

## Population Modelling

Vashti Galpin Laboratory for Foundations of Computer Science University of Edinburgh

Open Problems in Concurrency Theory Bertinoro

21 June 2014



### Modelling collective adaptive systems quantitatively

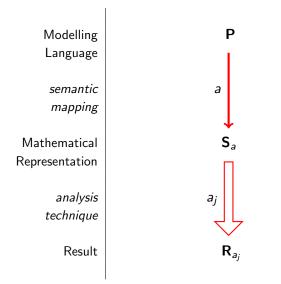


### Motivation

application area: collective adaptive systems (CAS)

- smart transport buses, bike sharing
- smart grid electricty generation and consumption
- we want model to quantitative behaviour of these systems and be able to characterise their performance
- we take a population-based approach where there are a large number of identical processes
- many processes leads to well-known problem of state space explosion
- mitigate this problem with approximation techniques
- focus in this talk on a general process algebra approach to modelling populations, moving beyond application to biology

### Quantitative modelling



### Modelling with PEPA

PEPA [Hillston, 1996]

• two-level grammar, constant definition,  $C \stackrel{\text{\tiny def}}{=} S$ 

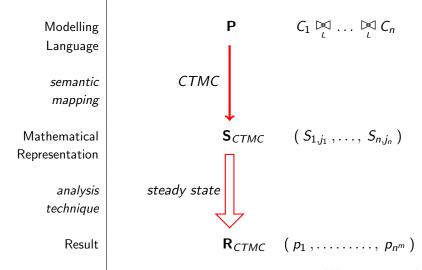
$$S ::= (a, r).S \mid S + S$$

$$P ::= S | P \bowtie_{I} P$$

multi-way synchronisation (CSP-style)

- operational semantics define labelled multi-transition system
  - $\blacksquare P_1 \xrightarrow{(a,r)} P_2$
  - labelled continuous-time Markov chain (CTMC)
- what happens when there are many sequential processes?
  - assume *n* sequential constants:  $C_1, \ldots, C_n$
  - each constant has a maximum of m states:  $S_{1,1}, \ldots, S_{1,m}$
  - CTMC has a maximum of n<sup>m</sup> states

### Modelling with PEPA

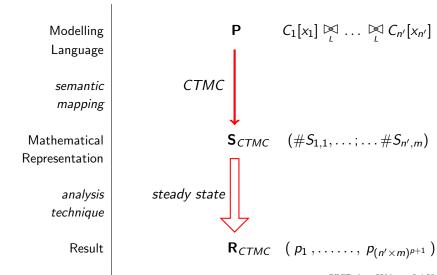


### Quotienting by bisimilarity

what if many of the sequential processes are the same?

- consider the states
  - $(S_{1,1}, S_{1,1}, S_{1,2}, S_{4,j_4}, \dots, S_{n,j_n})$
  - $(S_{1,2}, S_{1,1}, S_{1,1}, S_{4,j_4}, \dots, S_{n,j_n})$
  - both have the same numbers of  $S_{1,1}$  and  $S_{1,2}$
- numeric vector representation
  - $\blacksquare (\#S_{1,1}, \#S_{1,2} \dots \#S_{1,m}; \dots; \#S_{n',1}, \#S_{n',2}, \dots \#S_{n',m})$
  - n' is number of different types of sequential constants
- introduces functional rates
- stochastically bisimilar
- smaller state space?
  - *p* is the maximum count of any state S<sub>i,j</sub>
  - CTMC has a maximum of  $(n' \times m)^{p+1}$  states

#### Using numeric vector representation

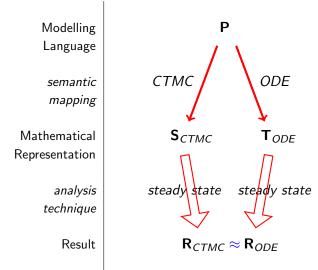


OPCT, June 2014 8 / 29

### Fluid/mean-field approximation

- numeric vector representation can still result in a large number of states so use a fluid approximation [Hillston, 2005]
- treat subpopulation counts as real rather than integral and express change over time as ordinary differential equations (ODEs) giving one equation for each sequential state: n' × m
- seldom obtain ODEs with analytical solutions but numerical ODE solution is generally fast
- ODE behaviour can approximate CTMC behaviour well if sufficient numbers (together with some other conditions as shown by Kurtz)

### Fluid/mean-field approximation



### Languages for modelling populations

#### extensions to PEPA: multiple states per entity

- Grouped PEPA [Hayden, Stefanek and Bradley, 2012]
- Fluid process algebra [Tschaikowski and Tribastone, 2014]
- biological: single state and count per species
  - Bio-PEPA [Ciocchetta and Hillston, 2009]
  - Bio-PEPA with compartments [Ciocchetta and Guerriero, 2009]
- epidemiological: single state and count per subpopulation
  - variant of Bio-PEPA with locations [Ciocchetta and Hillston, 2010]

### A stochastic population process algebra

- stochastic and deterministic semantics
- aim to be general but elementary
- each entity has a single state and a count
- is there a suitable equivalence?
- compression bisimulation [Galpin and Hillston, 2011]
- start more concretely and then consider more generality
- syntax from epidemiological modelling but different semantics

### A stochastic population process algebra

subpopulation description

$$C \stackrel{\text{\tiny def}}{=} (\beta_1, (\kappa_1, \lambda_1)) \odot C + \ldots + (\beta_{m_C}, (\kappa_{m_C}, \lambda_{m_C})) \odot C$$

• actions:  $\beta_i$  are distinct

• in and out stoichiometries:  $\kappa_i, \lambda_i \in \mathbb{N}$ 

composition of subpopulations

 $P \stackrel{\text{\tiny def}}{=} C_1(n_{1,0}) \boxtimes \dots \boxtimes C_p(n_{p,0})$ 

■ subpopulations: *C<sub>j</sub>* are distinct,

• initial quantities:  $n_{j,0} \in \mathbb{N}$ 

- minimum and maximum size:  $M_C$  and  $N_C$  for each C
- range of a subpopulation is  $N_C M_C + 1$
- use  $C^{(n)}$  to distinguish subpopulations with different ranges
- $P^{(n)}$  defines a composition whose minimum range is n

### **Operational semantics**

$$C \stackrel{\text{\tiny def}}{=} \sum_{k=1}^{n_{C}} (\beta_{k}, (\kappa_{k}, \lambda_{k})) \odot C$$
$$\alpha \in \{\beta_{1}, \dots, \beta_{n_{C}}\}$$
$$\kappa_{k} \leq n \leq N_{C} - \lambda_{k}$$

$$C(n) \xrightarrow{\alpha,\{(C,n)\}} C(n-\kappa_k+\lambda_k)$$

### Operational semantics (continued)

$$\frac{P \xrightarrow{\alpha,W}_{c} P'}{P \bowtie Q \xrightarrow{\alpha,W}_{c} P' \bowtie Q} \qquad Q \xrightarrow{\alpha,W'}_{r}$$

$$\frac{Q \xrightarrow{\alpha,W}_{c} Q'}{P \bowtie Q \xrightarrow{\alpha,W}_{c} P' \bowtie Q} \qquad P \xrightarrow{\alpha,W'}_{r}$$

$$\frac{P \xrightarrow{\alpha,W_{1}}_{c} P' Q \xrightarrow{\alpha,W_{2}}_{c} Q'}{P \bowtie Q \xrightarrow{\alpha,W_{1}\cup W_{2}}_{c} P' \bowtie Q'}$$

### Operational semantics (continued)

$$\frac{P \xrightarrow{\alpha, W} c P'}{P \xrightarrow{\alpha, f_{\alpha}(W)} s P'}$$

•  $f_{\alpha}: (\mathcal{C} \to \mathbb{N}) \to \mathbb{R}_{\geq 0}$  where  $\mathcal{C}$  is the set of subpopulations

- $f_{\alpha}$  may make reference to  $M_C$  and  $N_C$
- Markov chain semantics are given by  $\xrightarrow{\alpha,r}_s$
- ODE semantics can be derived from  $C_1(n_{1,0}) \bowtie \dots \bowtie C_p(n_{p,0})$
- hybrid semantics by mapping to stochastic HYPE [Galpin 2014]
  - dynamic switching between stochastic and deterministic semantics for each action depending on subpopulation size or rate



# $A \stackrel{\text{def}}{=} (\alpha_1, (1, 0)) \odot A + (\alpha_2, (0, 1)) \odot A + (\alpha_3, (2, 0)) \odot A$ $B \stackrel{\text{def}}{=} (\alpha_3, (0, 1)) \odot B$

 $\mathcal{C} \stackrel{\scriptscriptstyle def}{=} (\alpha_1, (0, 1)) \odot \mathcal{C} + (\alpha_2, (1, 0)) \odot \mathcal{C}$ 



# $A \stackrel{\text{def}}{=} (\alpha_1, (1, 0)) \odot A + (\alpha_2, (0, 1)) \odot A + (\alpha_3, (2, 0)) \odot A$ $B \stackrel{\text{def}}{=} (\alpha_3, (0, 1)) \odot B$

 $C \stackrel{\text{\tiny def}}{=} (\alpha_1, (0, 1)) \odot C + (\alpha_2, (1, 0)) \odot C$ 



# $A \stackrel{\text{def}}{=} (\alpha_1, (1,0)) \odot A + (\alpha_2, (0,1)) \odot A + (\alpha_3, (2,0)) \odot A$ $B \stackrel{\text{def}}{=} (\alpha_3, (0,1)) \odot B$

 $C \stackrel{\text{\tiny def}}{=} (\alpha_1, (0, 1)) \odot C + (\alpha_2, (1, 0)) \odot C$ 



# $A \stackrel{\text{def}}{=} (\alpha_1, (1, 0)) \odot A + (\alpha_2, (0, 1)) \odot A + (\alpha_3, (2, 0)) \odot A$ $B \stackrel{\text{def}}{=} (\alpha_3, (0, 1)) \odot B$

 $\mathcal{C} \stackrel{\scriptscriptstyle def}{=} (\alpha_1, (0, 1)) \odot \mathcal{C} + (\alpha_2, (1, 0)) \odot \mathcal{C}$ 



## $A \stackrel{\text{def}}{=} (\alpha_1, (1, 0)) \odot A + (\alpha_2, (0, 1)) \odot A + (\alpha_3, (2, 0)) \odot A$ $B \stackrel{\text{def}}{=} (\alpha_3, (0, 1)) \odot B$

$$C \stackrel{\text{\tiny def}}{=} (\alpha_1, (0, 1)) \odot C + (\alpha_2, (1, 0)) \odot C$$

• consider  $A(5) \bowtie B(0) \bowtie C(0)$  and  $A(7) \bowtie B(0) \bowtie C(0)$ 

 express as labelled transition systems in numerical vector representation (n<sub>A</sub>, n<sub>B</sub>, n<sub>C</sub>)

### Example (continued)

$$\begin{array}{c} (5,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (4,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (3,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,0,5) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (3,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,1,3) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (1,2,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,2,1) \end{array}$$

## Example (continued)

$$\begin{array}{c} (5,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (4,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (3,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,0,5) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \\ (3,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,1,3) \\ \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \\ (1,2,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,2,1) \end{array}$$

$$\begin{array}{c} (7,0,0) \stackrel{\alpha_{1}}{\leftrightarrow} (6,0,1) \stackrel{\alpha_{1}}{\leftarrow} (5,0,2) \stackrel{\alpha_{1}}{\leftarrow} (4,0,3) \stackrel{\alpha_{1}}{\leftarrow} (3,0,4) \stackrel{\alpha_{1}}{\leftarrow} (2,0,5) \stackrel{\alpha_{1}}{\leftarrow} (1,0,6) \stackrel{\alpha_{1}}{\leftarrow} (0,0,7) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \qquad \alpha_{2} \qquad \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{2} \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{4} \qquad \alpha_{4}$$

29

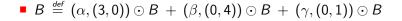
### Example (continued)

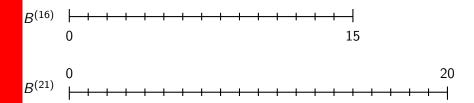
$$\begin{array}{c} (5,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (4,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (3,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,0,5) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \\ (3,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,1,3) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (1,2,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,2,1) \end{array}$$

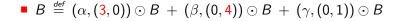
what is the equivalence that will identify these two models?

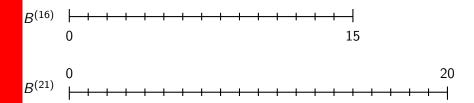
$$\begin{array}{c} (7,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (6,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (5,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (4,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (3,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,0,5) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,0,6) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,0,7) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (5,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (4,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (3,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (2,1,3) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (1,1,4) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (0,1,5) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (3,2,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (2,2,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (1,2,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (0,2,3) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (1,3,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (0,3,1) \end{array} \right.$$

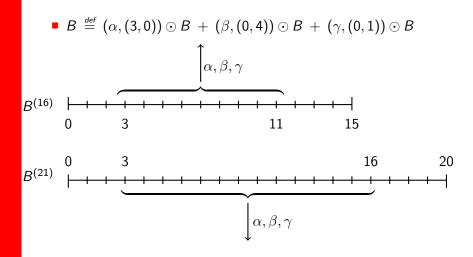
29

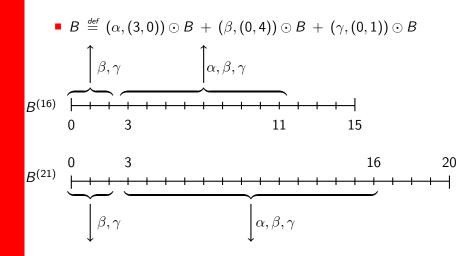


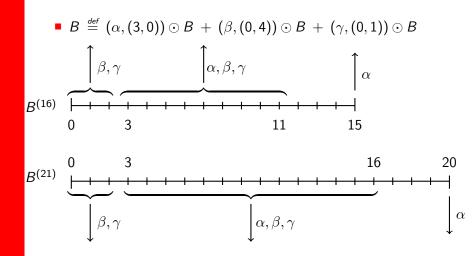


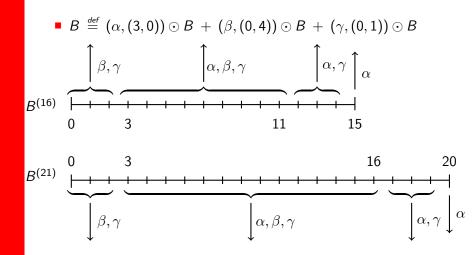


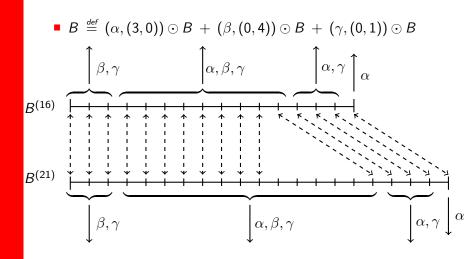


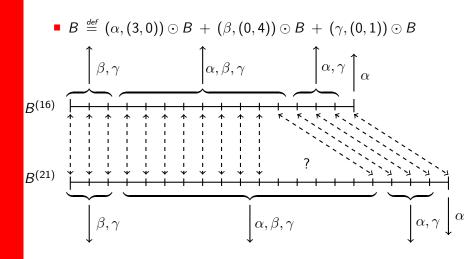


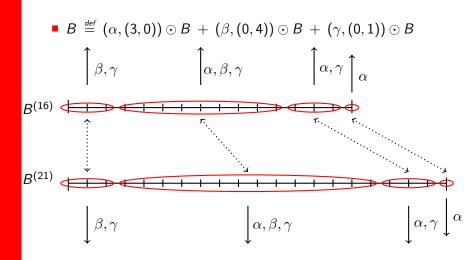












### Compression bisimilarity

- $(P,Q) \in \mathcal{H}$  if they have same actions,
- $\blacksquare$  define labelled transition system over equivalence classes of  ${\mathcal H}$

$$[P] \stackrel{\alpha}{\hookrightarrow} [Q] \text{ if } P \stackrel{(\alpha, v)}{\longrightarrow}_c Q$$

• compression bisimilarity,  $P \simeq Q$  if  $[P] \sim [Q]$ , namely whenever

1. 
$$[P] \xrightarrow{\alpha} [P']$$
, then  $[Q] \xrightarrow{\alpha} [Q']$  and  $[P'] \sim [Q']$   
2.  $[Q] \xrightarrow{\alpha} [Q']$ , then  $[P] \xrightarrow{\alpha} [P']$  and  $[P'] \sim [Q']$ 

results are given in terms of ranges



- to show the full behaviour of a system P<sup>(n)</sup>, n must be greater than the sum of
  - the maximum out-stoichiometry,
  - the maximum in-stoichiometry, and
  - the maximum in- or out-stoichiometry
- $C^{(n)} \simeq C^{(m)}$  if *n* and *m* are large enough
- P<sup>(n)</sup> 
   <sup>(m)</sup> if n and m are large enough together with a technical condition required for stoichiometries larger than 1
- $\simeq$  is a congruence for  $\bowtie$  if technical condition holds

## Example (revisited)

$$\begin{array}{c} (5,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (4,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (3,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,0,5) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \\ (3,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,1,3) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (1,2,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,2,1) \end{array}$$

# Example (revisited)

$$\begin{array}{c} (5,0,0) \stackrel{\alpha_1}{\underset{\alpha_2}{\leftarrow}} (4,0,1) \stackrel{\alpha_1}{\underset{\alpha_2}{\leftarrow}} (3,0,2) \stackrel{\alpha_1}{\underset{\alpha_2}{\leftarrow}} (2,0,3) \stackrel{\alpha_1}{\underset{\alpha_2}{\leftarrow}} (1,0,4) \stackrel{\alpha_1}{\underset{\alpha_2}{\leftarrow}} (0,0,5) \\ \alpha_3 \downarrow \quad \alpha_1 \quad \alpha_3 \downarrow \quad \alpha_1 \quad \alpha_3 \downarrow \quad \alpha_1 \\ (3,1,0) \stackrel{\alpha_2}{\underset{\alpha_2}{\leftarrow}} (2,1,1) \stackrel{\alpha_2}{\underset{\alpha_2}{\leftarrow}} (1,1,2) \stackrel{\alpha_2}{\underset{\alpha_2}{\leftarrow}} (0,1,3) \\ \alpha_3 \downarrow \quad \alpha_1 \quad \alpha_3 \downarrow \\ (1,2,0) \stackrel{\alpha_1}{\underset{\alpha_2}{\leftarrow}} (0,2,1) \end{array}$$

$$\begin{array}{c} (6,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (5,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (4,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (3,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (2,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (1,0,5) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (0,0,6) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (4,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (3,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (2,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (1,1,3) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (0,1,4) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \\ (2,2,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (1,2,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (0,2,2) \\ \alpha_{3} \downarrow \\ (0,3,0) \end{array}$$

# Example (revisited)

$$\begin{array}{c} (5,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (4,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (3,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (2,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (1,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftarrow}} (0,0,5) \\ \alpha_{3} \downarrow \quad \alpha_{1} \quad \alpha_{3} \downarrow \quad \alpha_{3} \downarrow \quad \alpha_{3} \downarrow \\ (3,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (2,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (1,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (0,1,3) \\ \alpha_{3} \downarrow \quad \alpha_{1} \quad \alpha_{3} \downarrow \\ (1,2,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftarrow}} (0,2,1) \end{array}$$

#### these are not compression bisimilar

$$\begin{array}{c} (6,0,0) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (5,0,1) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (4,0,2) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (3,0,3) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,0,4) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,0,5) \stackrel{\alpha_{1}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,0,6) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \\ (4,1,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (3,1,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (2,1,2) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,1,3) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,1,4) \\ \alpha_{3} \downarrow \qquad \alpha_{1} \qquad \alpha_{3} \downarrow \qquad \alpha_{3} \downarrow \\ (2,2,0) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (1,2,1) \stackrel{\alpha_{2}}{\underset{\alpha_{2}}{\leftrightarrow}} (0,2,2) \\ \alpha_{3} \downarrow \end{array} \right.$$



hypothesis: if T is the lcm for all stoichiometric coefficients, n = m + cT for c ∈ N and n, m large enough, then P<sup>n</sup> ≏ P<sup>m</sup> can this be proved?



- hypothesis: if T is the lcm for all stoichiometric coefficients, n = m + cT for c ∈ N and n, m large enough, then P<sup>n</sup> ≏ P<sup>m</sup> can this be proved?
- can compression bisimulation be extended to an (approximate) quantitative equivalence?

# Open problems

- hypothesis: if T is the lcm for all stoichiometric coefficients, n = m + cT for c ∈ N and n, m large enough, then P<sup>n</sup> ≏ P<sup>m</sup> can this be proved?
- can compression bisimulation be extended to an (approximate) quantitative equivalence?
- are there other operators of interest?
  - can two subpopulations, C and D, be combined?
  - define a new operator  $C \boxplus D$
  - must the actions of C and D be disjoint?
  - can a single subpopulation have repeated actions?

# Open problems (continued)

- how can the notion of a stochastic population process algebra be made more general?
- what are the important aspects?
- can these be expressed by parameterising functions?
- choice of functions instantiates population process algebra
- provide meta-results with respect to these functions
- not as general as a SOS format

#### More generally

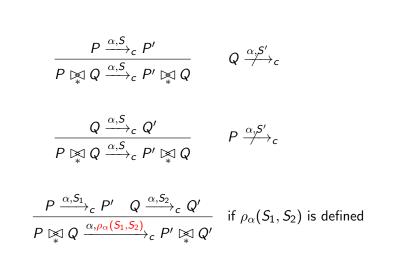
$$C \stackrel{\text{def}}{=} \sum_{k=1}^{n_C} \beta_k \odot C$$

$$\alpha \in \{\beta_1, \dots, \beta_{n_C}\}$$

$$\mu_{\alpha}^{C}(n) \text{ and } \nu_{\alpha}^{C}(n) \text{ are defined}$$

- stoichiometric information and conditions no longer appear in the prefix but are embedded in the definition of the function μ<sup>C</sup><sub>α</sub>
- only local information about C can be used in  $\mu_{\alpha}^{C}$  and  $\nu_{\alpha}^{C}$

#### More generally (continued)



#### More generally (continued)

$$\frac{P \xrightarrow{\alpha, S} P'}{P \xrightarrow{\alpha, f_{\alpha}(S)} P'}$$

• 
$$f_{\alpha}: \mathcal{S} \to \mathbb{R}_{\geq 0}$$

- Markov chain semantics are given by  $\xrightarrow{\alpha,r}_s$
- ODEs can be derived from  $C_1(n_{1,0}) \bowtie \ldots \bowtie C_p(n_{p,0})$
- unspecified functions:  $\nu_{\alpha}^{C}$ ,  $\mu_{\alpha}^{C}$ ,  $\rho_{\alpha}$ ,  $f_{\alpha}$
- what are sensible choices in the context of population modelling?

# Open problems (continued)

how can modelling of space in the context of smart transport and smart grids be combined with population modelling?

### Open problems (continued)

how can modelling of space in the context of smart transport and smart grids be combined with population modelling?



# Thank you