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Motivation

I like metamodels, like ULTraS.

A good metamodel is useful insomuch as it provides

unifying mathematical (categorical) theory of many models

general results, logics and tools, which can be readily instantiated

cross-fertilizing connections between models

scenario for comparing models (cf. Gorla’s talk about translations)

deeper insights

Problem (The Open Problem)

Can we define a good metamodel for concurrent systems with quantitative
aspects?
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Approaching the Open Problem

In the previous talk: ULTraS

covers many kinds of quantitative models (non-determistic
probabilistic, stochastic, timed . . . ).

provides a general definition of M-bisimilarity

we got already general results about strong quantitative bisimulation
[M. & Peressotti, QAPL’14]

general definition with coalgebraic characterization (coalgebraic
bisimulation / kernel bisimulations)
GSOS rule format guaranteeing compositionality
general decidability algorithm

Sounds encouraging. . .

Can we get similar results about observational equivalences for
quantitative systems? (weak, trace, branching, delay. . . )
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Focusing the Open Problem: weak bisimulation

Other observational equivalences for quantitative systems (weak, trace,
branching, delay. . . ) are not as well understood as strong bisimulation.

unobservable actions may have observable effects (e.g., execution
times, probabilities, energy consumption)

not a single definition, but many “ad hoc”

sometimes, no agreement on what is the “right” definition

no clear categorical characterization

. . . the perfect situation where a metamodel can be useful.

Focusing the Open Problem

How to give a general, good definition of weak bisimulation, for a wide
range of labelled transition systems with quantitative aspects?
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In this talk: weak weighted bisimulation

We give a general definition of weak bisimulation valid for a wide range of
labelled transition systems, namely LTS weighted over semirings.

1 general: it encompasses many known systems

2 decidable: a uniform algorithm applicable to various semirings

3 with a categorical coalgebraic construction.

Applications:

obtaining weak bisimulations and decision algorithms for new kinds of
systems

generalize further to other classes of systems (beyond weighted LTS)
and to other behavioural equivalences (beyond weak bisimilarity)
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Weighted Transition Systems and Weak Bisimulations



Weighted Labelled Transition Systems

Let W = (W ,+, 0) be a commutative monoid.

Definition ([Klin, 2009])

A (W-weighted) labelled transition system is a triple (X ,A, ρ) where:

X is a set of states (processes);

A is a set of labels (actions);

ρ : X × A× X →W is a weight function.

Transitions can be thought to be labelled with actions and weights drawn
from W, with the unit 0 disabling transitions.

b, p

τ , q

τ , r

a, s

c, t
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Different W yield different systems and bisimulation:
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stochastic LTS: (R+
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Weighted (strong) bisimulation

Definition ([Klin, 2009])

A (strong) W-bisimulation on (X ,A, ρ) is an equivalence relation
R ⊆ X × X such that (x , x ′) ∈ R iff for each label a ∈ A and each
equivalence class C of R:∑

y∈C
ρ(x

a−→ y) =
∑
y∈C

ρ(x ′
a−→ y).

Using different W we can recover different systems and bisimulation:

({tt, ff},∨, ff): strong non-deterministic bisimulation (Milner);

(R+
0 ,+, 0): strong stochastic bisimulation (Hillstone, Panangaden);

(R+
0 ,+, 0): strong probabilistic bisimulation (Larsen-Skou);

etc.
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Weak bisimulation: the non-deterministic case via “double
arrow” construction

Definition ([Milner, ages ago])

R ⊆ X × X is a weak (non-deterministic) bisimulation on
(X ,A + {τ},−→) iff for each (x , x ′) ∈ R, label α ∈ A + {τ} and
equivalence class C ∈ X/R:

∃y ∈ C .x
α

==⇒ y ⇐⇒ ∃y ′ ∈ C .x ′
α

==⇒ y ′

where =⇒ ⊆ X × (A ] {τ})× X is the τ -reflexive and τ -transitive closure
of −→.

b
τ

τ a
c

b

a

c

a
c

τ
ττ τ

τ

τ

≈ for (X ,A + {τ},−→) is ∼ for (X ,A + {τ},=⇒).
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Generalizing the non-deterministic case?

What if we apply the same approach to a fully-probabilistic system
(
∑
ρ ∈ 0, 1)?

b, 1

τ, q

τ, r a, s

c , t

b, 1

a, s·r
1−q

c , t·r
1−q

a, s

c , t

τ, r

τ, 1τ, 1 τ, 1
τ, 1

τ, 1

This is not probabilistic.
This is not a weak probabilistic bisimulation in the sense of
Baier-Hermanns.
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Weak bisimulation: the fully-probabilistic case

Definition ([Baier-Hermanns, 97])

R ⊆ X × X is a weak (probabilistic) bisimulation on (X ,A + {τ},P) iff for
(x , x ′) ∈ R, a ∈ A and equivalence class C ∈ X/R:

Prob(x , τ∗aτ∗,C ) = Prob(x ′, τ∗aτ∗,C )

Prob(x , τ∗,C ) = Prob(x ′, τ∗,C ).

where Prob is the extension over finite execution paths of the unique
probability measure induced by P.

Intuitively. . .

Prob(x ,T ,C ) is the probability of reaching C from x generating some
trace in T .

States of C cannot be considered separately because σ-additivity does not
hold (i.e. Prob(x ,T ,C1 ∪ C2) 6= Prob(x ,T ,C1) + Prob(x ,T ,C2))
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τ -closure vs. reachability: probabilistic

x

x1 x2

x3

x4 x5

x6C

p1

p2

p3

p7p4
p5

p6

p1

p2

p4p4
p5

p1

p2

p3

p7

p1

p2

p3

p7p4
p5

p1

p2

p4

Assuming pi is the probability of an action, what is the probability to
reach class C from x?

1 >

1 =1 <

(p1 · p2)

+ (p4) + (p4 · p5) + (p1 · p2 · p3 · p7)

(we ignored labels, but can be easily taken into account).
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τ -closure vs. reachability: non-deterministic

x

x1 x2

x3

x4 x5

x6C

Assuming the non-deterministic case (pi = tt), can we reach C from x?

tt = (tt ∧ tt) ∨ (tt) ∨ (tt ∧ tt) ∨ (tt ∧ tt ∧ tt ∧ tt)

Here τ -closure and reachability coincide. . .

But this is very specific case (and there is a very specific reason.)
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τ -closure vs. reachability: stochastic

x

x1 x2

x3

x4 x5

x6C

t1
t2

t4

Assuming ti describes the time consumed by an action, how much time
takes to go from x to C ?

t = min(t1 + t2, t4)
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Weighting execution paths

Previous examples used two operations on weights:

(W ,+, 0) for branching (a commutative monoid)

(W , ·, 1) for chaining (a monoid)

Subject to some coherence conditions:

0 expresses termination (annihilates chaining)

0 · a = 0 = a · 0

independence of execution paths

a

b c

a

b

a

c c

a b
a

c

b

c

≡ ≡

a · (b + c) = (a · b) + (a · c) (a + b) · c = (a · c) + (b · c)
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Semirings of weights

Henceforth, let W = (W ,+, 0, ·, 1) be a semiring (cf. W-automata).

Definition (Path weight)

Given a weight function ρ, its extension to finite paths is:

ρ(x0
a1−−→ x1 . . .

an−−→ xn) , ρ(x0
a1−−→ x1) · . . . · ρ(xn−1

an−−→ xn)

Weighting finite paths is enough for our aims since two (countably) infinite
paths are observationally distinguished iff there is a finite path telling them
apart i.e. by finite observation.

(Countably infinite paths require countable multiplication, or equivalently
a sufficiently expressive notion of limits).
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Categorically: WLTS are coalgebras

Define the Set monad of finitely supported W-valued functions s.t.:
For every set X :

FW(X ) , {ψ : X →W | ψ is countably supported}

For every function f : X → Y :

FW(f )(ϕ) , λy :Y .
∑

x∈f −1(y)

ϕ(x)

η(x)(y) ,

{
1 if x = y

0 otherwise
µ(ψ)(x) ,

∑
ϕ

ψ(ϕ) · ϕ(x)

I WLTS are FW(A× -)-Coalgebras.

I Strong weighted bisimulation is FW(A× -)-bisimulation.

I (ULTraS are Pf (FW(A× -))-Coalgebras.)
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Categorically: the general setting

More generally we can consider TFτ -coalgebras where:

T is a monad yielding a CPPO-enriched Kleisli category

F distributes over T

Fτ , Id + F be the extension of F with silent action.

For WLTS, it is:

T = FW : Set → Set

F = A× : Set → Set

FτX = X + A× X = ({τ}+ A)× X

(but the constructions apply to many other situations)

Proposition ([M.&Peressotti 2013])

Given a coalgebra α : X → TFτX and an epic f : X → C (i.e. a partition
of X ), we can construct a saturated TFτ coalgebra α : X → TFτX
representing the reachability of classes in C up-to τ -transitions.

Marino Miculan (Udine) Concerning Bisimulations for Quantitative Systems 17 / 27



Categorically: the general setting

More generally we can consider TFτ -coalgebras where:

T is a monad yielding a CPPO-enriched Kleisli category

F distributes over T

Fτ , Id + F be the extension of F with silent action.

For WLTS, it is:

T = FW : Set → Set

F = A× : Set → Set

FτX = X + A× X = ({τ}+ A)× X

(but the constructions apply to many other situations)

Proposition ([M.&Peressotti 2013])

Given a coalgebra α : X → TFτX and an epic f : X → C (i.e. a partition
of X ), we can construct a saturated TFτ coalgebra α : X → TFτX
representing the reachability of classes in C up-to τ -transitions.

Marino Miculan (Udine) Concerning Bisimulations for Quantitative Systems 17 / 27



Weak bisimulation, categorically

Definition: A weak bisimulation between two TFτ -coalgebras (X , α)

and (Y , β), is a span of jointly monic arrows X
p←− R

q−→ Y such that there

exists an epic cospan X
f−→ C

g←− Y such that (R, p, q) is the final span to
make the following diagram commute:

X YC

TFτX TFτYTFτC

X Y

TFτX TFτY

R

f g

αw βwγ

TFτ f TFτg

α β

p q

where αw , βw are the saturated TFτ -coalgebras of α, β wrt f , g .
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Back to the concrete case: Weighting sets of paths

By instantiating the above construction in the WLTS case, saturation
becomes weighting of (particular) sets of paths.

Definition (Finite paths to C )

For a state x , a set of traces T and a set of states C , the set of finite
paths reaching C from x with trace in T is

Hx ,T ,CI ,

{
π ∈ FPaths(x)

∣∣∣∣∣ last(π) ∈ C , trace(π) ∈ T ,
∀π′ � π : trace(π′) ∈ T ⇒ last(π′) /∈ C

}
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Weak W-bisimulation

Definition (Weak W-bisimulation)

R ⊆ X × X is a weak W-bisimulation for (X ,A + {τ}, ρ) iff for all
(x , x ′) ∈ R, a ∈ A and equivalence class C ∈ X/R, the following hold:

ρ(Hx , τ∗,CI) = ρ(Hx ′, τ∗,CI)

ρ(Hx , τ∗aτ∗,CI) = ρ(Hx ′, τ∗aτ∗,CI).

Remark
I Weak W-bisimulation is just categorical weak bisimulation, concretely

presented in the case of WLTS.

I Other bisimulations can be obtained by changing the set of paths
(e.g., for delay bisimulation: Hx , τ∗,CI and ρ(Hx , τ∗a,CI))
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Examples of weak W-bisimulation

Non-deterministic systems and Milner’s weak bisimulation: Boolean
semiring : ({tt, ff},∨, ff,∧, tt)

Fully-probabilistic systems and Baier-Hermanns’s weak bisimulation:

Positive real semiring : (R+

0 ,+, 0, ·, 1)
Probabilistic σ-semiring : ([0, 1],+, 0, ·, 1)

Stochastic systems (and a new weak bisimulation): transition-time
random variables semiring : S , (T,min, T+∞,+, T0)

Troubleshooting: Likelihood semiring : ([0, 1],max, 0, ·, 1)

Optimization problems (especially scheduling):

Tropical semiring : (R+

0 ,min,+∞,+, 0)
Arctic semiring : (R,max,−∞,+, 0)

Bottleneck semiring : (R+

0 ,min,+∞,max, 0)

Formal languages: Free language semiring : (℘(Σ∗),∪, ∅, ◦, ε)

And many more. . .
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Deciding Weak Weighted Bisimulation



Computing weak W-bisimulation

We generalize Kanellakis-Smolka’s algorithm for strong bisimulation of
finite LTSs [Kanellakis-Smolka 1989].
Let (X ,A + {τ}, ρ) be a finite W-LTS and let P be a partition of X .
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We generalize Kanellakis-Smolka’s algorithm for strong bisimulation of
finite LTSs [Kanellakis-Smolka 1989].
Let (X ,A + {τ}, ρ) be a finite W-LTS and let P be a partition of X .
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Computing weak W-bisimulation

We generalize Kanellakis-Smolka’s algorithm for strong bisimulation of
finite LTSs [Kanellakis-Smolka 1989].
Let (X ,A + {τ}, ρ) be a finite W-LTS and let P be a partition of X .

P1 ,
⋃{

B/≈
b,X
| B ∈ P0

}
x ≈

b,X
y

4⇐⇒ ρ(x , τ∗bτ∗,X ) = ρ(y , τ∗bτ∗,X )
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Let (X ,A + {τ}, ρ) be a finite W-LTS and let P be a partition of X .

ρ(Hx0, τ
∗,CI) 6= ρ(Hx5, τ
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Computing weak W-bisimulation

We generalize Kanellakis-Smolka’s algorithm for strong bisimulation of
finite LTSs [Kanellakis-Smolka 1989].
Let (X ,A + {τ}, ρ) be a finite W-LTS and let P be a partition of X .

P2 ,
⋃{

B/≈
τ,C
| B ∈ P2

}
x ≈
τ,C

y
4⇐⇒ ρ(x , τ∗,C ) = ρ(y , τ∗,C )
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Computing the weight of redundancy-free sets

Question

Given x , a,C , how do we compute ρ(Hx , τ∗,CI) and ρ(Hx , τ∗aτ∗,CI)?

By solving a system of linear equations over W.
For each state x , let xτ , xa be two variable over W.
Equations:

xτ =

{
1 if x ∈ C∑

y∈X ρ(x , τ, y) · yτ otherwise

xa =
∑
y∈X

ρ(x , a, y) · yτ +
∑
y∈X

ρ(x , τ, y) · ya

Intuition: xτ = ρ(Hx , τ∗,CI) xa = ρ(Hx , τ∗aτ∗,CI)
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Solvability of the equation systems

The definitions of xa’s form a linear equation system x = A · x + b, which
defines an operator over W n (A is n × n).

F (y) = A · y + b

The system has the same number of equations and unknowns, hence if
there is a solution, it is unique (F has at most one fix-point).

Proposition

If W is ω-continuous and admits a natural order (i.e. positively ordered),
then F admits exactly one solution, which is its least fix point

c = F ∗(0n)
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Complexity

The complexity is almost the same of Kanellakis-Smolka’s original
algorithm, but:

No constant-time random-access data structures;

No pre-computed transitions (and their weight).

Proposition (Time complexity)

The asymptotic upper bound for time complexity of the proposed
algorithm is in

O(nm(LW(n) + n2))

where n = |X | and m = |A + {τ}| and LW(n) is the time complexity of
solving a system of n linear equations with n variables over the W.

In presence of constant-time random-access data structures time
complexity is in O(nm(LW(n) + n)).
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Conclusions: back to the Open Problem

Done:

framework for defining strong and weak bisimilarities (and beyond);

coalgebraic characterization;

general algorithm, parametric in the semiring.

Weak
format example Strong Trace τ -clos. reach.

WLTS CTMC, Fully prob. X2 X3 X4 X5

ULTraS MDP, Segala’s X6 ?7 ?8 ?

Monoids Semirings

2[Klin, 2009]
3For ω-continuous semirings [Hasuo, 2007]
4For ω-continuous semirings [Brengos, 2014]
5[M. & Peressotti, 2013] (For fully probabilistic systems [Baier-Hermans 1997])
6[M. & Peressotti, 2014]
7For Segala systems [Varacca, Jacobs]
8For Segala systems [Segala 1994]
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Thanks for your attention.

Many semirings to rule them all.
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Appendix



The algorithm

1: X ← {X}
2: X ′ ← ∅
3: repeat
4: changed ← false
5: X ′′ ← X
6: for all C ∈ X \ X ′ do
7: for all α ∈ A + {τ} do
8: if 〈α,C 〉 is a split then

9: X ←
⋃
{B/≈

α,C
| B ∈ X}

10: changed ← true
11: end if
12: end for
13: end for
14: X ′ ← X ′′
15: until not changed
16: return X
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The algorithm II

Assumption: the carrier of the semiring has a total order.

1: X ← {X}
2: X ′ ← ∅
3: repeat
4: changed ← false
5: for all C ∈ X \ X ′ do
6: for all α ∈ A + {τ} do
7: compute and sort ρ(x , α̂,C ) by block and weight
8: end for
9: if there is any split then

10: X ′ ← X
11: X ← refine(X ,C )
12: changed ← true
13: end if
14: end for
15: until not changed
16: return XMarino Miculan (Udine) Concerning Bisimulations for Quantitative Systems 2 / 12



Positively ordered semirings

A semiring W = (W ,+, 0, ·, 1) endowed with a partial order (W ,≤) is
positivelly ordered iff

0 is least element;

+ and · respect ≤ i.e. for each a, b and c if a ≤ b then

a + c ≤ b + c a · c ≤ b · c c · a ≤ c · b

Every PO semiring admits a “weakest” order E:

a E b
4⇐⇒ ∃c : a + c = b.

This order is called natural and is the weakest in the sense that:

a E b =⇒ a ≤ b

for any ≤ rendering W positively ordered.
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PO semirings and Kleene fix point

Lemma

If W admits countable sums then (W ,≤, 0) is ω-CPO.

Lemma

F is Scott-continuous w.r.t. the pointwise extension of E to n-vectors.

Proposition

F has a least fix point and hence x = A · x + b has a unique solution.
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Delay bisimulation

Definition

R ⊆ X × X is a delay W-bisimulation on R on X such that for all
(x , x ′) ∈ R, a ∈ A and C ∈ X/R:

ρ(x , τ∗a,C ) = ρ(x ′, τ∗a,C )

ρ(x , τ∗,C ) = ρ(x ′, τ∗,C ).

The algorithm proposed can be used to compute delay bisimulations: just
use the linear system:

xτ = 1 for x ∈ C

xτ =
∑
y∈X

ρ(x , τ, y) · yτ for x /∈ C

xa =
∑
y∈X

ρ(x , τ, y) · ya +
∑
y∈X

ρ(x , a, y)

whose solutions are precisely ρ(x , τ∗a,C ).
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A semiring for weak stochastic bisimulation

Stochastic bisimulation is R+
0 -bisimulation [Klin-Sassone, FoSSaCS 2008].

R+
0 is used since exponentially distributed stochastic transitions can be

expressed by rates (λ) and branching by arithmetic addition (+).

Unfortunately. . .

there is no multiplication for R+
0 capturing chaining of stochastic

transitions

A sequence of exponentially distributed stochastic transition is
hyperexponential, not exponential. (Often this is approximated by an
exponential distribution with the same average [Bernardo et al.]).

Marino Miculan (Udine) Concerning Bisimulations for Quantitative Systems 6 / 12



A semiring for weak stochastic bisimulation

Stochastic bisimulation is R+
0 -bisimulation [Klin-Sassone, FoSSaCS 2008].

R+
0 is used since exponentially distributed stochastic transitions can be

expressed by rates (λ) and branching by arithmetic addition (+).

Unfortunately. . .

there is no multiplication for R+
0 capturing chaining of stochastic

transitions

A sequence of exponentially distributed stochastic transition is
hyperexponential, not exponential. (Often this is approximated by an
exponential distribution with the same average [Bernardo et al.]).

Marino Miculan (Udine) Concerning Bisimulations for Quantitative Systems 6 / 12



A semiring for weak stochastic bisimulation

The stochastic semiring:

S , (T,min, T+∞,+, T0)

Carrier: S
The set of transition-time random variables i.e. random variables on R+

0 .

Branching: (S,min, T+∞)
Random variables minimum express stochastic race (which is idempotent).
The unit is the constantly +∞ random variable (which is
self-independent).

Chaining: (S,+, T0)
Random variables sum express concatenation (which is commutative)
The unit is the constantly 0 random variable (which is self-independent).

Yet another tropical semiring!
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A semiring for weak stochastic bisimulation

Idempotency of branching:

P(min(X ,X ) > t) = P(X > t ∩ X > t)

= P(X > t) · P(X > t | X > t)

= P(X > t).

By definition and idempotency of min and by definition and commutativity
of +:

Termination: T+∞ + X = T+∞

Distributivity: X + min(Y ,Z ) = min(X + Y ,X + Z )
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A semiring for weak stochastic bisimulation

Let X ,Y ∈ T be continuous.

Branching: min(X ,Y )

fmin(X ,Y )(z) = fX (z) + fY (z)− fX ,Y (z , z).

Assuming independence (not necessarily iid):

fmin(X ,Y )(z) = fX (z) ·
∫ +∞

z
fY (y)dy + fY (z) ·

∫ +∞

z
fX (x)dx .

Chaining: X + Y

fX+Y (t) =

∫ t

0
fX ,Y (s, t − s)ds

Assuming independence (not necessarily iid):

fX+Y (t) =

∫ t

0
fX (s) · fY (t − s)ds.
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Weak stochastic bisimulation

Definition (Weak stochastic bisimulation)

Given a stochastic labelled transition system (X ,A + {τ}, θ), an
equivalence relation R ⊆ X × X is a weak stochastic bisimulation for it iff
for each pair of states (x , x ′) ∈ R, label a ∈ A and equivalence class
C ∈ X/R:

θ(Hx , τ∗aτ∗,CI) = θ(Hx ′, τ∗aτ∗,CI)

θ(Hx , τ∗,CI) = θ(Hx ′, τ∗,CI).

This is the same definition of non-deterministic and probabilistic systems,
instantiated on a different semiring.
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Coalgebraic saturation

In general we consider TFτ -coalgebras where:

T is a monad yielding a CPPO-enriched Kl (like FW and semirings
admitting a natural order)

F distributes over T (like A× ).

Traces for a TF -coalgebra α can be obtained by means of the final map
trα to the final F -coalgebra in Kl(T ) [Hasuo, 2010].

Let Fτ , Id + F be the extension of F with silent action.
Delay-like τ∗a transitions described by a TFτ -coalgebra α are single
transitions of the iterate of α [Jacobs 2010; Silva, Westerbaan 2013]

α# , ∇FX ◦ trα

(Intuitively, consider α as a Id + F -coalgebra and drop the info about how
many τ the trace has.)
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Coalgebraic saturation

α# covers paths τ∗a (which form a minimal set “by definition”).
What is missing is the (minimal) trailing τ∗ part.

Every set of paths with trace b∗a is minimal, because of its trace.

Idea

Make classes the observables, then use ( )# stopping as soon as the class
is reached.

Then, Hx , τ∗,CI can be obtained as considering only τ -transitions where
the only observable is C , the class to be reached.
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