
obility in the world alphabetised parallel 01

Mobility in the world

alphabetised parallel

Bill Roscoe

obility in the world alphabetised parallel 02

Attempting to be true to the spirit of “Open Problems in Concurrency”!

obility in the world alphabetised parallel 03

Introduction

• This talk presents questions, some solutions and some challenges,

building on and sometimes changing the presentation in Section

20.3 of “Understanding Concurrent Systems (UCS)”.

• Everyone here knows something about CCS, CSP and the

π-calculus.

• π-calculus is clearly built on top of CCS. Of course one can explain

this in terms of who did what, but it’s interesting to ask what

happens when we try to do the same to CSP.

• We will find that the most important difference is in the choices of

parallel operator in CCS and CSP.

obility in the world alphabetised parallel 04

Background: CCS and CSP

Milner and Hoare developed their process calculi more-or-less

simultaneously in the late 1970’s. They have a lot of similarities, but we

are going to concentrate on the differences!

• Different presentation of choice: {+, τ} versus {!,!}.

• This had a significant effect on the choice of mathematical theory,

leading to operational versus behavioural models.

• CSP has various operators that allow one process to hand control

on to a following one: sequential composition, interrupt, throw.

• Factorisation of natural point-to-point parallel with hiding:

obility in the world alphabetised parallel 05

Point-to-point parallel with hiding

• CCS: Dual communication model α,α, parallel | means option of α,

α synchronising as τ or happening independently. This

independence can be removed using restriction \ α.

• CSP: No duals: events synchronise with themselves. Parallel A‖B

synchronises events in A ∩ B without turning them into τs.

Therefore multi-way parallel is naturally allowed, but we need an

extra operator to turn events into τs. \ A turns events in A into τs.

• Thus (P | Q) \ α,α and (P {a,b}‖{a,c} Q) \ {a} look very similar

and mean more or less the same overall, but conceal very different

factorisations of this meaning.

obility in the world alphabetised parallel 06

CCS versus CSP

One cannot express either process algebra in the other without a fudge

factor:

• Synchronisation without hiding, and hence multi-way

synchronisation, cannot be achieved in CCS.

• The way that τ resolves + cannot be modelled in CSP, though...

• For each CCS term P there is a CSP translation P ′ such that

P ′ \ {Tau} (Tau a special visible event) is strongly bisimilar.

obility in the world alphabetised parallel 07

CCS parallel in CSP

P | Q = (P [[IP]] ‖
Σ1

Q [[IDP]]) \ Σ1

where Σ0 = {n, n | n ∈ L} Σ1 = {x ′ | x ∈ Σ0}

Double renamings:

IP : x %→ x , x ′ IDP : x %→ x , x ′

The combination of one-to-many renaming and parallel restriction is a

powerful tool for expressing “exotic” ideas in CSP.

obility in the world alphabetised parallel 08

From CCS to π-calculus

• Turn events into two parts: the channel being used and the

(channel) name begin communicated.

• Sometimes restriction placed on recursion, namely using only

replication. Does not fit well into the land of CSP!

• Sometimes restriction placed on the use of + to a sub-set of

explicitly guarded terms. Fits very well into the land of CSP!

• When a channel name is communicated, there’s no need to change

any alphabets because there aren’t any.

• The interesting bits are the calculus of names and scope extrusion,

and how these affect theories such as bisimulation.

obility in the world alphabetised parallel 09

π-calculus in CSP

• I showed in an earlier papera how the π-calculus (with recursion and

guarded +) can be translated into CSP, with options for handling

fresh names including nondeterministic choice (over available

names) and ensuring uniform order of fresh names down a trace.

• To avoid some conundrums with naming it is better to study this

with CSP models that include channel names only in

failure/acceptance sets.

• The translation gives a compositional semantics for π-calculus over

any such CSP model.

• The fact that CSP models consider linear rather than branching

behaviour means that many of the complications of π-calculus

semantics disappear, though this needs more research!

aCSP is expressive enough for π

obility in the world alphabetised parallel 10

Mobility into CSP?

• Is it necessary?

– Not to show how to create a calculus of mobile concurrency,

because we already have one.

– Not to add to the expressive power of CSP, because we can

already express π-calculus in it.

– But there have been demands from people using CSP who want

to include mobile ideas. (See occam-pi, for example.)

– If we can use FDR on the result, at least some of the time.

• And of course it is interesting to see how the ideas of mobility

combine with different process algebras.

• Note the lack of a sense of urgency!

obility in the world alphabetised parallel 11

Research programme

• Build appropriate ideas of mobility into CSP in ways that add to the

language as far as possible.

• Don’t seek pared-down elegance at the expense of usefulness.

• Remain true to the CSP model and style of semantics.

• Make everything mappable to FDR if possible: either by translation

to ordinary CSP or by straightforward adaptation of the tool.

obility in the world alphabetised parallel 12

Effects of FDR on the development of CSP

• FDR 1991, FDR2 1996, FDR3 2013

• Emphasised its use as a strongly-typed Haskell-like functional

language with process algebra operators, because we need the

power to describe the complex systems FDR can analyse.

• Focussed attention on static networks with parallel/hiding

compositions at the outermost layers – the class that FDR

optimises – to the extent that complex components are typically

factored as parallel compositions for efficiency within FDR.

• In many ways the opposite of π-calculus.

obility in the world alphabetised parallel 13

Types

• CSP has evolved to be a strongly typed declarative language akin to

Haskell.

• This is greatly reinforced by FDR3, which integrates a type checker.

• Therefore we include type for communicable channels port of T for

any communicable type T . (Different from UCS, where there was

just undifferentiated port.)

So port of port of Int is an example.

New channels are thus declared with types, whether these include

ports or not.

• This means that no channel can be communicated down itself.

obility in the world alphabetised parallel 14

Alphabets

• Hoare’s treatment of CSP gave every process its own alphabet, like

a type, though alphabets were only really used for parallel: P ‖ Q
means that P has to agree on all in αP , and Q all in αQ . Elegant

but much more programming overhead.

• My books have assumed that all processes are composable with

each other, but introduce explicit alphabets in parallel: P X ‖Y Q
treats X and Y as αP and αQ , P ‖

X
Q makes X the interface,

allowing P and Q to communicate freely outside.

• In any mobile CSP, alphabets are going to have to change

dynamically:

– Which of the above approaches can handle this?

– Does interface parallel make sense?

– How about the factorisation of point-to-point parallel?

obility in the world alphabetised parallel 15

Pass the port

• In π-calculus the only thing a process needs to use a channel is

knowledge of its name. The parallel operator handles this naturally

and without alteration.

• In CSP, we are going to have to change a process’s alphabet to

enable it to use any channel that was not initially in its alphabet.

• Desirable to have linguistic flexibility to handle

– Inputting a port and adding it to our alphabet: c?p+

– Outputting a port and subtracting it from our alphabet: c!p−
– Doing these things without changing our alphabet: c?p, c!p.

– Doing multiple things in a single action: c?x !p−?q+.

– To use such communicated channels for multi-way

synchronisation, hiding etc.

obility in the world alphabetised parallel 16

Double think

• If an entity outside the process needs to know its changing alphabet,

the difference between c.p, c.p+ and c.p− needs to be visible to it.

• But clearly c.p+ in one process needs to be able to synchronise

with c.p− in another.

• Probably the correct solution to this is to have the processes

perform events that are explicitly decorated, but normalise these

before synchronisation.

obility in the world alphabetised parallel 17

Eliminating alphabets algebraically

It was observed many years ago that various identities such as the

following hold:

P X ‖Y Q = (P ‖
X

RUNY) ‖
Σ

(Q ‖
Y

RUNX)

Completely synchronising two processes which allow any action outside

the natural alphabets.

P X ‖Y Q = ((P ‖
X

RUNΣ) ‖
Σ

(Q ‖
Y

RUNΣ)) Σ‖Σ−(X∪Y) STOP

Similar, but restricting to X ∪ Y via an extra parallel composition.

We can let a process communicate in events outside its natural alphabet

provided it always accepts them....

This inspires implementations of mobile parallel in which these RUN
processes are elaborated so that they always contribute just the right

extra communications.

obility in the world alphabetised parallel 18

Modelling channel mobility in multi-way fixed-alphabet parallel

It is possible to achieve this sort of effect within standard CSP where

there are no dynamic alphabets: to model the dynamic-alphabet network

‖̂
n

i=1(Pi ,Ai), take the composition

Reg ‖
AReg

(‖n
i=1 (P̂i , Âi))[[R̂]]

• Âi = Ai ∪ M , where M are all ports.

• P̂i = (Pi ‖ Qi)[[Ri]]

• Qi keeps track of Pi ’s dynamic alphabet, and permits all mobile

actions outside it.

• The renaming Ri drops decorations to allow synchronisation

obility in the world alphabetised parallel 19

Rest of the plumbing

• R̂ puts the +, − decorations back on for Reg to choose between.

• Reg also prevents the whole composition performing actions that

are in no Pi ’s alphabet.

Most of this translation was described in detail Chapter 20 of UCS,

though that was restricted to closed world parallel (i.e. union of Ai

invariant), so there was no need for R̂ or Reg .

obility in the world alphabetised parallel 20

Example

• In UCS I described a telephone system in which calls are made by

passing mobile channels, through an exchange network, from one

phone to another.

• Fully implemented in CSPM , supplying a library for interpreting a

slightly limited mobile CSP. Properties checkable on FDR in

networks of a few each of phones and exchange nodes.

• I’ve used this example twice as part of the assessment for my

annual course on the advanced use of CSP/FDR: getting students

to add features to the phone system.

obility in the world alphabetised parallel 21

Sample CSPM

Ringing(x,c) =

ringing.x -> Ringing(x,c)

[] lift.x -> mc.c.Pickup!ch(x).Plus ->

(mc.ch(x).Confirm!Plus -> Incall(x,c)

[] mc.ch(x).Hungup!Plus -> mc.c.Cancel.Minus -> CallOver(x))

[] busy!x?e -> Ringing(x,c)

[] mc.c.Cancel.Minus -> Phone(x)

NB: The coding used here assumes that all communications on mobile

channels have Plus/Minus decorations.

obility in the world alphabetised parallel 22

Operational theory

P τ−→ P ′

P X ‖Y Q τ−→ P ′
X ‖Y Q

Q τ−→ Q ′

P X ‖Y Q τ−→ P X ‖Y Q ′

P a−→ P ′

P X ‖Y Q
ξ1(a,X ,Y)−→ P ′

Ξ(a,X)‖Y Q
(ψ(a) ∈ X−Y)

Q a−→ Q ′

P X ‖Y Q
ξ1(a,Y ,X)−→ P X ‖Ξ(a,Y) Q

(ψ(a) ∈ Y−X)

P aP−→ P ′ ∧ Q
aQ−→ Q ′ ∧ ψ(aP) = ψ(aQ)

P X ‖Y Q
ξ2(aP ,aQ ,X ,Y)−→ P ′

Ξ(aP ,X)‖Ξ(aQ ,Y) Q
(ψ(a) ∈ X∩Y)

obility in the world alphabetised parallel 23

Handling plusses and minusses

• ψ(a) removes alphabet decorations +,−

• Ξ(a,X) adjusts X relative to the action a.

• ξ(a,X ,Y) adjusts the decorations on event a relative to its effect

on the combination of alphabets X ∪ Y when performed by only

the first argument of X ‖Y .

• ξ2(aP , aQ ,X ,Y), where ψ(aP) = ψ(aQ) adjusts the decorations

on the event ψ(aP) relative to its effects on X ∪ Y .

Definitely a CSP-like CLASS of operators, as are indexed versions.

obility in the world alphabetised parallel 24

Intrinsic alphabets

• It is tempting to move back to a process having its alphabet

intrinsically rather than specified in the parallel operator.

• Would make little difference to the description of the parallel

operator.

• Would need to maintain alphabets of all other constructs....

• What happens with cases like (c.p+ → P) \ {| c |}?

• Wild suggestion.... see below.

obility in the world alphabetised parallel 25

Other operators

• We need to be careful with all other CSP operators parametrised by

events, so as to avoid non-intuitive behaviour.

• Not clear what to do about interface parallel P ‖
X

Q , particularly

how to handle the case where P ’s and Q ’s natural alphabets

intersect outside X .

So it may be necessary to restrict this to cases where the interface

is static.

obility in the world alphabetised parallel 26

Hiding

• No obivous way to get the hidden set in P \ X to vary dynamically

which we might well want in hiding the internal communcations of

parallel compositions.

• Presents no problems with closed-world mobile parallel: just hide at

the outside.

• To solve this problem in general it may well be best to have the

option of a parallel operator which, like CCS parallel, hides

synchronised events.

obility in the world alphabetised parallel 27

Further operators

• Remaming: probably has to be restricted so that on events

involving ports it is by injective substitution of ports.

• Link parallel: P [a ↔ b]Q

• Need to be careful about the alphabet of Q in contexts like

(P ∗ Q) X ‖Y R

for ∗ ∈ {; ,,, Θa}.

obility in the world alphabetised parallel 28

Wild suggestion

In process algebra semantics we generally assume that processes only

perform the actions that the natural interpretation says they can.

But we have used the mapping P ⇒ P̂ in implementing mobility: adding

all mobile communications that P cannot block (i.e. outside its current

alphabet).

Might we use P̂ (interpreted in an LTS or CSP model such as traces) as

the basic semantics of P?

obility in the world alphabetised parallel 29

Wild suggestion

• Works smoothly for parallel (as you might expect), but otherwise

messy.

• Do we worry about not distinguishing between a process that has

an action a ∈ αP and always allows it, from one such that

a .∈ αP? I think I do!

• Renaming problematic.

• I dangle this as an interesting suggestion....

obility in the world alphabetised parallel 30

Dynamic networks and scope extrusion

Dynamic networks are natural in CSP, but traditionally have been

constructed by re-using channel names rather than inventing lots of fresh

ones:

B∞ = left?x → (B∞[right ↔ left]right !x → COPY)

However, as the CSP semantics for π-calculus shows, we are free to have

constructs such as νn : T .P , with T a type of ports.

Semantic issues might necessitate linguistic restrictions so that

channel-only failure/acceptance sets are valid.

obility in the world alphabetised parallel 31

Conclusions

• It seems to be possible to add mobility into a basic CSP language of

prefix, choice, alphabetised parallel and recursion.

• Seems natural and most useful to extend the CSPM type system.

• But we need to be a bit careful not to get counter-intuitive results

with hiding and renaming – and therefore perhaps ought to have

the option of re-combining parallel and hiding.

• And combining dynamic alphabets with other constructs may not

work well.

obility in the world alphabetised parallel 32

Verification on FDR

• Because of the nature of FDR will tend to work better on fixed-sized

networks with mobile channels – the closed world of UCS.

• The current project on lazy compilation will enable a wider scope,

still for finite-state systems.

• At present will only work by translation to standard CSP, but a later

version FDR3 will offer support for any CSP-like language.

