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System analysis vs. system synthesis

• Analysis
Given: a system (program, algorithm, expression, Petri net)
Objective: deduce behavioural properties
State space exploration / representation / explosion

• Synthesis
Given: a specification describing desired behaviour
Objective: derive a generating / implementing system
Correctness by design



Synthesis of Petri nets

• Input A labelled transition system (S,→,T , s0) with
states S (initially s0), labels T , arcs→ ⊆ (S×T×S)

• Output A marked Petri net with transitions T and
isomorphic state space

s0
a a

bb
. . .  a b



Region theorems for an lts TS = (S,→,T , s0)

• (R,B,F) ∈ (S → N,T → N,T → N) region of TS if
s t−→ s′ ⇒ R(s) ≥ B(t) and R(s′) = R(s)− B(t) + F(t)

A region ‘behaves like a Petri net place’ but is defined on TS

• TS satisfies ESSP (event/state separation property) if
¬(s t−→) ⇒ ∃ region (R,B,F) with R(s) < B(t)

• ... and SSP (state separation property) if
s 6= s′ ⇒ ∃ region (R,B,F) with R(s) 6= R(s′)

Theorems (for finite lts):

ESSP⇒ ∃ a language-equivalent Petri net
ESSP∧SSP⇒ ∃ a Petri net with isomorphic reachability graph

Ehrenfeucht, Rozenberg et al.
Upcoming book by Badouel, Bernardinello, Darondeau



Checking the region properties, and open problems

• As far as I am aware, this theory has not yet been fully
extended to infinite transition systems (but: Darondeau)

• For finite-state systems, the basic algorithm is polynomial
• BUT in the size of the lts!
• AND with exponents 7 or 8!
• The region theorems are pretty unwieldy
• Apparently, there is even no characterisation yet

of the case that a finite straight lts (a word) satisfies ESSP
• If an lts is Petri net realisable there are usually

many incomparable minimal solutions

Our approach Identify classes of lts for which
structurally pleasant solutions can be shown to exist



A live and bounded marked graph

M0

A marked graph Petri net

and its initial marking M0

marked graph:
a Petri net with plain arcs and
|•p| = 1 = |p•| for all places p
where •p = input transitions of p
and p• = output transitions of p

ta b



A live and bounded marked graph
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A live and bounded marked graph
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A live and bounded marked graph
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A marked graph Petri net

and its reachability graph..

..which has several nice properties:
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It is deterministic
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Determinism If a state enables b and t ,
leading to different states, then b 6= t

.. true because the reachability graph
comes from a Petri net
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... and backward deterministic
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Backward determinism If a and t lead
to a state from different states, then a 6=t

.. true because the reachability graph
comes from a Petri net

ta b



It is totally reachable
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Total reachability Every state is
reachable from the initial state M0

.. true by the definition of reachability
graph
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It is finite
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Finiteness

..due to the boundedness of the net
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It is reversible
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Reversibility The initial state is
reachable from every reachable state

.. true (for marked graphs) by
liveness and boundedness
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It is persistent

M0

b
t

a

b
t

a

b
t

a

b
t

a

b
t

a

b
t

a

b
t

a

b
t

a

b

b

b

ba

a

Persistency If a state enables b and t
for b 6= t , then it also enables bt and tb

.. true by the marked graph property

also called strong confluence
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It is backward persistent
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Backward persistency
If a state backward enables b and t for
b 6= t , from two reachable states, then
it also backward enables bt and tb

.. true by the marked graph property

ta b



It satisfies the P1 property
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The Parikh 1 property
In a small cycle, every firable
transition occurs exactly once

.. true by the marked graph property

Note: M0
bbttaa−→ M0 is not small

small means:
nonempty and Parikh-minimal

ta b



State spaces of live and bounded marked graphs

Theorem The following are equivalent:

A TS is isomorphic to the reachability graph
of a live and bounded marked graph

B TS is
• deterministic and backward deterministic
• totally reachable
• finite
• reversible
• persistent
• backward persistent
• and satisfies the P1 property of small cycles

The proof of A⇒B is in Commoner, Genrich et al. (1968–...)

The proof of B⇒A is in LATA’ 2014 (constructing regions)

Moreover: ∃ a unique minimal marked graph realising TS



Necessity of backward persistency

The lts shown below satisfies all properties of B
except backward persistency
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There is no marked graph solution
There are two different minimal non-marked graph solutions



(Non-) solvable infinite lts
• The following infinite lts is not Petri net solvalbe:

a aaa

bbbb
. . .. . .

Uniform 2-way infinite chains such as . . . aaaa . . . or . . . bbbb . . .
cannot be part of a Petri net state space

• The following infinite lts is Petri net solvalbe:

a a

bb
. . .

a b

Non-uniform 2-way infinite chains . . . bbaa . . . are acceptable



State spaces of live, unbounded marked graphs

Theorem The following are equivalent:

A TS is isomorphic to the reachability graph
of a live, unbounded marked graph

B TS is
• deterministic and backward deterministic
• totally reachable
• infinite, but has no uniform 2-way infinite chains . . . αααα . . .
• reversible
• persistent
• backward persistent
• and satisfies the P1 property of small cycles

The proof of (A⇒B) is ‘common knowledge’

The proof of (B⇒A) is in a submitted paper (June 2014)

Moreover: ∃ a unique minimal marked graph realising TS



Necessity of the P1 property

The lts shown below satisfies all properties of B except P1
By definition, it satisfies PΥ with Υ = (#a,#b,#c) = (1,1,2)
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There is no marked graph solution
There are two different minimal non-marked graph solutions
The middle solution has a ‘fake’ (but non-redundant) choice
The r.h.s. solution is ‘nicer’ in the sense that it satisfies |p•| ≤ 1



State spaces of reversible, bounded, ON Petri nets
ON (output-nonbranching): |p•| ≤ 1 for all places p
(weakens the defining marked graph properties)

Theorem The following are equivalent:

A TS is isomorphic to the reachability graph of a reversible, bounded ON net

B TS is
• deterministic and totally reachable
• finite, reversible and persistent
• and satisfies the PΥ property of small cycles, with a constant Υ
• such that Υ enjoys gcdt∈T {Υ(t)} = 1
• and for every x ∈ T and maximal non-x-enabling state s the system

∀r ∈ NUI(x) : 0 <
∑

1≤j≤|T | kj · (Υ(tj ) · (1 + ∆r,s(x))−Υ(x) ·∆r,s(tj ))

has a nonnegative integer solution k1, . . . , k|T |

Υ: a Parikh vector (not necessarily 1, but the same for all small cycles)
NUI(x): non-x-enabling states with a unique incoming arrow labelled x
∆r ,s: Parikh-distance between r and s (well-defined by some properties in B)
Proof: Using region theory again; see Petri Nets 2014 (Tunis, next week)
The inequalities in B only refer to proper (and ‘small’) subsets of states



Concluding remarks, and open problems
• The last result characterises finite, reversible, arbitrarily Petri net

distributable (in the sense of Hopkins, Badouel et al.) lts
• Some lts are distributable but not arbitrarily so,

and existing results would need to be extended
• Results tend to come with fast, dedicated synthesis algorithms
• ... whose complexity can not necessarily be analysed easily

because of interdependencies of the sizes of special lts subsets
• Bounded non-labelled Petri nets also seem to give rise to a

hierarchy inside regular languages that has, to my knowledge,
not yet been deeply studied

In Petri net theory, several key (decidability) problems are still open
My favourite: the existence of a home state
Another favourite: language-equivalence under restrictions
The Nielsen, Thiagarajan conjecture still seems to be unsolved, too ...
Their conjecture has a flavour similar to the characterisation results
mentioned in this talk, except that lts are replaced by event structures
and a different class of Petri nets is concerned


