
Integrating Automata Theory
and Process Theory

(status and open problems)

Bas Luttik
(based on joint work with Jos Baeten,

Paul van Tilburg and Fei Yang)

Open Problems in Concurrency Theory
Bertinoro, 19 June 2014

FORMAL
LANGUAGE

Automata Theory (classical view)

DFA/NFA Regular expression/

Linear grammar

PDA

a a

b

b

a[?/1?] a[1/ε]

b[?/?]

TM

Context-free
grammar

Unrestricted
grammar

Regular
Language

Automata Theory (classical view)

DFA/NFA Regular expression/

Linear grammar

PDA

a a

b

b

a[?/1?] a[1/ε]

b[?/?]

TM

Context-free
grammar

Unrestricted
grammar

Context-free
Language

Recursively
enumerable
Language

Automata and Process Theory in a single course

Automata Theory & Formal Languages
p  From NFAs to DFAs (determinizing)
p  From REs to NFAs v.v.
p  Pumping lemma’s
p  Correspondence between CFGs and PDAs
p  Formal syntax (e.g. of regular expressions, grammars)
p  Halting problem

Concurrency Theory
p  Transition systems
p  Process specification (e.g. using parallel composition)
p  Structural operational semantics
p  Behavioural equivalence (bisimilarity)
p  Abstraction
p  Axioms

Regular expression/
Closed BPA*

0,1-term
Linear grammar/
Recursive spec.
over BCCSP0,1 TRANSITION

SYSTEM

Automata Theory (more modern view)

DFA/NFA

PDA

a a

b

b

a[?/1?] a[1/ε]

b[?/?]

TM

Context-free
grammar
Recursive spec.
over BPA0,1

Unrestricted
grammar

S

O

S
language equivalence

bisimilarity

failures

…

Decidability of Bisimilarity

The process theoretic counterpart of a context-free grammar is, then, a
finite guarded recursive specification over BPA0,1.

Consider the following guarded recursive specification over BPA0,1:

 X = aXY + c
 Y = b + 1

X XY XYY XYYY

1 Y YY YYY

a a a

b b b

b b

b

c c c c

Open problem:

Is bisimilarity decidable for BPA0,1 with guarded recursion?

No bound on
branching degree!

Regular expression/
Closed BPA*

0,1-term
Linear grammar/
Recursive spec.
over BCCSP0,1 TRANSITION

SYSTEM

Automata Theory (more modern view)

DFA/NFA

PDA

a a

b

b

a[?/1?] a[1/ε]

b[?/?]

TM

Context-free
grammar
Recursive spec.
over BPA0,1

Unrestricted
grammar

???????

S

O

S

Reactive Turing machines
Design criteria
p  Conservativity

There should be a straightforward embedding of classical Turing
machines into our new formalism

p  Reactivity
There should be a straightforward embedding of classical Turing
machines into our new formalism

p  Concurrency
It should be possible to model some form of concurrency

Definition

A reactive Turing machine (RTM) is an ordinary Turing machine with an
action from some set A∪{τ} associated with every transition:

s t means “externally observable, as execution of a”

s t means “internal (unobservable) transition”

a[d/e]M

 τ[d/e]M

… 1 1 # …

Example

τ[#/#]L
τ[1/1]R

τ[☐/☐]R
i?#[☐/#]L

τ[1/1]R

τ[#/#]L

o!#[☐/☐]L

τ[☐/☐]R

τ[1/1]R

i?#[☐/1]L

o!1[1/☐]L τ[1/☐]L

i?d: receive d on channel i

o!d: send d on channel i

… … tape:

externally initiated/observed actions: i?1 i?1 i?# o!1 o!1 o!# i?1 i?# o!#

Operational semantics
12/1

Example: transition system of RTM

o!#[�/�]R

⌧ [1/1]R

⌧ [1/1]R

i?1[�/1]R

⌧ [1/�]Lo!1[1/�]L

⌧ [1/1]L

⌧ [#/�]L ⌧ [#/�]L

⌧ [�/�]R

⌧ [�/�]R

i?#[�/#]L

⌧

⌧

2

⌧

6

⌧

⌧

4

⌧

8

i?1

i?1

i?1

o!#

o!1

o!1

i?#

i?#

i?#

i?#

⌧

⌧

We can now associate with every RTM a transition system.

How robust is this notion?

We call a transition system is executable if it is the transition system
associated with some RTM

Expressiveness

A transition system is effective if its transition relation and termination
predicate are recursively enumerable (as sets).

A finitely branching transition system is computable if there exists a
recursive function associating with every state its set of outgoing
transitions (and also the characteristic function of the termination
predicate is recursive).

A transition system is boundedly branching if there exists a bound on
the branching degrees of its states.
 Theorem

1.  The transition system associated with an RTM is computable and
boundedly branching.

2.  Every boundedly branching computable transition system is
divergence-preserving branching bisimilar to that of an RTM.

The role of divergence

Phillips’ result essentially depends on the use of a divergence to
enumerate the outgoing transitions of state.

This motivates to adopt the refined view of divergence-preserving
branching bisimilarity whenever possible.

Theorem [Phillips 1993]

Every effective transition system is branching bisimilar to a computable
transition system whose states have a branching degree less or equal 2.

Corollary

Every effective transition system is branching bisimilar to a the transition
system associated with an RTM.

Not executable 14/21
A behaviour that is not executable

a

a

a

a a a a a

c

b

a

0 1 i

total function
Only if 'i is a

a

a a
a

a

a

Note that the language associated with this transition system, i.e.,
{anb, anc | n � 1}, is context-free.

The transition system is, however, not behaviourally equivalent to the
transition system of any RTM, so the behaviour it represents is not
executable.

[Inspired by an example of Darondeau (1989)]

Note that the language (i.e., {anb, anc | n ≥ 1} associated with the
transition system above is context-free.

The behaviour is, however, not executable up to branching bisimilarity.

Parallel composition of RTMs

Since we have a transition system semantics for RTMs, we can define
a notion parallel composition on RTMs (in any way we like!).

Here’s just one proposal:
Let C be a set of channels and D be a set of data, and let
 A = {c!d, c?d | c∈C, d∈D}.

Let C’ ⊆ C, and let M1 and M2 be RTMs.

We denote by [M1 | M2]C’ the parallel composition of M1 and M2,
communicating along channels in C’.

The transition system associated with [M1 | M2]C’ is the parallel
composition of the transitions associated with M1 and M2.

Example: parallel composition

τ[#/#]L
τ[1/1]R

τ[☐/☐]R
i?#[☐/#]L

τ[1/1]R

τ[#/#]L

o!#[☐/☐]L

τ[☐/☐]R

τ[1/1]R

i?#[☐/1]L

o!1[1/☐]L τ[1/☐]L

i!#[☐/1]R

τ[☐/1]R

τ[☐/☐]L

τ[☐/☐]R

τ[1/1]L i!1[1/1]R

The transition system associated with the parallel composition of

and

is

17/21
Example: parallel composition

The transition system associated with the parallel composition of

o!#[�/�]R

⌧ [1/1]R

⌧ [1/1]R

i?1[�/1]R

⌧ [1/�]Lo!1[1/�]L

⌧ [1/1]L

⌧ [#/�]L ⌧ [#/�]L

⌧ [�/�]R

⌧ [�/�]R

i?#[�/#]L and

⌧ [�/�]L

⌧ [1/1]L

i!#[�/1]R

i!1[1/1]R
⌧ [�/�]R

⌧ [�/1]R

is

o!1o!# o!#o!1

Universality

Denote by M the RTM that outputs a description (i.e., encoding) of M
along some channel u.

Definition

An RTM U is universal if, for every RTM M, the transition system
associated with M is behaviourally equivalent to [U | M]{u}.

Taking branching bisimilarity as behavioural equivalence, there exist
universal RTMs.

Taking divergence-preserving branching bisimilarity as behavioural
equivalence, there do not exist universal RTMs!

Universality up to a branching degree

Denote by M the RTM that outputs a description (i.e., encoding) of M
along some channel u.

Definition

Let B be a natural number. Then U is universal up to B if, for every RTM
M whose associated transition system TM has a branching degree
bounded by B, TM is behaviourally equivalent to [U | M]{u}.

Theorem

For every B there exists an RTM that is universal up to B.

Simulating RTMs in a process calculus
The behaviour of an arbitrary RTM can be simulated (up to
divergence-preserving branching bisimilarity) by a finite guarded
recursive specification over a process calculus with
p  inaction (0)
p  successful termination (1)
p  action prefix (a.p)
p  choice (p+q)
p  parallel composition with (enforced) communication ([p|q]C’)

We now also have a proposal for simulating RTMs (without
termination!) in π-calculus.
 Open problems:

Are π-processes executable? Up to which behavioural equivalence?

How to deal with unbounded branching stemming from input prefix?

Regular expression/
Closed BPA*

0,1-term
Linear grammar/
Recursive spec.
over BCCSP0,1

TRANSITION
SYSTEM

Integrated Automata and Process Theory

DFA/NFA

PDA

a a

b

b

a[?/1?] a[1/ε]

b[?/?]

RTM

Context-free
grammar
Recursive spec.
over BPA0,1

Recursive specs
over BCPτ

pi-calculus?

S

O

S

Some concluding remarks

We have extended Turing machines with interaction, style concurrency
theory.

RTMs may serve as an absolute expressiveness criterion for process
calculi.

Other interactive variants of the Turing machine have been proposed
in the literature (most notably: persistent Turing machines [GSAS04]
and interactive Turing machines [vLW01]). These proposals add
interaction in a less general form and can be simulated by our notion.

We are aiming for an Executability Thesis:

A process is executable (i.e., describes the behaviour of a
computing system) if, and only if, it can be simulated by an RTM.

