��T �

' ::= h|x,y < a z|i' | ¬' | ' ^ ' | T

propositional connectives only on closed subformulae



History-preserving Bisim

• An event of a system must be simulated by an event 
of the other with the same history (causal links)



History-preserving Bisim

• An event of a system must be simulated by an event 
of the other with the same history (causal links)



History Preserving Bisim
' ::= h|x,y < a z|i' | ¬' | ' ^ ' | T

connectives only on closed formulae



History Preserving Bisim
' ::= h|x,y < a z|i' | ¬' | ' ^ ' | T

connectives only on closed formulae

b

a b

b

a b a

OO



History Preserving Bisim
' ::= h|x,y < a z|i' | ¬' | ' ^ ' | T

connectives only on closed formulae

b

a b

b

a b a

OO �� ��ax��(��x < b y��T ∧ ��x < b z��T) �



Hereditary HP-bisim.

• Matching between events in the simulation does 
not depend on the order of concurrent events 
(which can thus be reversed)!

((ax)⌦ (by))((x < cz) ^ (y < dz

0))>

b2’

c d

a1’ b1’a2 b2

c d

a1 b1 # #

6⇠hhp

a2’

Event Id Logic 
[Phillips,Ulidowski]



Adding recursion
• In order to have an expressive specification logic

' ::= T | ' ^ ' | ¬' | (x,y < a z)' | hzi' |
X(x) | µX(x).'



Adding recursion
• In order to have an expressive specification logic

' ::= T | ' ^ ' | ¬' | (x,y < a z)' | hzi' |
X(x) | µX(x).'

• Invariant φ 

⌫X.(' ^ [[Act]]X)



Adding recursion
• In order to have an expressive specification logic

' ::= T | ' ^ ' | ¬' | (x,y < a z)' | hzi' |
X(x) | µX(x).'

• Invariant φ 

⌫X.(' ^ [[Act]]X)

• Eventually φ 

µX.(' _ (h|Act |iT ^ [[Act ]]X)



Further examples

• There is a causal chain of b-labelled events  
   ending with an a-labelled event

h|bx|i (µX(x).(h|x < a z|iT _ h|x < b y|iX(y)))



Further examples

• There is a causal chain of b-labelled events  
   ending with an a-labelled event

h|bx|i (µX(x).(h|x < a z|iT _ h|x < b y|iX(y)))

• There is a sequence of steps “a in parallel with b”, 
   and finally an a-labelled event:

µX.(h|ax|iT _ (h|a y|i⌦ h|b z|i)X)



Further examples

• A high event is never a cause for a low event

• An atomic block is never causally interleaved with  
  an external action

• ...



Model-checking?

• Model-checking is decidable on regular event 
structures!

• Not obvious!

• By reduction to [Madhusan] !

• More direct technique? Unfolding prefixes?

¬(ax)¬(x < ay)>



Satisfiability?

• Not obvious: no finite model property!

• Internalized in a Guarded Fragment of FOL 
[Andreka, van Benthem, and Nemeti]!

• Decidable with a transitive operator [Kieronski], 
undecidable with two!

• GF + fixed point [Gradel-Walukiewicz]



Simpler logic?

• No explicit reference to causality/concurrency!

• The logic traces the history of events in time 
(can only check for identity/labels)!

• Connection with HD-automata/nominal automata

' ::= > | (az)' | hzi' | ¬' | ' ^ '



Connection with HD-
automata?

• Encoding of any event structure E into an 
HD-automata H(E)

• Proof via logic (two PES satisfy the same formulae 
iff the corresponding automata do)!

• With a finite horizon (bounded lookup) one gets 
effective approximations of hhp-bisimilarity

H(E) ~ H(E’)       iff       E  hhp-bisimilar to E’



Open problem

Can true concurrent models be of use 
for analysing true concurrent systems?


