
Gianluigi Zavattaro

University of Bologna - Italy
FoCUS research team INRIA - France

Languages and Models for Automatic
Deployment of Cloud Applications

Based on joint work with:
Roberto Di Cosmo and Stefano Zacchiroli PPS/Paris Diderot
Tudor A. Lascu and Jacopo Mauro Univ. of Bologna

OPEN PROBLEMS IN
CONCURRENCY THEORY

Gianluigi Zavattaro

University of Bologna - Italy
FoCUS research team INRIA - France

Languages and Models for Automatic
Deployment of Cloud Applications

Based on joint work with:
Roberto Di Cosmo and Stefano Zacchiroli PPS/Paris Diderot
Tudor A. Lascu and Jacopo Mauro Univ. of Bologna

NOVEL OPPORTUNITIES OPEN PROBLEMS IN
FOR CONCURRENCY THEORY

Aeolus:
Mastering the cloud complexity

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Aeolus: Mastering Cloud Complexity

Roberto Di Cosmo
roberto@dicosmo.org

Université Paris Diderot and INRIA

December 9th, 2010
IRILL

Aeolus is a project funded by

Roberto Di Cosmo (IRILL / UPD / INRIA) Aeolus 9/12/2010 - IRILL 1 / 12

u Models, languages and tools for the
administration of cloud applications
n  Cloud computing offers the possibility to

build sophisticated software systems on
virtualized infrastructures at a fraction of
the cost necessary just few years ago…

n  …but the administration of such software
systems is a serious challenge, especially
if one wants to take advantage of all the
cloud potentialities

New models and languages:
an industrial need
u Several industrial initiatives pursue the

definition of high-level languages for
the management of applications
deployed on virtualized infrastructures

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

New models and languages:
an industrial need
u Cloud Foundry (launched by VMware)

provides a PaaS with high-level
primitives for service creation and
binding $ cf create-service

What kind?> 1
Name?> cleardb-e2006
Creating service cleardb-e2006... OK

$ cf bind-service
1: myapp
Which application?> 1
1: cleardb-e2006
Which service?> 1
Binding cleardb-e2006 to myapp... OK

New models and languages:
an industrial need

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

u Juju (an Ubuntu initiative) provides
similar primitives
n  service replication and scaling supported
n  includes GUI for application management

New models and languages:
an industrial need

New models and languages:
an industrial need
u Declarative language: three kinds of

resources
package
{ 'openssh-server':
 ensure => installed,}

file
{ '/etc/ssh/sshd_config':
 source => 'puppet:///modules/sshd/sshd_config',
 owner => 'root',
 group => 'root',
 mode => '640',
 notify => Service['sshd'],
 require => Package['openssh-server'],}

service
{ 'sshd':
 ensure => running,
 enable => true,
 hasstatus => true,
 hasrestart => true,}

New models and languages:
an industrial need
u Declarative language: three kinds of

resources
package
{ 'openssh-server':
 ensure => installed,}

file
{ '/etc/ssh/sshd_config':
 source => 'puppet:///modules/sshd/sshd_config',
 owner => 'root',
 group => 'root',
 mode => '640',
 notify => Service['sshd'],
 require => Package['openssh-server'],}

service
{ 'sshd':
 ensure => running,
 enable => true,
 hasstatus => true,
 hasrestart => true,}

New models and languages:
an industrial need
u Declarative language: three kinds of

resources
package
{ 'openssh-server':
 ensure => installed,}

service
{ 'sshd':
 ensure => running,
 enable => true,
 hasstatus => true,
 hasrestart => true,}

file
{ '/etc/ssh/sshd_config':
 source => 'puppet:///modules/sshd/sshd_config',
 owner => 'root',
 group => 'root',
 mode => '640',
 notify => Service['sshd'],
 require => Package['openssh-server'],}

New models and languages:
an industrial need
u In all these approaches a lot of human

intervention is needed for
n  Service selection
n  Deciding the service bindings
 (see next slide)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

New models and languages:
an industrial need
u In all these approaches a lot of human

intervention is needed for
n  Service selection
n  Deciding the service bindings
 (see next slide)

u  The challenge:
n  automatize as much as possible the

management of such applications

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Structure of the talk

u The Aeolus starting point
u Formalizing the “deployment” problem
u Solving the “deployment” problem

n  Ackermann-hard in the general case
n  PolyTime without conflicts

u Open issues and related work

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Structure of the talk

u The Aeolus starting point
u Formalizing the “deployment” problem
u Solving the “deployment” problem

n  Ackermann-hard in the general case
n  PolyTime without conflicts

u Open issues and related work

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Automatic management
of package-based software systems

u Developed rather sophisticated tools for
FOSS (free and open-source software)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Distributions

a “somewhat” successful idea . . .

openSUSE, Debian, Red Hat, Ubuntu, Mandriva, Fedora, Linux Mint, PCLinuxOS, Slackware, Gentoo
Linux, CentOS, FreeBSD, Arch, Sabayon, Puppy, Lubuntu, MEPIS, Ultimate, NetBSD, Tiny Core, Zenwalk,
CrunchBang, Dreamlinux, Vector, Kubuntu, Maemo, aptosid, Peppermint, PC-BSD, Chakra, Salix,
ClearOS, KNOPPIX, Xubuntu, Super OS, BackTrack, gOS, TinyMe, Zentyal, EasyPeasy, Frugalware,
Clonezilla, Pardus, Meego, OpenBSD, Quirky, PC/OS, Zorin, SystemRescue, Element, Unity, SliTaz,
Macpup, wattOS, Scientific, Mythbuntu, Slax, DragonFLY, Elive, linux-gamers, 64 Studio, mageia,
Nexenta, Parisx, NuTyX, GhostBSD, Kongoni, moonOS, LFS, Lunar, Imagineos, Untangle, Yellow Dog,
aLinux, Yoper, IPFire, BlankOn, PureOS, FreeNAS, Moblin, Linpus, TurboLinux, blackPanther, . . .

The dependency/conflict model

u Tools are based on the
dependency/conflict model

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

158 R. Di Cosmo, S. Zacchiroli, and G. Zavattaro

Package: wordpress

Version : 3.0.5+ dfsg -0+ squeeze1

Depends: httpd, mysql -client , php5 , php5 -mysql , libphp - phpmailer (>= 1.73-4), [...]

Package: mysql -server -5.5

Source: mysql -5.5

Version : 5.5.17 -4

Provides : mysql -server , virtual -mysql -server

Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4) , debconf , [...]

Pre -Depends: mysql -common (>= 5.5.17-4), adduser (>= 3.40), debconf

Package: apache2

Version : 2.4.1-2

Maintainer : Debian Apache Maintainers <debian -apache@...>

Depends: lsb -base , procps , perl , mime -support , apache2 -bin (= 2.4.1-2),

apache2 -data (= 2.4.1 -2)

C o n f l i c t s : apache2 .2- common

Provides : httpd

D e s c r i p t i o n : Apache HTTP Server

Fig. 1. Debian package metadata for WordPress, Mysql and the Apache web server (excerpt)

Use case 1 — Package installation. Before considering the services that a machine is
offering to others (locally or over the network), we need to model the software instal-
lation on the machine itself, so we will see how to model the three main components
needed by WordPress, as far as their installation is concerned.

Software is often distributed according to the package paradigm [7], popularized
by FOSS distributions, where software is shipped at the granularity of bundles called
packages. Each package contains the actual software artifact, its default configuration,
as well as a bunch of package metadata.

On a given machine, a software package may exists in different states (e.g. installed
or uninstalled) and it should go through a complex sequence of states in different phases
of unpacking and configuration to get there. In each of its states, similarly to what hap-
pens in most software component models [9], a package may have context requirements
and offer some features, that we call provides. For instance in Debian, a popular FOSS
distribution, requirements come in two flavors: Depends which must be satisfied be-
fore a package can be used, and Pre-Depends which must be satisfied before a package
can be installed. This distinction is of general interest, as we will see later, so we will
distinguish between weak requirements and strong requirements.

An excerpt of the concrete description of the packages present in Debian for Word-
Press, Apache2 and MySQL are shown in Fig. 1.

To model a software package at this level of abstraction, we may use a simple state
machine, with requirements and provides associated to each state. The ingredients of
this model are very simple: a set of states Q, an initial state q0, a transition function
T from states to states, a set R of requirements, a set P of provides, and a function
that maps states to the requirements and provides that are active at that state, and
tells whether requirements are weak or strong. We call resource type any such tuple
⟨Q,q0,T,P,D⟩, which will be formalized in Definition 1.

A system configuration built out of a collection of resources types is given by an
instance of each resource type, with its current state, and a set of connections between

Package configuration
as a SAT problem

u One boolean variable for each package
n  TRUE – installed
n  FALSE – not installed

u Conflicts/dependencies can be
formalized as boolean formulae

u Finding a correct configuration is
mapped to a satisfaction problem

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Package configuration
as a SAT problem

u One boolean variable for each package
n  TRUE – installed
n  FALSE – not installed

u Conflicts/dependencies can be
formalized as boolean formulae

u Finding a correct configuration is
mapped to a satisfaction problem

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Advanced configuration tools
exploit state-of-the-art SAT solvers

Structure of the talk

u The Aeolus starting point
u Formalizing the “deployment” problem
u Solving the “deployment” problem

n  Ackermann-hard in the general case
n  PolyTime without conflicts

u Open issues and related work

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

The Aeolus component model

u A component has provide and require ports

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Provide
ports

Require
ports

The Aeolus component model

u A component has provide and require ports
u A component has an internal state machine

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Provide
ports

Require
ports

The Aeolus component model

u A component has provide and require ports
u A component has an internal state machine
u  Ports are active or inactive according to the

current internal state

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Provide
ports

Require
ports

Packages in the Aeolus model

u The packages example

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Towards a Formal Component Model for the Cloud 159

(a) available components, not installed

(b) installed components, bound together on the httpd port

Fig. 2. A simple graphical description of the basic model of a package

requirements and provides of the different resources, that indicate which provide is ful-
filling the need of each requirement. A configuration is correct if all the requires which
are active are satisfied by active provides; this will be made precise in Definition 3.

A natural graphical notation captures all these pieces of information: Fig. 2 presents
two correct configurations of a system built using the components from Fig. 1 (only
modeling the dependency on httpd underlined in the metadata). In Fig. 2(b) the Word-
Press package is in the installed state, and activates the requirement on httpd; Apache2
is also in the installed state, so the httpd provide is active and is used to satisfy the re-
quirement, fact which is visualized by the binding connecting the two ports.

Use case 2 — Services and packages. Installing the software on a single machine is a
process that can already be automated using package managers: on Debian for instance,
you only need to have an installed Apache server to be able to install WordPress. But
bringing it in production requires to activate the associated service, which is more tricky
and less automated: the system administrator will need to edit configuration files so that
WordPress knows the network addresses of an accessible MySQL instance.

The ingredients we have seen up to now in our model are sufficient to capture the
dependencies among services, as shown in Fig. 3. There we have added to each package
an extra state corresponding to the activation of the associated service, and the strong
requirement (graphically indicated by the double tip on the arrow) on mysql up cap-
tures the fact that WordPress cannot be started before MySQL is running. In this case,
the bindings really correspond to a piece of configuration information, i.e. where to find
a suitable MySQL instance.

Notice how this model does not impose any particular way of modeling the relations
between packages and services: instead of using a single resource with an installed and

158 R. Di Cosmo, S. Zacchiroli, and G. Zavattaro

Package: wordpress

Version : 3.0.5+ dfsg -0+ squeeze1

Depends: httpd, mysql -client , php5 , php5 -mysql , libphp - phpmailer (>= 1.73-4), [...]

Package: mysql -server -5.5

Source: mysql -5.5

Version : 5.5.17 -4

Provides : mysql -server , virtual -mysql -server

Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4) , debconf , [...]

Pre -Depends: mysql -common (>= 5.5.17-4), adduser (>= 3.40), debconf

Package: apache2

Version : 2.4.1-2

Maintainer : Debian Apache Maintainers <debian -apache@...>

Depends: lsb -base , procps , perl , mime -support , apache2 -bin (= 2.4.1-2),

apache2 -data (= 2.4.1 -2)

C o n f l i c t s : apache2 .2- common

Provides : httpd

D e s c r i p t i o n : Apache HTTP Server

Fig. 1. Debian package metadata for WordPress, Mysql and the Apache web server (excerpt)

Use case 1 — Package installation. Before considering the services that a machine is
offering to others (locally or over the network), we need to model the software instal-
lation on the machine itself, so we will see how to model the three main components
needed by WordPress, as far as their installation is concerned.

Software is often distributed according to the package paradigm [7], popularized
by FOSS distributions, where software is shipped at the granularity of bundles called
packages. Each package contains the actual software artifact, its default configuration,
as well as a bunch of package metadata.

On a given machine, a software package may exists in different states (e.g. installed
or uninstalled) and it should go through a complex sequence of states in different phases
of unpacking and configuration to get there. In each of its states, similarly to what hap-
pens in most software component models [9], a package may have context requirements
and offer some features, that we call provides. For instance in Debian, a popular FOSS
distribution, requirements come in two flavors: Depends which must be satisfied be-
fore a package can be used, and Pre-Depends which must be satisfied before a package
can be installed. This distinction is of general interest, as we will see later, so we will
distinguish between weak requirements and strong requirements.

An excerpt of the concrete description of the packages present in Debian for Word-
Press, Apache2 and MySQL are shown in Fig. 1.

To model a software package at this level of abstraction, we may use a simple state
machine, with requirements and provides associated to each state. The ingredients of
this model are very simple: a set of states Q, an initial state q0, a transition function
T from states to states, a set R of requirements, a set P of provides, and a function
that maps states to the requirements and provides that are active at that state, and
tells whether requirements are weak or strong. We call resource type any such tuple
⟨Q,q0,T,P,D⟩, which will be formalized in Definition 1.

A system configuration built out of a collection of resources types is given by an
instance of each resource type, with its current state, and a set of connections between

Packages in the Aeolus model

u Binding between two components

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

158 R. Di Cosmo, S. Zacchiroli, and G. Zavattaro

Package: wordpress

Version : 3.0.5+ dfsg -0+ squeeze1

Depends: httpd, mysql -client , php5 , php5 -mysql , libphp - phpmailer (>= 1.73-4), [...]

Package: mysql -server -5.5

Source: mysql -5.5

Version : 5.5.17 -4

Provides : mysql -server , virtual -mysql -server

Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4) , debconf , [...]

Pre -Depends: mysql -common (>= 5.5.17-4), adduser (>= 3.40), debconf

Package: apache2

Version : 2.4.1-2

Maintainer : Debian Apache Maintainers <debian -apache@...>

Depends: lsb -base , procps , perl , mime -support , apache2 -bin (= 2.4.1-2),

apache2 -data (= 2.4.1 -2)

C o n f l i c t s : apache2 .2- common

Provides : httpd

D e s c r i p t i o n : Apache HTTP Server

Fig. 1. Debian package metadata for WordPress, Mysql and the Apache web server (excerpt)

Use case 1 — Package installation. Before considering the services that a machine is
offering to others (locally or over the network), we need to model the software instal-
lation on the machine itself, so we will see how to model the three main components
needed by WordPress, as far as their installation is concerned.

Software is often distributed according to the package paradigm [7], popularized
by FOSS distributions, where software is shipped at the granularity of bundles called
packages. Each package contains the actual software artifact, its default configuration,
as well as a bunch of package metadata.

On a given machine, a software package may exists in different states (e.g. installed
or uninstalled) and it should go through a complex sequence of states in different phases
of unpacking and configuration to get there. In each of its states, similarly to what hap-
pens in most software component models [9], a package may have context requirements
and offer some features, that we call provides. For instance in Debian, a popular FOSS
distribution, requirements come in two flavors: Depends which must be satisfied be-
fore a package can be used, and Pre-Depends which must be satisfied before a package
can be installed. This distinction is of general interest, as we will see later, so we will
distinguish between weak requirements and strong requirements.

An excerpt of the concrete description of the packages present in Debian for Word-
Press, Apache2 and MySQL are shown in Fig. 1.

To model a software package at this level of abstraction, we may use a simple state
machine, with requirements and provides associated to each state. The ingredients of
this model are very simple: a set of states Q, an initial state q0, a transition function
T from states to states, a set R of requirements, a set P of provides, and a function
that maps states to the requirements and provides that are active at that state, and
tells whether requirements are weak or strong. We call resource type any such tuple
⟨Q,q0,T,P,D⟩, which will be formalized in Definition 1.

A system configuration built out of a collection of resources types is given by an
instance of each resource type, with its current state, and a set of connections between

Towards a Formal Component Model for the Cloud 159

(a) available components, not installed

(b) installed components, bound together on the httpd port

Fig. 2. A simple graphical description of the basic model of a package

requirements and provides of the different resources, that indicate which provide is ful-
filling the need of each requirement. A configuration is correct if all the requires which
are active are satisfied by active provides; this will be made precise in Definition 3.

A natural graphical notation captures all these pieces of information: Fig. 2 presents
two correct configurations of a system built using the components from Fig. 1 (only
modeling the dependency on httpd underlined in the metadata). In Fig. 2(b) the Word-
Press package is in the installed state, and activates the requirement on httpd; Apache2
is also in the installed state, so the httpd provide is active and is used to satisfy the re-
quirement, fact which is visualized by the binding connecting the two ports.

Use case 2 — Services and packages. Installing the software on a single machine is a
process that can already be automated using package managers: on Debian for instance,
you only need to have an installed Apache server to be able to install WordPress. But
bringing it in production requires to activate the associated service, which is more tricky
and less automated: the system administrator will need to edit configuration files so that
WordPress knows the network addresses of an accessible MySQL instance.

The ingredients we have seen up to now in our model are sufficient to capture the
dependencies among services, as shown in Fig. 3. There we have added to each package
an extra state corresponding to the activation of the associated service, and the strong
requirement (graphically indicated by the double tip on the arrow) on mysql up cap-
tures the fact that WordPress cannot be started before MySQL is running. In this case,
the bindings really correspond to a piece of configuration information, i.e. where to find
a suitable MySQL instance.

Notice how this model does not impose any particular way of modeling the relations
between packages and services: instead of using a single resource with an installed and

Services in the Aeolus model
u At the service level, also a running state

becomes relevant:
n  wordpress need to know the network

address of a running MySQL instance

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Conflicts in the Aeolus model
u Conflicts are expressed as special ports

n  The apache web server is in conflict with
the lighttpd web server

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Formalizing the
“deployment” problem Fig. 1: Typical Wordpress/Apache/MySQL deployment, modeled in Aeolus core.

Definition 1 (Component type). The set � of component types of the Aeolus core

model, ranged over by T ,T1,T2, . . . contains 4-ples ⌃Q,q0,T,D⌥ where:

– Q is a finite set of states containing the initial state q0;
– T ⇤ Q�Q is the set of transitions;
– D is a function from Q to a 3-ple ⌃P,R,C⌥ of interface names (i.e. P,R,C ⇤I) in-

dicating the provide, require, and conflict ports that each state activates. We assume
that the initial state q0 has no requirements and conflicts (i.e. D(q0) = ⌃P, /0, /0⌥).

We now define configurations that describe systems composed by components and
their bindings. Each component has a unique identifier taken from the set Z . A con-
figuration, ranged over by C1,C2, . . ., is given by a set of component types, a set of
components in some state, and a set of bindings.

Definition 2 (Configuration). A configuration C is a 4-ple ⌃U,Z,S,B⌥ where:

– U ⇤ � is the finite universe of the available component types;
– Z ⇤ Z is the set of the currently deployed components;
– S is the component state description, i.e. a function that associates to components

in Z a pair ⌃T ,q⌥ where T ⇧U is a component type ⌃Q,q0,T,D⌥, and q ⇧ Q is the
current component state;

– B ⇤ I � Z � Z is the set of bindings, namely 3-ple composed by an interface,
the component that requires that interface, and the component that provides it; we
assume that the two components are different.

Configuration are equivalent if they have the same instances up to instance renaming.

Definition 3 (Configuration equivalence). Two configurations ⌃U,Z,S,B⌥ and
⌃U,Z⌅,S⌅,B⌅⌥ are equivalent (⌃U,Z,S,B⌥⇥ ⌃U,Z⌅,S⌅,B⌅⌥) iff there exists a bijective func-
tion ⇥ from Z to Z⌅ s.t.

– S(z) = S⌅(⇥(z)) for every z ⇧ Z;
– ⌃r,z1,z2⌥ ⇧ B iff ⌃r,⇥(z1),⇥(z2)⌥ ⇧ B⌅.

Notation. We write C [z] as a lookup operation that retrieves the pair ⌃T ,q⌥ = S(z), where
C = ⌃U,Z,S,B⌥. On such a pair we then use the postfix projection operators .type and .state

to retrieve T and q, respectively. Similarly, given a component type ⌃Q,q0,T,D⌥, we use projec-
tions to decompose it: .states, .init, and .trans return the first three elements; .P(q), .R(q),

3

Fig. 1: Typical Wordpress/Apache/MySQL deployment, modeled in Aeolus core.

Definition 1 (Component type). The set � of component types of the Aeolus core

model, ranged over by T ,T1,T2, . . . contains 4-ples ⌃Q,q0,T,D⌥ where:

– Q is a finite set of states containing the initial state q0;
– T ⇤ Q�Q is the set of transitions;
– D is a function from Q to a 3-ple ⌃P,R,C⌥ of interface names (i.e. P,R,C ⇤I) in-

dicating the provide, require, and conflict ports that each state activates. We assume
that the initial state q0 has no requirements and conflicts (i.e. D(q0) = ⌃P, /0, /0⌥).

We now define configurations that describe systems composed by components and
their bindings. Each component has a unique identifier taken from the set Z . A con-
figuration, ranged over by C1,C2, . . ., is given by a set of component types, a set of
components in some state, and a set of bindings.

Definition 2 (Configuration). A configuration C is a 4-ple ⌃U,Z,S,B⌥ where:

– U ⇤ � is the finite universe of the available component types;
– Z ⇤ Z is the set of the currently deployed components;
– S is the component state description, i.e. a function that associates to components

in Z a pair ⌃T ,q⌥ where T ⇧U is a component type ⌃Q,q0,T,D⌥, and q ⇧ Q is the
current component state;

– B ⇤ I � Z � Z is the set of bindings, namely 3-ple composed by an interface,
the component that requires that interface, and the component that provides it; we
assume that the two components are different.

Configuration are equivalent if they have the same instances up to instance renaming.

Definition 3 (Configuration equivalence). Two configurations ⌃U,Z,S,B⌥ and
⌃U,Z⌅,S⌅,B⌅⌥ are equivalent (⌃U,Z,S,B⌥⇥ ⌃U,Z⌅,S⌅,B⌅⌥) iff there exists a bijective func-
tion ⇥ from Z to Z⌅ s.t.

– S(z) = S⌅(⇥(z)) for every z ⇧ Z;
– ⌃r,z1,z2⌥ ⇧ B iff ⌃r,⇥(z1),⇥(z2)⌥ ⇧ B⌅.

Notation. We write C [z] as a lookup operation that retrieves the pair ⌃T ,q⌥ = S(z), where
C = ⌃U,Z,S,B⌥. On such a pair we then use the postfix projection operators .type and .state

to retrieve T and q, respectively. Similarly, given a component type ⌃Q,q0,T,D⌥, we use projec-
tions to decompose it: .states, .init, and .trans return the first three elements; .P(q), .R(q),

3

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Formalizing the
“deployment” problem

and .C(q) return the three elements of the D(q) tuple. Moreover, we use .prov (resp. .req) to
denote the union of all the provide ports (resp. require ports) of the states in Q. When there is no
ambiguity we take the liberty to apply the component type projections to ↵T ,q� pairs. Example:
C [z].R(q) stands for the require ports of component z in configuration C when it is in state q.

We can now formalize the notion of configuration correctness.

Definition 4 (Correctness). Let us consider the configuration C = ↵U,Z,S,B�.
We write C |=req (z,r) to indicate that the require port of component z, with interface

r, is bound to an active port providing r, i.e. there exists a component z⇤ ⌅ Z \{z} such
that ↵r,z,z⇤� ⌅ B, C [z⇤] = ↵T ⇤,q⇤� and r is in T ⇤.P(q⇤). Similarly, for conflicts, we write
C |=cn f (z,c) to indicate that the conflict port c of component z is satisfied because
no other component has an active port providing c, i.e. for every z⇤ ⌅ Z \ {z} with
C [z⇤] = ↵T ⇤,q⇤� we have that c ⇧⌅T ⇤.P(q⇤).

The configuration C is correct if for every component z ⌅ Z with S(z) = ↵T ,q� we
have that C |=req (z,r) for every r ⌅T .R(q) and C |=cn f (z,c) for every c ⌅T .C(q).

Configurations evolve at the granularity of actions.

Definition 5 (Actions). The set A contains the following actions:

– stateChange(↵z1,q1,q⇤1�, . . . ,↵zn,qn,q⇤n�) where zi ⌅Z and ⌃i ⇧= j . zi ⇧= z j;
– bind(r,z1,z2) where z1,z2 ⌅Z and r ⌅I ;
– unbind(r,z1,z2) where z1,z2 ⌅Z and r ⌅I ;
– newRsrc(z : T) where z ⌅Z and T ⌅U is the component type of z;
– delRsrc(z) where z ⌅Z .

Notice that we consider a set of state changes in order to deal with simultaneous instal-
lations like the one needed for Apache2 and Apache2-bin in Fig. ??. The execution of
actions is formalized as configuration transitions.

Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions C
��⇥C ⇤

meaning that the execution of � ⌅A on the configuration C produces a new configu-
ration C ⇤. The transitions from a configuration C = ↵U,Z,S,B� are defined as follows:

C
stateChange(↵z1,q1,q⇤1�,...,↵zn,qn,q⇤n�)��������������������⇥ ↵U,Z,S⇤,B�
if ⌃i . C [zi].state= qi
and ⌃i . (qi,q⇤i) ⌅ C [zi].trans

and S⇤(z⇤) =
�
↵C [zi].type,q⇤i� if ⌥i . z⇤ = zi
C [z⇤] otherwise

C
bind(r,z1,z2)�������⇥ ↵U,Z,S,B ↵r,z1,z2��
if ↵r,z1,z2� ⇧⌅ B
and r ⌅ C [z1].req⌦C [z2].prov

C
unbind(r,z1,z2)��������⇥ ↵U,Z,S,B\ ↵r,z1,z2�� if ↵r,z1,z2� ⌅ B

C
newRsrc(z:T)��������⇥ ↵U,Z {z},S⇤,B�
if z ⇧⌅ Z, T ⌅U

and S⇤(z⇤) =
�
↵T ,T .init� if z⇤ = z
C [z⇤] otherwise

C
delRsrc(z)�����⇥ ↵U,Z \{z},S⇤,B⇤�

if S⇤(z⇤) =
�
� if z⇤ = z
C [z⇤] otherwise

and B⇤ = {↵r,z1,z2� ⌅ B | z ⇧⌅ {z1,z2}}

4

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Formalizing the
“deployment” problem

and .C(q) return the three elements of the D(q) tuple. Moreover, we use .prov (resp. .req) to
denote the union of all the provide ports (resp. require ports) of the states in Q. When there is no
ambiguity we take the liberty to apply the component type projections to ↵T ,q� pairs. Example:
C [z].R(q) stands for the require ports of component z in configuration C when it is in state q.

We can now formalize the notion of configuration correctness.

Definition 4 (Correctness). Let us consider the configuration C = ↵U,Z,S,B�.
We write C |=req (z,r) to indicate that the require port of component z, with interface

r, is bound to an active port providing r, i.e. there exists a component z⇤ ⌅ Z \{z} such
that ↵r,z,z⇤� ⌅ B, C [z⇤] = ↵T ⇤,q⇤� and r is in T ⇤.P(q⇤). Similarly, for conflicts, we write
C |=cn f (z,c) to indicate that the conflict port c of component z is satisfied because
no other component has an active port providing c, i.e. for every z⇤ ⌅ Z \ {z} with
C [z⇤] = ↵T ⇤,q⇤� we have that c ⇧⌅T ⇤.P(q⇤).

The configuration C is correct if for every component z ⌅ Z with S(z) = ↵T ,q� we
have that C |=req (z,r) for every r ⌅T .R(q) and C |=cn f (z,c) for every c ⌅T .C(q).

Configurations evolve at the granularity of actions.

Definition 5 (Actions). The set A contains the following actions:

– stateChange(↵z1,q1,q⇤1�, . . . ,↵zn,qn,q⇤n�) where zi ⌅Z and ⌃i ⇧= j . zi ⇧= z j;
– bind(r,z1,z2) where z1,z2 ⌅Z and r ⌅I ;
– unbind(r,z1,z2) where z1,z2 ⌅Z and r ⌅I ;
– newRsrc(z : T) where z ⌅Z and T ⌅U is the component type of z;
– delRsrc(z) where z ⌅Z .

Notice that we consider a set of state changes in order to deal with simultaneous instal-
lations like the one needed for Apache2 and Apache2-bin in Fig. ??. The execution of
actions is formalized as configuration transitions.

Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions C
��⇥C ⇤

meaning that the execution of � ⌅A on the configuration C produces a new configu-
ration C ⇤. The transitions from a configuration C = ↵U,Z,S,B� are defined as follows:

C
stateChange(↵z1,q1,q⇤1�,...,↵zn,qn,q⇤n�)��������������������⇥ ↵U,Z,S⇤,B�
if ⌃i . C [zi].state= qi
and ⌃i . (qi,q⇤i) ⌅ C [zi].trans

and S⇤(z⇤) =
�
↵C [zi].type,q⇤i� if ⌥i . z⇤ = zi
C [z⇤] otherwise

C
bind(r,z1,z2)�������⇥ ↵U,Z,S,B ↵r,z1,z2��
if ↵r,z1,z2� ⇧⌅ B
and r ⌅ C [z1].req⌦C [z2].prov

C
unbind(r,z1,z2)��������⇥ ↵U,Z,S,B\ ↵r,z1,z2�� if ↵r,z1,z2� ⌅ B

C
newRsrc(z:T)��������⇥ ↵U,Z {z},S⇤,B�
if z ⇧⌅ Z, T ⌅U

and S⇤(z⇤) =
�
↵T ,T .init� if z⇤ = z
C [z⇤] otherwise

C
delRsrc(z)�����⇥ ↵U,Z \{z},S⇤,B⇤�

if S⇤(z⇤) =
�
� if z⇤ = z
C [z⇤] otherwise

and B⇤ = {↵r,z1,z2� ⌅ B | z ⇧⌅ {z1,z2}}

4
OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

“Deployment” problem

u  Input:
n  A set of component types (called Universe)
n  One target component type-state pair

u Output:
n  Yes, if there exists a deployment plan
n  No, otherwise

Deployment plan:
a sequence of actions leading to a final configuration
containing at least one component of the given target
type, in the given target state

 OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Deployment problem:
example
u Consider the problem of installing

kerberos with ldap support in Debian
n  Universe: packages krb5 and openldap
n  Target: krb5 in normal state

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Deployment problem:
example
u Deployment plan:

newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Deployment problem:
example
u Deployment plan:

newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Deployment problem:
example
u Deployment plan:

newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Deployment problem:
example
u Deployment plan:

newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Deployment problem:
example
u Deployment plan:

newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Deployment problem:
example
u Deployment plan:

newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Deployment problem:
example
u Deployment plan:

newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Structure of the talk

u The Aeolus starting point
u Formalizing the “deployment” problem
u Solving the “deployment” problem

n  Ackermann-hard in the general case
n  PolyTime without conflicts

u Open issues and related work

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

u Deployment plans recall firing sequences
in Petri nets:
n  Tokens are moved from source places to

target places by transitions

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Reduce to well-known concurrent
models? (as SAT for packages)

Reduce to well-known concurrent
models? (as SAT for packages)

u …but reachability problems in Petri nets
are undecidable in the presence of
inhibitor arcs (necessary for conflicts)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Decidability of the
“deployment” problem [ICALP’13]

u Backward search algorithm based on
the theory of WSTS (Well-Structured
Transition Systems)
n  WSTS are popular in the context of infinite

state concurrent systems verification

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Target conf.
….

Initial conf.

Decidability of the
“deployment” problem [ICALP’13]

u Key point:
ordering C1≤C2 on configurations s.t.
n  if C1 has a given component, also C2 has it

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

….
Target conf. Initial conf.

Decidability of the
“deployment” problem [ICALP’13]

u Key point:
ordering C1≤C2 on configurations s.t.
n  if C1 has a given component, also C2 has it
n  if C1≤C2 and C1àC1’ then C2àC2’ with C1’≤C2’

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

….
Target conf. Initial conf.

Decidability of the
“deployment” problem [ICALP’13]

u Key point:
ordering C1≤C2 on configurations s.t.
n  if C1 has a given component, also C2 has it
n  if C1≤C2 and C1àC1’ then C2àC2’ with C1’≤C2’
n  ≤ is a wqo: finite basis and finite antichains

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

….
Target conf. Initial conf.

Decidability of the
“deployment” problem [ICALP’13]

u Key point:
ordering C1≤C2 on configurations s.t.
n  if C1 has a given component, also C2 has it
n  if C1≤C2 and C1àC1’ then C2àC2’ with C1’≤C2’
n  ≤ is a wqo: finite basis and finite antichains

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

….
Target conf. Initial conf.

Decidability of the
“deployment” problem [ICALP’13]

u Key point:
ordering C1≤C2 on configurations s.t.
n  if C1 has a given component, also C2 has it
n  if C1≤C2 and C1àC1’ then C2àC2’ with C1’≤C2’
n  ≤ is a wqo: finite basis and finite antichains

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

….

….

Target conf. Initial conf.

Complexity [ICALP’13]
u The complexity of the problem is

Ackermann-hard (reduction from
coverability in reset Petri nets)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

!""

!#

$%

&%

'%

(%

)

%

)

(a) Token in place p.

(b) i-th bit counter.

Figure 8: Token and counter component types.

We now consider a given reset Petri net RN = ⇤P, T, �m0⌅ and discuss
how to encode it in Aeolus core component types. We will use three types
of components: one modeling the tokens, one for the transitions and one for
defining a counter. The components for the transitions and the counter are
unique and persistent, while those for the tokens cannot be unique because
the number of tokens in a Petri net can be unbounded. The simplest com-
ponent type, denoted with Tp, is the one used to model a token in a given
place p � P . Namely, one token in a place p is encoded as one instance
of Tp in the on state. There could be more than one of these components
deployed simultaneously representing multiple tokens in a place. In Fig. 8a
we represent the component type Tp. The initial state is the o� state. The
token could be created following a protocol consisting of requiring the port
ap and then providing the port bp. Symmetrically, a token can be removed
by providing the port cp and then requiring the port dp. Even if multiple
instances of the token component can be deployed simultaneously, only one
of them at a time can initiate the protocol to change its state. This is guar-
anteed by the conflict on the port z, which is provided by all the states of
the state change protocols. The component provides the port p when it is in
the on state.

In order to model the transitions without having an exponential blow
up of the size of the encoding we need a mechanism to count up to a fixed
number. Indeed, a transition can consume and produce a given number
of tokens from and to several places. To count a number up to n we will

28

(a) Token in place p.

!"#"$%

&'()$"!%*+,

!"#"$-%

(.%/+

&'()$"!%*0,

(.-%/+

(.%

(.-%

+

0

(b) i-th bit counter.

Figure 8: Token and counter component types.

We now consider a given reset Petri net RN = ⇤P, T, �m0⌅ and discuss
how to encode it in Aeolus core component types. We will use three types
of components: one modeling the tokens, one for the transitions and one for
defining a counter. The components for the transitions and the counter are
unique and persistent, while those for the tokens cannot be unique because
the number of tokens in a Petri net can be unbounded. The simplest com-
ponent type, denoted with Tp, is the one used to model a token in a given
place p � P . Namely, one token in a place p is encoded as one instance
of Tp in the on state. There could be more than one of these components
deployed simultaneously representing multiple tokens in a place. In Fig. 8a
we represent the component type Tp. The initial state is the o� state. The
token could be created following a protocol consisting of requiring the port
ap and then providing the port bp. Symmetrically, a token can be removed
by providing the port cp and then requiring the port dp. Even if multiple
instances of the token component can be deployed simultaneously, only one
of them at a time can initiate the protocol to change its state. This is guar-
anteed by the conflict on the port z, which is provided by all the states of
the state change protocols. The component provides the port p when it is in
the on state.

In order to model the transitions without having an exponential blow
up of the size of the encoding we need a mechanism to count up to a fixed
number. Indeed, a transition can consume and produce a given number
of tokens from and to several places. To count a number up to n we will

28

Complexity [ICALP’13]

!"
!!!#$%&%'(%)'&%*$!

!&+

!&,

-*$./01&%*$ 23*4/5&%*$ 67.7&

-*$./01&%*$ 23*4/5&%*$ 67.7&

(a) Transitions component.

�!!"#"$%&%'(!
�!!"#"$%&%'!

)*+,'%$-./0-1

+2-
+2(-

)2 32 �!!"#")*+,'%$!.0!1

!!!

!!!

)*+,'%$4./041

!!!

)*+,'%$!./0!1

!!!

(b) Consumption phase of n tokens from place p for
a transition t (k = log(n)⌦ and hi is the i-th least
significative bit of the binary representation of n).

!

!!!!!!

(c) Encoding of a reset
arc for the place p.

Figure 9

We now introduce the notation C0 for denoting the empty initial configu-
ration of our encoding, and [[�m]] to characterize configurations corresponding
to the net marking �m.

Definition 17. Let RN = (P, T,m0) be a reset Petri net and �m one of its
markings. We define:

C0 = ��RN , ⌃, ⌃, ⌃�
[[�m]] = { C | C is a correct configuration with universe �RN ,

C#
⇥TT ,q⇤ = 1, ⇧p ⌅ P.C#

⇥Tp ,on⇤ = �m(p) }

We call net step a sequence of reconfigurations on components instances
of the universe �RN that, beyond other actions, includes state changes of the
component TT until entering the state q. Formally, it is a non empty sequence
of reconfigurations C1

�1�⇤ C2
�2�⇤ · · · �m�1���⇤ Cm such that Cm#

⇥TT ,q⇤ = 1, while

Ci#⇥TT ,q⇤ = 0, for every 1 < i < m.

31

Quadratic algorithm
(without conflicts) [SEFM’12]
u Forward reachability algorithm

n  all reachable states computed by saturation
 Algorithm 1 Checking achievability in the Aeolus� model

function Achievability(U , T , q)
absConf := {⌦T ⇥, T ⇥.init↵ | T ⇥ ⇥ U}
provPort :=

�
⇧T �,q�⌃⇤absConf {dom(T ⇥.P(q⇥))}

repeat
new := {⌦T ⇥, q⇥↵ | ⌦T ⇥, q⇥⇥↵ ⇥ absConf , (q⇥⇥, q⇥) ⇥ T ⇥.trans}\absConf
newPort :=

�
⇧T �,q�⌃⇤new{dom(T ⇥.P(q⇥))}

while ⌅⌦T ⇥, q⇥↵ ⇥ new . dom(T ⇥.R(q⇥)) ⇤� provPort ⌥ newPort do
new := new \ {⌦T ⇥, q⇥↵}
newPort :=

�
⇧T �,q�⌃⇤new{dom(T ⇥.P(q⇥))}

end while
absConf := absConf ⌥ new
provPort := provPort ⌥ newPort

until new = ⇧
if ⌦T , q↵ ⇥ absConf then return true
else return false
end if

end function

to consider only evolutions where the set of available pairs ⌦T , q↵ does not
decrease. Namely, we perform a symbolic forward exploration starting from
an abstract configuration containing all the pairs ⌦T ⇥, T ⇥.init↵ representing
components in their initial state. Then we extend the abstract configuration
by adding step-by-step new pairs ⌦T ⇥, q⇥↵.

Algorithm 1 checks achievability by relying on two auxiliary data struc-
tures: absConf is the set of pairs ⌦T ⇥, q⇥↵ indicating the type and state of the
components in the current abstract configuration, and provPort is the set of
provide ports active in such a configuration. The algorithm incrementally
extends absConf until it is no longer possible to add new pairs. Termination
of the algorithm is guaranteed because there are only finitely many type-state
pairs in a universe of component types.

At each iteration, the potential new pairs are initially computed by check-
ing the automata transitions, and then they are stored in the set new . Not
all those states could be actually reached as one needs to check whether their
require ports are included in the available provide ports provPort or in the
ports activated by the new states. This is done by a one-by-one elimination
of pairs ⌦T ⇥, q⇥↵ from new when their requirements are unsatisfiable. During

35

Example:
the kerberos case-study

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Example:
the kerberos case-study

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

a pyramid of levels of component-states having arrows �⇤ or
arcs between two consecutive levels as the one in Fig. 3.

Fig. 3: Reachability graph for the kerberos running example.

The first level of Fig. 3 contains the two components krb5
and openldap in their initial states. In the second level the
component krb5 in stage1 state is added since it can be derived
from the krb5 component in state uninst. The component
openldap in normal state can not be added at this level since it
requires the interface libkrb5-dev, not yet provided. openldap
in normal state is added however in the third level since
libkrb5-dev is now provided by krb5 in state stage1. Finally,
in the fourth level, the target state is added deriving it from
krb5 in state stage1. This last level is also the fix-point since
no new component-state pairs can be generated from it.

Note that keeping component copies allows one to consider
different ways a component can use to reach a state. This adds
flexibility in deciding how a target can be reached.

B. Abstract Planning

After generating the reachability graph we compute an
abstract plan.

We first describe the structure of an abstract plan and
then explain how this can be derived from the reachability
graph. An abstract plan is a directed graph where the nodes
represent either a create, delete, or stateChange action, and
arcs represent action precedence constraints. In the following
we denote with ⇧z,q,q⌅⌃ a stateChange from q to q⌅ of instance
z, with ⇧z,e,q0⌃ the create action of the instance z in the initial
state q0, and with ⇧z,q,e⌃ the delete action on the instance z
in state q. We consider three types of precedence arcs:

• �⇤: states the precedence of stateChange actions on the
same component instance; formally ⇧z,x,x⌅⌃ �⇤ ⇧z,x⌅,x⌅⌅⌃
where x⌅ is a state and x,x⌅⌅ are either states or the special
symbol e denoting absence of the instance z;

•
r⇣ where r is an interface: states that if an action deploys

an instance z⌅ in a state y⌅ requiring r, provided by z in
state y, then state y must be entered before entering state
y⌅, formally ⇧z,x,y⌃

r⇣⇧z⌅,x⌅,y⌅⌃;
•

r99K, where r is an interface, is the dual of the previous
arrow: it states that if an action deploys an instance z⌅
in a state y⌅ requiring r, provided by z in state y, then
state y⌅ must be exited before exiting state y, formally
⇧z⌅,y⌅,u⌅⌃ r99K⇧z,y,u⌃.

We are now ready to describe how an abstract plan is
obtained. Starting from the reachability graph we select the

(a)

(b)

Fig. 4: Generation of abstract plan for the kerberos example.

target component-state pair at the bottom of the pyramid.
From the bottom level we then proceed upward selecting the
components that are used to deploy the selected component-
state pairs at the lower level. To do so, for every selected
component at level i + 1, we select at level i one of its
predecessors (i.e. a component-state pair connected via the
�⇤ arrow) or a copy (i.e. a component-state pair connected
via the arc). Moreover, for every require port activated by
the selected component-state pairs of level i+ 1 that are not
copies, we select a component-state pair at level i that is able
to satisfy the requirement, and we keep track of this choice.

For the kerberos case, Fig. 4a shows that in the last level
krb5 in normal state is selected. Since krb5 can be only
obtained via krb5 in state stage1 we select krb5 in state stage1
in the previous level. Moreover since krb5 in state normal
requires libldap2-dev we select at level 2 also the component
openldap in state normal. Iterating this selection process we
may end up in the scenario depicted in Fig. 4b.

We would like to underline that during the selection of
component-state pairs different choices could be made. For
instance in Fig. 4b at the second level we could have selected
component krb5 in state uninst to deploy the same component
in state stage1 and component krb5 in state stage1 to provide
the libkrb5-dev interface. These choices have an impact on the
number of instances employed to reach the goal. In order to
minimize this number we rely on heuristics.1 In particular,
for the selection of component-state pairs, we choose the
one that is able to satisfy the maximum number of (not
already satisfied) requirements. In case of ties we select the
component that can be obtained from an initial configuration
satisfying less requirements. In case of ties we prefer a
copy and, if the component is instead newly obtained, we
select the one that can be obtained with less state changes.
Similarly, when component-state pairs are selected to satisfy
some requirements, we select first the one able to satisfy the
maximum number of requirements, in case of ties the one that
can be obtained with less interfaces and, in case of a tie, the

1. Heuristics are used to reduce the complexity of finding the best choice.
Indeed, exploring all the possibilities to compute a (global) minimum can be
done just at an exponential cost

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Initial states

Example:
the kerberos case-study

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

a pyramid of levels of component-states having arrows �⇤ or
arcs between two consecutive levels as the one in Fig. 3.

Fig. 3: Reachability graph for the kerberos running example.

The first level of Fig. 3 contains the two components krb5
and openldap in their initial states. In the second level the
component krb5 in stage1 state is added since it can be derived
from the krb5 component in state uninst. The component
openldap in normal state can not be added at this level since it
requires the interface libkrb5-dev, not yet provided. openldap
in normal state is added however in the third level since
libkrb5-dev is now provided by krb5 in state stage1. Finally,
in the fourth level, the target state is added deriving it from
krb5 in state stage1. This last level is also the fix-point since
no new component-state pairs can be generated from it.

Note that keeping component copies allows one to consider
different ways a component can use to reach a state. This adds
flexibility in deciding how a target can be reached.

B. Abstract Planning

After generating the reachability graph we compute an
abstract plan.

We first describe the structure of an abstract plan and
then explain how this can be derived from the reachability
graph. An abstract plan is a directed graph where the nodes
represent either a create, delete, or stateChange action, and
arcs represent action precedence constraints. In the following
we denote with ⇧z,q,q⌅⌃ a stateChange from q to q⌅ of instance
z, with ⇧z,e,q0⌃ the create action of the instance z in the initial
state q0, and with ⇧z,q,e⌃ the delete action on the instance z
in state q. We consider three types of precedence arcs:

• �⇤: states the precedence of stateChange actions on the
same component instance; formally ⇧z,x,x⌅⌃ �⇤ ⇧z,x⌅,x⌅⌅⌃
where x⌅ is a state and x,x⌅⌅ are either states or the special
symbol e denoting absence of the instance z;

•
r⇣ where r is an interface: states that if an action deploys

an instance z⌅ in a state y⌅ requiring r, provided by z in
state y, then state y must be entered before entering state
y⌅, formally ⇧z,x,y⌃

r⇣⇧z⌅,x⌅,y⌅⌃;
•

r99K, where r is an interface, is the dual of the previous
arrow: it states that if an action deploys an instance z⌅
in a state y⌅ requiring r, provided by z in state y, then
state y⌅ must be exited before exiting state y, formally
⇧z⌅,y⌅,u⌅⌃ r99K⇧z,y,u⌃.

We are now ready to describe how an abstract plan is
obtained. Starting from the reachability graph we select the

(a)

(b)

Fig. 4: Generation of abstract plan for the kerberos example.

target component-state pair at the bottom of the pyramid.
From the bottom level we then proceed upward selecting the
components that are used to deploy the selected component-
state pairs at the lower level. To do so, for every selected
component at level i + 1, we select at level i one of its
predecessors (i.e. a component-state pair connected via the
�⇤ arrow) or a copy (i.e. a component-state pair connected
via the arc). Moreover, for every require port activated by
the selected component-state pairs of level i+ 1 that are not
copies, we select a component-state pair at level i that is able
to satisfy the requirement, and we keep track of this choice.

For the kerberos case, Fig. 4a shows that in the last level
krb5 in normal state is selected. Since krb5 can be only
obtained via krb5 in state stage1 we select krb5 in state stage1
in the previous level. Moreover since krb5 in state normal
requires libldap2-dev we select at level 2 also the component
openldap in state normal. Iterating this selection process we
may end up in the scenario depicted in Fig. 4b.

We would like to underline that during the selection of
component-state pairs different choices could be made. For
instance in Fig. 4b at the second level we could have selected
component krb5 in state uninst to deploy the same component
in state stage1 and component krb5 in state stage1 to provide
the libkrb5-dev interface. These choices have an impact on the
number of instances employed to reach the goal. In order to
minimize this number we rely on heuristics.1 In particular,
for the selection of component-state pairs, we choose the
one that is able to satisfy the maximum number of (not
already satisfied) requirements. In case of ties we select the
component that can be obtained from an initial configuration
satisfying less requirements. In case of ties we prefer a
copy and, if the component is instead newly obtained, we
select the one that can be obtained with less state changes.
Similarly, when component-state pairs are selected to satisfy
some requirements, we select first the one able to satisfy the
maximum number of requirements, in case of ties the one that
can be obtained with less interfaces and, in case of a tie, the

1. Heuristics are used to reduce the complexity of finding the best choice.
Indeed, exploring all the possibilities to compute a (global) minimum can be
done just at an exponential cost

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

New states

Initial states

Example:
the kerberos case-study

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

a pyramid of levels of component-states having arrows �⇤ or
arcs between two consecutive levels as the one in Fig. 3.

Fig. 3: Reachability graph for the kerberos running example.

The first level of Fig. 3 contains the two components krb5
and openldap in their initial states. In the second level the
component krb5 in stage1 state is added since it can be derived
from the krb5 component in state uninst. The component
openldap in normal state can not be added at this level since it
requires the interface libkrb5-dev, not yet provided. openldap
in normal state is added however in the third level since
libkrb5-dev is now provided by krb5 in state stage1. Finally,
in the fourth level, the target state is added deriving it from
krb5 in state stage1. This last level is also the fix-point since
no new component-state pairs can be generated from it.

Note that keeping component copies allows one to consider
different ways a component can use to reach a state. This adds
flexibility in deciding how a target can be reached.

B. Abstract Planning

After generating the reachability graph we compute an
abstract plan.

We first describe the structure of an abstract plan and
then explain how this can be derived from the reachability
graph. An abstract plan is a directed graph where the nodes
represent either a create, delete, or stateChange action, and
arcs represent action precedence constraints. In the following
we denote with ⇧z,q,q⌅⌃ a stateChange from q to q⌅ of instance
z, with ⇧z,e,q0⌃ the create action of the instance z in the initial
state q0, and with ⇧z,q,e⌃ the delete action on the instance z
in state q. We consider three types of precedence arcs:

• �⇤: states the precedence of stateChange actions on the
same component instance; formally ⇧z,x,x⌅⌃ �⇤ ⇧z,x⌅,x⌅⌅⌃
where x⌅ is a state and x,x⌅⌅ are either states or the special
symbol e denoting absence of the instance z;

•
r⇣ where r is an interface: states that if an action deploys

an instance z⌅ in a state y⌅ requiring r, provided by z in
state y, then state y must be entered before entering state
y⌅, formally ⇧z,x,y⌃

r⇣⇧z⌅,x⌅,y⌅⌃;
•

r99K, where r is an interface, is the dual of the previous
arrow: it states that if an action deploys an instance z⌅
in a state y⌅ requiring r, provided by z in state y, then
state y⌅ must be exited before exiting state y, formally
⇧z⌅,y⌅,u⌅⌃ r99K⇧z,y,u⌃.

We are now ready to describe how an abstract plan is
obtained. Starting from the reachability graph we select the

(a)

(b)

Fig. 4: Generation of abstract plan for the kerberos example.

target component-state pair at the bottom of the pyramid.
From the bottom level we then proceed upward selecting the
components that are used to deploy the selected component-
state pairs at the lower level. To do so, for every selected
component at level i + 1, we select at level i one of its
predecessors (i.e. a component-state pair connected via the
�⇤ arrow) or a copy (i.e. a component-state pair connected
via the arc). Moreover, for every require port activated by
the selected component-state pairs of level i+ 1 that are not
copies, we select a component-state pair at level i that is able
to satisfy the requirement, and we keep track of this choice.

For the kerberos case, Fig. 4a shows that in the last level
krb5 in normal state is selected. Since krb5 can be only
obtained via krb5 in state stage1 we select krb5 in state stage1
in the previous level. Moreover since krb5 in state normal
requires libldap2-dev we select at level 2 also the component
openldap in state normal. Iterating this selection process we
may end up in the scenario depicted in Fig. 4b.

We would like to underline that during the selection of
component-state pairs different choices could be made. For
instance in Fig. 4b at the second level we could have selected
component krb5 in state uninst to deploy the same component
in state stage1 and component krb5 in state stage1 to provide
the libkrb5-dev interface. These choices have an impact on the
number of instances employed to reach the goal. In order to
minimize this number we rely on heuristics.1 In particular,
for the selection of component-state pairs, we choose the
one that is able to satisfy the maximum number of (not
already satisfied) requirements. In case of ties we select the
component that can be obtained from an initial configuration
satisfying less requirements. In case of ties we prefer a
copy and, if the component is instead newly obtained, we
select the one that can be obtained with less state changes.
Similarly, when component-state pairs are selected to satisfy
some requirements, we select first the one able to satisfy the
maximum number of requirements, in case of ties the one that
can be obtained with less interfaces and, in case of a tie, the

1. Heuristics are used to reduce the complexity of finding the best choice.
Indeed, exploring all the possibilities to compute a (global) minimum can be
done just at an exponential cost

• unbind(r, id1, id2) that deletes the binding between the
provided port r of the component identified by id1 and
the required port of the component identified by id2;

• stateChange(id,s0,s1) that changes the state of the com-
ponent identified by id from s0 to s1.

It is worth noticing that there can be more than one
way to reach a given configuration of components. For in-
stance, one possible way to obtain the configuration de-
picted in Fig. 1 from scratch, is to first create the resources
via the actions create(wordpress,w), create(apache2,a), and
create(mysql,m). These three actions create three new com-
ponents identified by w, a, and m respectively. All these new
components will be in the uninst state that is the initial state for
all of them. Then the apache2 and mysql components can be
installed by performing the action stateChange(a,uninst, inst)
and stateChange(m,uninst, inst). At this point, to be able
to install wordpress, we need first to bind the mysql inst
port. This is done by performing bind(mysql inst,m,w). After
the creation of the binding, wordpress can be installed by
performing stateChange(w,uninst, inst). Finally the configu-
ration depicted in Fig. 1 can be obtained by performing the
bind(httpd,a,w) and stateChange(m, inst,run) actions.

Note that the unbind, delete, and stateChange actions some-
times cannot be performed since their execution would violate
the constraint that each active require port must be bound to
an active provide one. bind and create actions, instead, can
always be performed as bindings are allowed between ports
that are not active and we require that initial states do not
activate require ports.

As a final remark, we observe that the decision to use
one unique internal target state to specify the configuration
to be reached is not a limitation. In fact, this target state
could activate several require ports indicating an entire set of
functionalities that must be present in the final configuration.

III. THE PLANNING ALGORITHM

We now present our algorithm to solve the deployment prob-
lem defined in previous section. The algorithm is divided in
three phases, namely, reachability analysis, abstract planning
and plan generation.

The first phase computes the states of the components that
can be obtained, starting from an empty configuration. If the
target state can be reached, an abstract plan is generated
describing the needed types of components and a path to reach
the target state. Subsequently a concrete plan is obtained by
specifically instantiating the component types selected in the
abstract plan.

As a running example we model the compilation of package
kerberos with ldap support in a Debian system. To build ker-
beros (krb5) the libldap2-dev package of openldap is needed.
This package however depends on libkrb5-dev from krb5.
There is therefore a circular dependency between krb5 and
openldap. In Debian the generic way to deal with these cir-
cular dependencies is profile builds: every package caters for
multiple stages of staged/bootstrap build, so that if necessary a
package can have stage1, stage2, . . . before the final, normal,

build. In the kerberos case, krb5 is built in the first stage
missing out the generation of the krb5-ldap package. Then
openldap can be built directly into its normal build satisfying
its dependencies. Once openldap is built, krb5 can also be
build into its normal stage. This process would be modeled in
Aeolus as depicted in Fig. 2.

Fig. 2: Representation of the krb5 and openldap components.

A. Reachability analysis

The first step in the proposed technique checks if the the
desired target state can be reached. To do so all reachable
states are computed, for each of the component types in the
given universe. In the following we use the pair T ,q⌦ to
denote a component type T and one of its state q.

An increasing sequence of sets of component-state pairs
S0, . . . ,Sn is built in such a way that Si+1 extends Si with
the new states that can be reached upon execution of a state-
Change action. The first set, S0, contains all the components
in their initial state, i.e. S0 = { T ,q0⌦ | q0 initial state of T }.
Formally Si+1 is the largest set satisfying the following con-
straints:

• Si ⇤ Si+1;
• T ,q⌦ ⌃ Si+1 implies the existence of T ,q⇧⌦ ⌃ Si such

that there is a transition from q⇧ to q in the state automaton
of T ;

• T ,q⌦ ⌃ Si+1 implies that for every require port r acti-
vated by the state q of T there exists T ⇧,q⇧⌦ ⌃ Si such
that the state q⇧ of T ⇧ activates a provide port r.

The generation of sets proceeds until a fix-point is reached
(i.e. Si+1 = Si). When the fix-point is reached, if the last set
does not contain the target pair it means a plan to achieve the
goal does not exist and therefore the procedure terminates.
Otherwise, we continue with the next phase.

As input to the next phase, we consider a graph-like repre-
sentation, called reachability graph, of the sets S0, . . . ,Sn that
keeps track of all the possible ways to obtain the component
state-pairs at level i+1 from those at level i. More precisely,
the graph has as nodes the pairs in S0, . . . ,Sn: if one node
at level i+ 1 was already present at level i, the two nodes
are connected with an arc , if a state pair T ,q⌦ at level
i+ 1 can be obtained from T ,q⇧⌦ at level i by means of a
stateChange action, an �⌅ arc from the former to the latter is
added. Visually the reachability graph can therefore be seen as

Initial states

New states

All
reachable
states

Structure of the talk

u The Aeolus starting point
u Formalizing the “deployment” problem
u Solving the “deployment” problem

n  Ackermann-hard in the general case
n  PolyTime without conflicts

u Open issues and related work

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Real-life deployment tools

u The deployment problem simply replies
yes / no

u A real deployment tool needs to know
how to reach the target configuration
n  In other words, an actual deployment plan

should be computed

u We have preliminary results…

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Ad-hoc planning [FACS’13,ICTAI’13]

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

a pyramid of levels of component-states having arrows �⇤ or
arcs between two consecutive levels as the one in Fig. 3.

Fig. 3: Reachability graph for the kerberos running example.

The first level of Fig. 3 contains the two components krb5
and openldap in their initial states. In the second level the
component krb5 in stage1 state is added since it can be derived
from the krb5 component in state uninst. The component
openldap in normal state can not be added at this level since it
requires the interface libkrb5-dev, not yet provided. openldap
in normal state is added however in the third level since
libkrb5-dev is now provided by krb5 in state stage1. Finally,
in the fourth level, the target state is added deriving it from
krb5 in state stage1. This last level is also the fix-point since
no new component-state pairs can be generated from it.

Note that keeping component copies allows one to consider
different ways a component can use to reach a state. This adds
flexibility in deciding how a target can be reached.

B. Abstract Planning

After generating the reachability graph we compute an
abstract plan.

We first describe the structure of an abstract plan and
then explain how this can be derived from the reachability
graph. An abstract plan is a directed graph where the nodes
represent either a create, delete, or stateChange action, and
arcs represent action precedence constraints. In the following
we denote with ⇧z,q,q⌅⌃ a stateChange from q to q⌅ of instance
z, with ⇧z,e,q0⌃ the create action of the instance z in the initial
state q0, and with ⇧z,q,e⌃ the delete action on the instance z
in state q. We consider three types of precedence arcs:

• �⇤: states the precedence of stateChange actions on the
same component instance; formally ⇧z,x,x⌅⌃ �⇤ ⇧z,x⌅,x⌅⌅⌃
where x⌅ is a state and x,x⌅⌅ are either states or the special
symbol e denoting absence of the instance z;

•
r⇣ where r is an interface: states that if an action deploys

an instance z⌅ in a state y⌅ requiring r, provided by z in
state y, then state y must be entered before entering state
y⌅, formally ⇧z,x,y⌃

r⇣⇧z⌅,x⌅,y⌅⌃;
•

r99K, where r is an interface, is the dual of the previous
arrow: it states that if an action deploys an instance z⌅
in a state y⌅ requiring r, provided by z in state y, then
state y⌅ must be exited before exiting state y, formally
⇧z⌅,y⌅,u⌅⌃ r99K⇧z,y,u⌃.

We are now ready to describe how an abstract plan is
obtained. Starting from the reachability graph we select the

(a)

(b)

Fig. 4: Generation of abstract plan for the kerberos example.

target component-state pair at the bottom of the pyramid.
From the bottom level we then proceed upward selecting the
components that are used to deploy the selected component-
state pairs at the lower level. To do so, for every selected
component at level i + 1, we select at level i one of its
predecessors (i.e. a component-state pair connected via the
�⇤ arrow) or a copy (i.e. a component-state pair connected
via the arc). Moreover, for every require port activated by
the selected component-state pairs of level i+ 1 that are not
copies, we select a component-state pair at level i that is able
to satisfy the requirement, and we keep track of this choice.

For the kerberos case, Fig. 4a shows that in the last level
krb5 in normal state is selected. Since krb5 can be only
obtained via krb5 in state stage1 we select krb5 in state stage1
in the previous level. Moreover since krb5 in state normal
requires libldap2-dev we select at level 2 also the component
openldap in state normal. Iterating this selection process we
may end up in the scenario depicted in Fig. 4b.

We would like to underline that during the selection of
component-state pairs different choices could be made. For
instance in Fig. 4b at the second level we could have selected
component krb5 in state uninst to deploy the same component
in state stage1 and component krb5 in state stage1 to provide
the libkrb5-dev interface. These choices have an impact on the
number of instances employed to reach the goal. In order to
minimize this number we rely on heuristics.1 In particular,
for the selection of component-state pairs, we choose the
one that is able to satisfy the maximum number of (not
already satisfied) requirements. In case of ties we select the
component that can be obtained from an initial configuration
satisfying less requirements. In case of ties we prefer a
copy and, if the component is instead newly obtained, we
select the one that can be obtained with less state changes.
Similarly, when component-state pairs are selected to satisfy
some requirements, we select first the one able to satisfy the
maximum number of requirements, in case of ties the one that
can be obtained with less interfaces and, in case of a tie, the

1. Heuristics are used to reduce the complexity of finding the best choice.
Indeed, exploring all the possibilities to compute a (global) minimum can be
done just at an exponential cost

u Use the reachability graph bottom-up
from the target state
n  select the bindings (red arrows)
n  select the predecessors (black arrows)

u Generate an
abstract plan
(one component
for each maximal
path)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

a pyramid of levels of component-states having arrows �⇤ or
arcs between two consecutive levels as the one in Fig. 3.

Fig. 3: Reachability graph for the kerberos running example.

The first level of Fig. 3 contains the two components krb5
and openldap in their initial states. In the second level the
component krb5 in stage1 state is added since it can be derived
from the krb5 component in state uninst. The component
openldap in normal state can not be added at this level since it
requires the interface libkrb5-dev, not yet provided. openldap
in normal state is added however in the third level since
libkrb5-dev is now provided by krb5 in state stage1. Finally,
in the fourth level, the target state is added deriving it from
krb5 in state stage1. This last level is also the fix-point since
no new component-state pairs can be generated from it.

Note that keeping component copies allows one to consider
different ways a component can use to reach a state. This adds
flexibility in deciding how a target can be reached.

B. Abstract Planning

After generating the reachability graph we compute an
abstract plan.

We first describe the structure of an abstract plan and
then explain how this can be derived from the reachability
graph. An abstract plan is a directed graph where the nodes
represent either a create, delete, or stateChange action, and
arcs represent action precedence constraints. In the following
we denote with ⇧z,q,q⌅⌃ a stateChange from q to q⌅ of instance
z, with ⇧z,e,q0⌃ the create action of the instance z in the initial
state q0, and with ⇧z,q,e⌃ the delete action on the instance z
in state q. We consider three types of precedence arcs:

• �⇤: states the precedence of stateChange actions on the
same component instance; formally ⇧z,x,x⌅⌃ �⇤ ⇧z,x⌅,x⌅⌅⌃
where x⌅ is a state and x,x⌅⌅ are either states or the special
symbol e denoting absence of the instance z;

•
r⇣ where r is an interface: states that if an action deploys

an instance z⌅ in a state y⌅ requiring r, provided by z in
state y, then state y must be entered before entering state
y⌅, formally ⇧z,x,y⌃

r⇣⇧z⌅,x⌅,y⌅⌃;
•

r99K, where r is an interface, is the dual of the previous
arrow: it states that if an action deploys an instance z⌅
in a state y⌅ requiring r, provided by z in state y, then
state y⌅ must be exited before exiting state y, formally
⇧z⌅,y⌅,u⌅⌃ r99K⇧z,y,u⌃.

We are now ready to describe how an abstract plan is
obtained. Starting from the reachability graph we select the

(a)

(b)

Fig. 4: Generation of abstract plan for the kerberos example.

target component-state pair at the bottom of the pyramid.
From the bottom level we then proceed upward selecting the
components that are used to deploy the selected component-
state pairs at the lower level. To do so, for every selected
component at level i + 1, we select at level i one of its
predecessors (i.e. a component-state pair connected via the
�⇤ arrow) or a copy (i.e. a component-state pair connected
via the arc). Moreover, for every require port activated by
the selected component-state pairs of level i+ 1 that are not
copies, we select a component-state pair at level i that is able
to satisfy the requirement, and we keep track of this choice.

For the kerberos case, Fig. 4a shows that in the last level
krb5 in normal state is selected. Since krb5 can be only
obtained via krb5 in state stage1 we select krb5 in state stage1
in the previous level. Moreover since krb5 in state normal
requires libldap2-dev we select at level 2 also the component
openldap in state normal. Iterating this selection process we
may end up in the scenario depicted in Fig. 4b.

We would like to underline that during the selection of
component-state pairs different choices could be made. For
instance in Fig. 4b at the second level we could have selected
component krb5 in state uninst to deploy the same component
in state stage1 and component krb5 in state stage1 to provide
the libkrb5-dev interface. These choices have an impact on the
number of instances employed to reach the goal. In order to
minimize this number we rely on heuristics.1 In particular,
for the selection of component-state pairs, we choose the
one that is able to satisfy the maximum number of (not
already satisfied) requirements. In case of ties we select the
component that can be obtained from an initial configuration
satisfying less requirements. In case of ties we prefer a
copy and, if the component is instead newly obtained, we
select the one that can be obtained with less state changes.
Similarly, when component-state pairs are selected to satisfy
some requirements, we select first the one able to satisfy the
maximum number of requirements, in case of ties the one that
can be obtained with less interfaces and, in case of a tie, the

1. Heuristics are used to reduce the complexity of finding the best choice.
Indeed, exploring all the possibilities to compute a (global) minimum can be
done just at an exponential cost

one that can be obtained with less state changes.
Once all the component-state pairs have been selected, we

consider a component instance for every maximal path that
starts from a component-state in the top level and reaches
a component-state that is not a copy. For instance in the
kerberos case there are two maximal paths, one starting from
the component krb5 in state uninst and reaching the state
normal, and one starting from the component openldap in
state uninst and reaching the state normal. We identify the
corresponding instances with z and w respectively.

For every instance we add to the abstract plan its create,
delete and stateChange actions. Arrows �⇥ are added to
connect these actions in chronological order (i.e. first the
instance creation, the state changes and then the deletion
action). The arrows

r⇣ and
r99K are instead added between

actions of instances requiring and providing an interface r.

Fig. 5: Abstract plan for the kerberos running example.

Fig. 5 shows the abstract plan obtained for the kerberos
case. The four actions on the left are related to instance z
while the three on the right are actions related to instance
w. z is first created, then it changes its state first into stage1
and then to normal before being deleted. w instead is created,
it changes state into normal, before being deleted. These
precedences are encoded by �⇥ arrows. z’s requirement of
libldap2-dev in state normal, satisfied by w in normal state,

is encoded with
libldap2�dev

⇣ between ⌅w,uninst,normal⇧ and

⌅z,stage1,normal⇧ and
libldap2�dev99K between ⌅z,normal,e⇧ and

⌅w,normal,e⇧. The fist one states that w must be in normal
state before z moves to normal while the second states that the
deletion of z must precede the deletion of w. Indeed, if one
of these constraints does not hold it means that the abstract
plan violates a requirement thus leading to a non correct
configuration. Similarly, the libkrb5-dev interface requirement
of w in state normal, satisfied by z in state1, is encoded with
libkrb5�dev⇣ between ⌅z,uninst,stage1⇧ and ⌅w,uninst,normal⇧
and

libkrb5�dev99K between ⌅w,normal,e⇧ and ⌅z,stage1,normal⇧.
In this case we can however notice that z continues to provide
the port libkrb5-dev also when it is in state normal. Thus w
does not need to be deleted before krb5 moves to normal
but it can stay until the krb5 is not deleted. This relaxation
corresponds to setting ⌅z,normal,e⇧ as the target of

libkrb5�dev99K .
In general all the constraints ⌅z,x,y⇧ r99K⌅z,x⇤,y⇤⇧ can be relaxed

replacing ⌅z,x⇤,y⇤⇧ with ⌅z,x⇤⇤,y⇤⇤⇧ where ⌅z,x⇤⇤,y⇤⇤⇧ is a delete
action or it is the the first stateChange reaching a state y⇤⇤ that
does not provide r. After applying these relaxations we obtain
the final version of abstract plan that, for the kerberos case, is
the one depicted in Fig. 6.

Fig. 6: Abstract plan for the kerberos example after relaxation.

C. Plan generation
The abstract plan is used to synthesize a concrete one. The

idea is to visit the nodes of the abstract plan in topological
order until the target component is obtained. Visiting a node
consists of performing that action. Moreover, in order to
properly satisfy component requirements, when an incoming
r⇣ is encountered a new binding should be created, and when

an outgoing
r99K is encountered the corresponding binding

should be deleted. Notice that it is not necessary to visit the
entire abstract plan as it is sufficient to reach the target state.
For this reason, we give priority to the visit of the actions of
the components containing such state.

For instance, in the kerberos example, we can extract a
concrete plan from the abstract plan in Fig. 6 as follows.
Assume that the target state is state normal of component type
krb5. As we give priority to the corresponding instance, the
first action in the concrete plan is create(krb5,z) corresponding
to the visit of ⌅z,e,uninst⇧. The subsequent action is stat-
eChange(z,uninst,stage1) corresponding to ⌅z,uninst,stage1⇧.
The visit of the actions on the instance z cannot proceed

due to the incoming arrow
libldap2�dev

⇣ ; for this reason the
next action in the concrete plan is create(openldap,w) cor-
responding to the visit of ⌅w,e,uninst⇧. The next node in
the abstract plan to be visited is ⌅w,uninst,normal⇧, but
as this node has an incoming

libkrb5�dev⇣ , two actions must
be added to the concrete plan: bind(libkrb5-dev,z,w) and
stateChange(w,uninst,normal). At this point, the visit of the
component instance z can continue by considering node

⌅z,stage1,normal⇧; as this node has an incoming
libldap2�dev

⇣ ,
two actions must be added to the concrete plan: bind(libldap2-
dev,w,z) and stateChange(w,uninst,normal). This completes the
generation of the concrete plan as the target state has been
reached.

Unfortunately, the topological visit is not always possible as
it may be inhibited by the presence of cycles in the abstract
plan. Consider, for instance, a slightly modified version of the

Ad-hoc planning [FACS’13,ICTAI’13]

u Generate an
abstract plan
(one component
for each maximal
path)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

a pyramid of levels of component-states having arrows �⇤ or
arcs between two consecutive levels as the one in Fig. 3.

Fig. 3: Reachability graph for the kerberos running example.

The first level of Fig. 3 contains the two components krb5
and openldap in their initial states. In the second level the
component krb5 in stage1 state is added since it can be derived
from the krb5 component in state uninst. The component
openldap in normal state can not be added at this level since it
requires the interface libkrb5-dev, not yet provided. openldap
in normal state is added however in the third level since
libkrb5-dev is now provided by krb5 in state stage1. Finally,
in the fourth level, the target state is added deriving it from
krb5 in state stage1. This last level is also the fix-point since
no new component-state pairs can be generated from it.

Note that keeping component copies allows one to consider
different ways a component can use to reach a state. This adds
flexibility in deciding how a target can be reached.

B. Abstract Planning

After generating the reachability graph we compute an
abstract plan.

We first describe the structure of an abstract plan and
then explain how this can be derived from the reachability
graph. An abstract plan is a directed graph where the nodes
represent either a create, delete, or stateChange action, and
arcs represent action precedence constraints. In the following
we denote with ⇧z,q,q⌅⌃ a stateChange from q to q⌅ of instance
z, with ⇧z,e,q0⌃ the create action of the instance z in the initial
state q0, and with ⇧z,q,e⌃ the delete action on the instance z
in state q. We consider three types of precedence arcs:

• �⇤: states the precedence of stateChange actions on the
same component instance; formally ⇧z,x,x⌅⌃ �⇤ ⇧z,x⌅,x⌅⌅⌃
where x⌅ is a state and x,x⌅⌅ are either states or the special
symbol e denoting absence of the instance z;

•
r⇣ where r is an interface: states that if an action deploys

an instance z⌅ in a state y⌅ requiring r, provided by z in
state y, then state y must be entered before entering state
y⌅, formally ⇧z,x,y⌃

r⇣⇧z⌅,x⌅,y⌅⌃;
•

r99K, where r is an interface, is the dual of the previous
arrow: it states that if an action deploys an instance z⌅
in a state y⌅ requiring r, provided by z in state y, then
state y⌅ must be exited before exiting state y, formally
⇧z⌅,y⌅,u⌅⌃ r99K⇧z,y,u⌃.

We are now ready to describe how an abstract plan is
obtained. Starting from the reachability graph we select the

(a)

(b)

Fig. 4: Generation of abstract plan for the kerberos example.

target component-state pair at the bottom of the pyramid.
From the bottom level we then proceed upward selecting the
components that are used to deploy the selected component-
state pairs at the lower level. To do so, for every selected
component at level i + 1, we select at level i one of its
predecessors (i.e. a component-state pair connected via the
�⇤ arrow) or a copy (i.e. a component-state pair connected
via the arc). Moreover, for every require port activated by
the selected component-state pairs of level i+ 1 that are not
copies, we select a component-state pair at level i that is able
to satisfy the requirement, and we keep track of this choice.

For the kerberos case, Fig. 4a shows that in the last level
krb5 in normal state is selected. Since krb5 can be only
obtained via krb5 in state stage1 we select krb5 in state stage1
in the previous level. Moreover since krb5 in state normal
requires libldap2-dev we select at level 2 also the component
openldap in state normal. Iterating this selection process we
may end up in the scenario depicted in Fig. 4b.

We would like to underline that during the selection of
component-state pairs different choices could be made. For
instance in Fig. 4b at the second level we could have selected
component krb5 in state uninst to deploy the same component
in state stage1 and component krb5 in state stage1 to provide
the libkrb5-dev interface. These choices have an impact on the
number of instances employed to reach the goal. In order to
minimize this number we rely on heuristics.1 In particular,
for the selection of component-state pairs, we choose the
one that is able to satisfy the maximum number of (not
already satisfied) requirements. In case of ties we select the
component that can be obtained from an initial configuration
satisfying less requirements. In case of ties we prefer a
copy and, if the component is instead newly obtained, we
select the one that can be obtained with less state changes.
Similarly, when component-state pairs are selected to satisfy
some requirements, we select first the one able to satisfy the
maximum number of requirements, in case of ties the one that
can be obtained with less interfaces and, in case of a tie, the

1. Heuristics are used to reduce the complexity of finding the best choice.
Indeed, exploring all the possibilities to compute a (global) minimum can be
done just at an exponential cost

one that can be obtained with less state changes.
Once all the component-state pairs have been selected, we

consider a component instance for every maximal path that
starts from a component-state in the top level and reaches
a component-state that is not a copy. For instance in the
kerberos case there are two maximal paths, one starting from
the component krb5 in state uninst and reaching the state
normal, and one starting from the component openldap in
state uninst and reaching the state normal. We identify the
corresponding instances with z and w respectively.

For every instance we add to the abstract plan its create,
delete and stateChange actions. Arrows �⇥ are added to
connect these actions in chronological order (i.e. first the
instance creation, the state changes and then the deletion
action). The arrows

r⇣ and
r99K are instead added between

actions of instances requiring and providing an interface r.

Fig. 5: Abstract plan for the kerberos running example.

Fig. 5 shows the abstract plan obtained for the kerberos
case. The four actions on the left are related to instance z
while the three on the right are actions related to instance
w. z is first created, then it changes its state first into stage1
and then to normal before being deleted. w instead is created,
it changes state into normal, before being deleted. These
precedences are encoded by �⇥ arrows. z’s requirement of
libldap2-dev in state normal, satisfied by w in normal state,

is encoded with
libldap2�dev

⇣ between ⌅w,uninst,normal⇧ and

⌅z,stage1,normal⇧ and
libldap2�dev99K between ⌅z,normal,e⇧ and

⌅w,normal,e⇧. The fist one states that w must be in normal
state before z moves to normal while the second states that the
deletion of z must precede the deletion of w. Indeed, if one
of these constraints does not hold it means that the abstract
plan violates a requirement thus leading to a non correct
configuration. Similarly, the libkrb5-dev interface requirement
of w in state normal, satisfied by z in state1, is encoded with
libkrb5�dev⇣ between ⌅z,uninst,stage1⇧ and ⌅w,uninst,normal⇧
and

libkrb5�dev99K between ⌅w,normal,e⇧ and ⌅z,stage1,normal⇧.
In this case we can however notice that z continues to provide
the port libkrb5-dev also when it is in state normal. Thus w
does not need to be deleted before krb5 moves to normal
but it can stay until the krb5 is not deleted. This relaxation
corresponds to setting ⌅z,normal,e⇧ as the target of

libkrb5�dev99K .
In general all the constraints ⌅z,x,y⇧ r99K⌅z,x⇤,y⇤⇧ can be relaxed

replacing ⌅z,x⇤,y⇤⇧ with ⌅z,x⇤⇤,y⇤⇤⇧ where ⌅z,x⇤⇤,y⇤⇤⇧ is a delete
action or it is the the first stateChange reaching a state y⇤⇤ that
does not provide r. After applying these relaxations we obtain
the final version of abstract plan that, for the kerberos case, is
the one depicted in Fig. 6.

Fig. 6: Abstract plan for the kerberos example after relaxation.

C. Plan generation
The abstract plan is used to synthesize a concrete one. The

idea is to visit the nodes of the abstract plan in topological
order until the target component is obtained. Visiting a node
consists of performing that action. Moreover, in order to
properly satisfy component requirements, when an incoming
r⇣ is encountered a new binding should be created, and when

an outgoing
r99K is encountered the corresponding binding

should be deleted. Notice that it is not necessary to visit the
entire abstract plan as it is sufficient to reach the target state.
For this reason, we give priority to the visit of the actions of
the components containing such state.

For instance, in the kerberos example, we can extract a
concrete plan from the abstract plan in Fig. 6 as follows.
Assume that the target state is state normal of component type
krb5. As we give priority to the corresponding instance, the
first action in the concrete plan is create(krb5,z) corresponding
to the visit of ⌅z,e,uninst⇧. The subsequent action is stat-
eChange(z,uninst,stage1) corresponding to ⌅z,uninst,stage1⇧.
The visit of the actions on the instance z cannot proceed

due to the incoming arrow
libldap2�dev

⇣ ; for this reason the
next action in the concrete plan is create(openldap,w) cor-
responding to the visit of ⌅w,e,uninst⇧. The next node in
the abstract plan to be visited is ⌅w,uninst,normal⇧, but
as this node has an incoming

libkrb5�dev⇣ , two actions must
be added to the concrete plan: bind(libkrb5-dev,z,w) and
stateChange(w,uninst,normal). At this point, the visit of the
component instance z can continue by considering node

⌅z,stage1,normal⇧; as this node has an incoming
libldap2�dev

⇣ ,
two actions must be added to the concrete plan: bind(libldap2-
dev,w,z) and stateChange(w,uninst,normal). This completes the
generation of the concrete plan as the target state has been
reached.

Unfortunately, the topological visit is not always possible as
it may be inhibited by the presence of cycles in the abstract
plan. Consider, for instance, a slightly modified version of the

Time

Ad-hoc planning [FACS’13,ICTAI’13]

u Generate an
abstract plan
(one component
for each maximal
path)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

a pyramid of levels of component-states having arrows �⇤ or
arcs between two consecutive levels as the one in Fig. 3.

Fig. 3: Reachability graph for the kerberos running example.

The first level of Fig. 3 contains the two components krb5
and openldap in their initial states. In the second level the
component krb5 in stage1 state is added since it can be derived
from the krb5 component in state uninst. The component
openldap in normal state can not be added at this level since it
requires the interface libkrb5-dev, not yet provided. openldap
in normal state is added however in the third level since
libkrb5-dev is now provided by krb5 in state stage1. Finally,
in the fourth level, the target state is added deriving it from
krb5 in state stage1. This last level is also the fix-point since
no new component-state pairs can be generated from it.

Note that keeping component copies allows one to consider
different ways a component can use to reach a state. This adds
flexibility in deciding how a target can be reached.

B. Abstract Planning

After generating the reachability graph we compute an
abstract plan.

We first describe the structure of an abstract plan and
then explain how this can be derived from the reachability
graph. An abstract plan is a directed graph where the nodes
represent either a create, delete, or stateChange action, and
arcs represent action precedence constraints. In the following
we denote with ⇧z,q,q⌅⌃ a stateChange from q to q⌅ of instance
z, with ⇧z,e,q0⌃ the create action of the instance z in the initial
state q0, and with ⇧z,q,e⌃ the delete action on the instance z
in state q. We consider three types of precedence arcs:

• �⇤: states the precedence of stateChange actions on the
same component instance; formally ⇧z,x,x⌅⌃ �⇤ ⇧z,x⌅,x⌅⌅⌃
where x⌅ is a state and x,x⌅⌅ are either states or the special
symbol e denoting absence of the instance z;

•
r⇣ where r is an interface: states that if an action deploys

an instance z⌅ in a state y⌅ requiring r, provided by z in
state y, then state y must be entered before entering state
y⌅, formally ⇧z,x,y⌃

r⇣⇧z⌅,x⌅,y⌅⌃;
•

r99K, where r is an interface, is the dual of the previous
arrow: it states that if an action deploys an instance z⌅
in a state y⌅ requiring r, provided by z in state y, then
state y⌅ must be exited before exiting state y, formally
⇧z⌅,y⌅,u⌅⌃ r99K⇧z,y,u⌃.

We are now ready to describe how an abstract plan is
obtained. Starting from the reachability graph we select the

(a)

(b)

Fig. 4: Generation of abstract plan for the kerberos example.

target component-state pair at the bottom of the pyramid.
From the bottom level we then proceed upward selecting the
components that are used to deploy the selected component-
state pairs at the lower level. To do so, for every selected
component at level i + 1, we select at level i one of its
predecessors (i.e. a component-state pair connected via the
�⇤ arrow) or a copy (i.e. a component-state pair connected
via the arc). Moreover, for every require port activated by
the selected component-state pairs of level i+ 1 that are not
copies, we select a component-state pair at level i that is able
to satisfy the requirement, and we keep track of this choice.

For the kerberos case, Fig. 4a shows that in the last level
krb5 in normal state is selected. Since krb5 can be only
obtained via krb5 in state stage1 we select krb5 in state stage1
in the previous level. Moreover since krb5 in state normal
requires libldap2-dev we select at level 2 also the component
openldap in state normal. Iterating this selection process we
may end up in the scenario depicted in Fig. 4b.

We would like to underline that during the selection of
component-state pairs different choices could be made. For
instance in Fig. 4b at the second level we could have selected
component krb5 in state uninst to deploy the same component
in state stage1 and component krb5 in state stage1 to provide
the libkrb5-dev interface. These choices have an impact on the
number of instances employed to reach the goal. In order to
minimize this number we rely on heuristics.1 In particular,
for the selection of component-state pairs, we choose the
one that is able to satisfy the maximum number of (not
already satisfied) requirements. In case of ties we select the
component that can be obtained from an initial configuration
satisfying less requirements. In case of ties we prefer a
copy and, if the component is instead newly obtained, we
select the one that can be obtained with less state changes.
Similarly, when component-state pairs are selected to satisfy
some requirements, we select first the one able to satisfy the
maximum number of requirements, in case of ties the one that
can be obtained with less interfaces and, in case of a tie, the

1. Heuristics are used to reduce the complexity of finding the best choice.
Indeed, exploring all the possibilities to compute a (global) minimum can be
done just at an exponential cost

one that can be obtained with less state changes.
Once all the component-state pairs have been selected, we

consider a component instance for every maximal path that
starts from a component-state in the top level and reaches
a component-state that is not a copy. For instance in the
kerberos case there are two maximal paths, one starting from
the component krb5 in state uninst and reaching the state
normal, and one starting from the component openldap in
state uninst and reaching the state normal. We identify the
corresponding instances with z and w respectively.

For every instance we add to the abstract plan its create,
delete and stateChange actions. Arrows �⇥ are added to
connect these actions in chronological order (i.e. first the
instance creation, the state changes and then the deletion
action). The arrows

r⇣ and
r99K are instead added between

actions of instances requiring and providing an interface r.

Fig. 5: Abstract plan for the kerberos running example.

Fig. 5 shows the abstract plan obtained for the kerberos
case. The four actions on the left are related to instance z
while the three on the right are actions related to instance
w. z is first created, then it changes its state first into stage1
and then to normal before being deleted. w instead is created,
it changes state into normal, before being deleted. These
precedences are encoded by �⇥ arrows. z’s requirement of
libldap2-dev in state normal, satisfied by w in normal state,

is encoded with
libldap2�dev

⇣ between ⌅w,uninst,normal⇧ and

⌅z,stage1,normal⇧ and
libldap2�dev99K between ⌅z,normal,e⇧ and

⌅w,normal,e⇧. The fist one states that w must be in normal
state before z moves to normal while the second states that the
deletion of z must precede the deletion of w. Indeed, if one
of these constraints does not hold it means that the abstract
plan violates a requirement thus leading to a non correct
configuration. Similarly, the libkrb5-dev interface requirement
of w in state normal, satisfied by z in state1, is encoded with
libkrb5�dev⇣ between ⌅z,uninst,stage1⇧ and ⌅w,uninst,normal⇧
and

libkrb5�dev99K between ⌅w,normal,e⇧ and ⌅z,stage1,normal⇧.
In this case we can however notice that z continues to provide
the port libkrb5-dev also when it is in state normal. Thus w
does not need to be deleted before krb5 moves to normal
but it can stay until the krb5 is not deleted. This relaxation
corresponds to setting ⌅z,normal,e⇧ as the target of

libkrb5�dev99K .
In general all the constraints ⌅z,x,y⇧ r99K⌅z,x⇤,y⇤⇧ can be relaxed

replacing ⌅z,x⇤,y⇤⇧ with ⌅z,x⇤⇤,y⇤⇤⇧ where ⌅z,x⇤⇤,y⇤⇤⇧ is a delete
action or it is the the first stateChange reaching a state y⇤⇤ that
does not provide r. After applying these relaxations we obtain
the final version of abstract plan that, for the kerberos case, is
the one depicted in Fig. 6.

Fig. 6: Abstract plan for the kerberos example after relaxation.

C. Plan generation
The abstract plan is used to synthesize a concrete one. The

idea is to visit the nodes of the abstract plan in topological
order until the target component is obtained. Visiting a node
consists of performing that action. Moreover, in order to
properly satisfy component requirements, when an incoming
r⇣ is encountered a new binding should be created, and when

an outgoing
r99K is encountered the corresponding binding

should be deleted. Notice that it is not necessary to visit the
entire abstract plan as it is sufficient to reach the target state.
For this reason, we give priority to the visit of the actions of
the components containing such state.

For instance, in the kerberos example, we can extract a
concrete plan from the abstract plan in Fig. 6 as follows.
Assume that the target state is state normal of component type
krb5. As we give priority to the corresponding instance, the
first action in the concrete plan is create(krb5,z) corresponding
to the visit of ⌅z,e,uninst⇧. The subsequent action is stat-
eChange(z,uninst,stage1) corresponding to ⌅z,uninst,stage1⇧.
The visit of the actions on the instance z cannot proceed

due to the incoming arrow
libldap2�dev

⇣ ; for this reason the
next action in the concrete plan is create(openldap,w) cor-
responding to the visit of ⌅w,e,uninst⇧. The next node in
the abstract plan to be visited is ⌅w,uninst,normal⇧, but
as this node has an incoming

libkrb5�dev⇣ , two actions must
be added to the concrete plan: bind(libkrb5-dev,z,w) and
stateChange(w,uninst,normal). At this point, the visit of the
component instance z can continue by considering node

⌅z,stage1,normal⇧; as this node has an incoming
libldap2�dev

⇣ ,
two actions must be added to the concrete plan: bind(libldap2-
dev,w,z) and stateChange(w,uninst,normal). This completes the
generation of the concrete plan as the target state has been
reached.

Unfortunately, the topological visit is not always possible as
it may be inhibited by the presence of cycles in the abstract
plan. Consider, for instance, a slightly modified version of the

Arrows represent a
precedence relation:
u  blue: start requirement
u  red: end requirement

Time

Ad-hoc planning [FACS’13,ICTAI’13]

u Plan as a topological visit until target:
newRsrc(krb5), newRsrc(openldap),
stage1(krb5), bind(libkrb,openldap,krb5),
normal(openldap), bind(libldap,krb5,openldap),
normal(krb5)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

one that can be obtained with less state changes.
Once all the component-state pairs have been selected, we

consider a component instance for every maximal path that
starts from a component-state in the top level and reaches
a component-state that is not a copy. For instance in the
kerberos case there are two maximal paths, one starting from
the component krb5 in state uninst and reaching the state
normal, and one starting from the component openldap in
state uninst and reaching the state normal. We identify the
corresponding instances with z and w respectively.

For every instance we add to the abstract plan its create,
delete and stateChange actions. Arrows �⇥ are added to
connect these actions in chronological order (i.e. first the
instance creation, the state changes and then the deletion
action). The arrows

r⇣ and
r99K are instead added between

actions of instances requiring and providing an interface r.

Fig. 5: Abstract plan for the kerberos running example.

Fig. 5 shows the abstract plan obtained for the kerberos
case. The four actions on the left are related to instance z
while the three on the right are actions related to instance
w. z is first created, then it changes its state first into stage1
and then to normal before being deleted. w instead is created,
it changes state into normal, before being deleted. These
precedences are encoded by �⇥ arrows. z’s requirement of
libldap2-dev in state normal, satisfied by w in normal state,

is encoded with
libldap2�dev

⇣ between ⌅w,uninst,normal⇧ and

⌅z,stage1,normal⇧ and
libldap2�dev99K between ⌅z,normal,e⇧ and

⌅w,normal,e⇧. The fist one states that w must be in normal
state before z moves to normal while the second states that the
deletion of z must precede the deletion of w. Indeed, if one
of these constraints does not hold it means that the abstract
plan violates a requirement thus leading to a non correct
configuration. Similarly, the libkrb5-dev interface requirement
of w in state normal, satisfied by z in state1, is encoded with
libkrb5�dev⇣ between ⌅z,uninst,stage1⇧ and ⌅w,uninst,normal⇧
and

libkrb5�dev99K between ⌅w,normal,e⇧ and ⌅z,stage1,normal⇧.
In this case we can however notice that z continues to provide
the port libkrb5-dev also when it is in state normal. Thus w
does not need to be deleted before krb5 moves to normal
but it can stay until the krb5 is not deleted. This relaxation
corresponds to setting ⌅z,normal,e⇧ as the target of

libkrb5�dev99K .
In general all the constraints ⌅z,x,y⇧ r99K⌅z,x⇤,y⇤⇧ can be relaxed

replacing ⌅z,x⇤,y⇤⇧ with ⌅z,x⇤⇤,y⇤⇤⇧ where ⌅z,x⇤⇤,y⇤⇤⇧ is a delete
action or it is the the first stateChange reaching a state y⇤⇤ that
does not provide r. After applying these relaxations we obtain
the final version of abstract plan that, for the kerberos case, is
the one depicted in Fig. 6.

Fig. 6: Abstract plan for the kerberos example after relaxation.

C. Plan generation
The abstract plan is used to synthesize a concrete one. The

idea is to visit the nodes of the abstract plan in topological
order until the target component is obtained. Visiting a node
consists of performing that action. Moreover, in order to
properly satisfy component requirements, when an incoming
r⇣ is encountered a new binding should be created, and when

an outgoing
r99K is encountered the corresponding binding

should be deleted. Notice that it is not necessary to visit the
entire abstract plan as it is sufficient to reach the target state.
For this reason, we give priority to the visit of the actions of
the components containing such state.

For instance, in the kerberos example, we can extract a
concrete plan from the abstract plan in Fig. 6 as follows.
Assume that the target state is state normal of component type
krb5. As we give priority to the corresponding instance, the
first action in the concrete plan is create(krb5,z) corresponding
to the visit of ⌅z,e,uninst⇧. The subsequent action is stat-
eChange(z,uninst,stage1) corresponding to ⌅z,uninst,stage1⇧.
The visit of the actions on the instance z cannot proceed

due to the incoming arrow
libldap2�dev

⇣ ; for this reason the
next action in the concrete plan is create(openldap,w) cor-
responding to the visit of ⌅w,e,uninst⇧. The next node in
the abstract plan to be visited is ⌅w,uninst,normal⇧, but
as this node has an incoming

libkrb5�dev⇣ , two actions must
be added to the concrete plan: bind(libkrb5-dev,z,w) and
stateChange(w,uninst,normal). At this point, the visit of the
component instance z can continue by considering node

⌅z,stage1,normal⇧; as this node has an incoming
libldap2�dev

⇣ ,
two actions must be added to the concrete plan: bind(libldap2-
dev,w,z) and stateChange(w,uninst,normal). This completes the
generation of the concrete plan as the target state has been
reached.

Unfortunately, the topological visit is not always possible as
it may be inhibited by the presence of cycles in the abstract
plan. Consider, for instance, a slightly modified version of the

Time

Ad-hoc planning [FACS’13,ICTAI’13]

Arrows represent a
precedence relation:
u  blue: start requirement
u  red: end requirement

Reconfiguration vs.
Deployment
u Reconfiguration problem:

n  same as deployment,
but with non empty initial configuration

u We recently proved that reconfiguration
is PSpace-complete
(relation with 1-safe Petri nets)

u Open issue:
n  Find restrictions to the model that make

reconfiguration tractable
(seems very useful in practice)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Other open issues
u In real systems there is a flow of

configuration data among components:
n  Room for name-passing models?

u Hierarchical modeling
(virtual machines, administrative
domains, geographical areas,…):
n  Room for higher-order models?

u Services consume resources:
n  Room for resource-aware models?

n  We considered a flat model:
n  Need for

u The deployment problem simply replies
yes / no

u A real deployment tool needs to know
how to reach the target configuration
n  In other words, an actual deployment plan

should be computed

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Related work
u ConfSolve [J.A.Hewson, P.Anderson, A.D.Gordon - LISA’12]

n  Object-oriented language for services and
machines

n  Type system for checking configuration
correctness

n  Constraint solver for
automatic placement of
services on machines

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

give an overview of the MiniZinc constraint language,
present the abstract grammar of ConfSolve, describe its
type system, and describe a method for its transforma-
tion into MiniZinc. Finally, we provide experimental re-
sults demonstrating that our method outperforms previ-
ous work, before discussing the implications and direc-
tions for future work.

2 Modelling with ConfSolve
ConfSolve provides the user with an object-oriented
declarative language, with a Java-like syntax, which ad-
heres to several key principles:

1. Order never matters. Declaration and usage can oc-
cur in any order with no difference in meaning.

2. Everything is an expression, except declarations.
3. All classes are equal: there are no built-in classes

with special meanings such as Machine or File.

Variables and Classes: A ConfSolve model consists
of a global scope in which strongly-typed variables,
classes, and enumerations may be declared. For exam-
ple, a simple machine may be defined as:

enum OperatingSystem { Windows, UNIX, OSX }

class Machine {
var os as OperatingSystem;
var cpus as 1..4;
var memory as int;

}

var m0 as Machine;

In which m0 is a Machine object in the global scope, with
members os, an enumeration; cpus, an integer subrange;
and memory, an unbounded integer.

Member variables may also declare objects, allowing
the nesting of child objects within a parent object. For
example, we could add a network interface to the ma-
chine definition:

class Machine {
...
var en0 as NetworkInterface;

}

class NetworkInterface {
var subnet as 0..3;

}

An instance of NetworkInterface will be created when-
ever a Machine is instantiated. The lifetime of the Net-
workInterface instance is tied to that of its parent ob-
ject, and is not shared between different instances of Ma-
chine.

Inheritance: Objects support classical single inheri-
tance via abstract classes. For example, we declare a
class model machine-roles, with specialised subclasses
for web servers:

abstract class Role {
var machine as ref Machine;

}

class WebServer extends Role {
var port as 0..65535;

}

References: Associations between objects are mod-
elled using reference types. References are handles to
objects elsewhere in the model, which cannot be null.
Consider an instance of the web server role:

var ws1 as WebServer;

In the previous declaration of the Role class, the variable
machine was declared as a Machine reference. Thus w1
contains a reference to a machine, in this case it will
refer to m0, as it is the only machine we have so far de-
clared. The solver will automatically assign the value of
a reference to any instance of the appropriate type, so if
we always wanted ws1 to run on m1 we would also need
to write:

ws1.machine = m1;

Which is an example of an equality constraint.

Constraints: Constraints are expressions which must
hold in any solution to the model. For example, intro-
ducing a database-server role which can be either a slave
or master, and must be peered with another slave or mas-
ter, as appropriate:

enum DatabaseRole { Master, Slave }

class DatabaseServer extends Role {
var role as DatabaseRole;

// slave or master
var peer as ref DatabaseServer;

// the peer cannot be itself
peer != this;

// a master’s peer must be a slave,
// and a slave’s peer must be a master
role != peer.role;

}

This allow us to define two database server roles:

give an overview of the MiniZinc constraint language,
present the abstract grammar of ConfSolve, describe its
type system, and describe a method for its transforma-
tion into MiniZinc. Finally, we provide experimental re-
sults demonstrating that our method outperforms previ-
ous work, before discussing the implications and direc-
tions for future work.

2 Modelling with ConfSolve
ConfSolve provides the user with an object-oriented
declarative language, with a Java-like syntax, which ad-
heres to several key principles:

1. Order never matters. Declaration and usage can oc-
cur in any order with no difference in meaning.

2. Everything is an expression, except declarations.
3. All classes are equal: there are no built-in classes

with special meanings such as Machine or File.

Variables and Classes: A ConfSolve model consists
of a global scope in which strongly-typed variables,
classes, and enumerations may be declared. For exam-
ple, a simple machine may be defined as:

enum OperatingSystem { Windows, UNIX, OSX }

class Machine {
var os as OperatingSystem;
var cpus as 1..4;
var memory as int;

}

var m0 as Machine;

In which m0 is a Machine object in the global scope, with
members os, an enumeration; cpus, an integer subrange;
and memory, an unbounded integer.

Member variables may also declare objects, allowing
the nesting of child objects within a parent object. For
example, we could add a network interface to the ma-
chine definition:

class Machine {
...
var en0 as NetworkInterface;

}

class NetworkInterface {
var subnet as 0..3;

}

An instance of NetworkInterface will be created when-
ever a Machine is instantiated. The lifetime of the Net-
workInterface instance is tied to that of its parent ob-
ject, and is not shared between different instances of Ma-
chine.

Inheritance: Objects support classical single inheri-
tance via abstract classes. For example, we declare a
class model machine-roles, with specialised subclasses
for web servers:

abstract class Role {
var machine as ref Machine;

}

class WebServer extends Role {
var port as 0..65535;

}

References: Associations between objects are mod-
elled using reference types. References are handles to
objects elsewhere in the model, which cannot be null.
Consider an instance of the web server role:

var ws1 as WebServer;

In the previous declaration of the Role class, the variable
machine was declared as a Machine reference. Thus w1
contains a reference to a machine, in this case it will
refer to m0, as it is the only machine we have so far de-
clared. The solver will automatically assign the value of
a reference to any instance of the appropriate type, so if
we always wanted ws1 to run on m1 we would also need
to write:

ws1.machine = m1;

Which is an example of an equality constraint.

Constraints: Constraints are expressions which must
hold in any solution to the model. For example, intro-
ducing a database-server role which can be either a slave
or master, and must be peered with another slave or mas-
ter, as appropriate:

enum DatabaseRole { Master, Slave }

class DatabaseServer extends Role {
var role as DatabaseRole;

// slave or master
var peer as ref DatabaseServer;

// the peer cannot be itself
peer != this;

// a master’s peer must be a slave,
// and a slave’s peer must be a master
role != peer.role;

}

This allow us to define two database server roles:

Related work
u  Engage [J.Fischer, R.Majumdar, S.Esmaeilsabzali - PLDI’12]

n  Architectural specification in terms of
inside / peer / environment relationships

n  Automata with resource lifecycle and transient
dependencies

n  Assumption on acyclic relationships
(to always guarantee topological visit)

OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

Tomcat

JDK

Open MRS
env env

JRE MySQL

Server

peers

insideinside

inside

inside

inside

!

!!

Figure 5: Hypergraph for partial installation specification in Figure 2
.

If a resource type has a dependency on an abstract resource
r, we replace the dependency to r with a disjunction of concrete
resources in the following way. We traverse the subtypes of r in
the subclassing tree for r, starting at r and stopping whenever we
see a concrete subtype of r. In this way, we get a “frontier” F of
subtypes of r of concrete resources. We replace the dependency on
r by a disjunction of the concrete resources in F. For example, if
there is a dependency on the abstract resource Java (see Figure 1),
it is replaced by the disjunction of the concrete resources JDK 1.6
and JRE 1.6. After this transformation, there are no dependencies
on abstract resources. (If such a frontier cannot be found, that is,
if there is an abstract resource at the leaf of the subclassing tree
rooted at r, we stop with an error.)
The hypergraph generation algorithm, GraphGen(R,I), is a

worklist-based algorithm to process instances. It proceeds as fol-
lows.
First, for every resource instance in the partial install specifica-

tion, we create a node in the hypergraph and add it to the worklist.
Recall that in addition to the key of the resource, each resource
instance is globally uniquely identified by an additional identifier.
Second, we iteratively process partial resource instances from

the worklist until the worklist is empty. Suppose we are processing
resource instance r of resource R. We go through the dependencies
of r.
We assume that the partial installation specification resolves

inside dependencies of each resource instance in it by providing
a resource instance on which r is inside-dependent (that is, the
system does not generate new machines automatically). Given r,
we check that there is an existing resource instance which matches
the inside dependency. For each inside dependency, we create a
directed edge labeled “inside” from the node in the graph that
represents r to the node that represents its container.
Now consider environment dependencies of r. By assumption,

the environment dependencies are a set of disjunctions. For each
dependency in the set, we create a hyperedge with source r, and
targets as follows. Suppose the dependency is a disjunction of
resource keys k1, . . ., kn, and consider the processing of key k1.
If we can already find a node r1 in the graph with key k′1 such that
[[k′1]] ≤RT [[k1]] and such that r1 is inside the same machine as r,
we add the node r1 as a target of the hyperedge. If there is no such
node, we instantiate a new resource instance rnew with key k1, inside
the same machine as the machine of r, add the node for rnew to the
graph as well as the worklist. (We add rnew to the worklist to ensure
its dependencies are processed in the future.) At the end of this
process, we construct a hyperedge with source r and n targets, one
for each disjunct in the dependency, and label it “environment”.
For peer dependencies of r, we proceed similarly. The only

difference is that we look for a matching resource that is a subtype
of the key, but need not be on the same machine. If we find such
a node in the graph, we add it as the target of the hyperedge. If
we do not find a matching resource, we add a new instance, but
conservatively assume that the new instance resides in the same
machine as r.

Figure 5 shows the dependencies generated when processing the
partial instantiation specification of Figure 2. We have marked the
resource instances that were present in the specification with a “!”.

Lemma 1. Let R be a set of well-formed resource types and I
a partial install specification. Then procedure GraphGen(R,I)
creates a directed hypergraph G = (V, E), such that: (i) for each
resource instance r ∈ I, we have r ∈ V, and for each resource
instance r ∈ V, either r ∈ I or there is some resource instance
r′ ∈ I that is transitively dependent on the key of r; (ii) for
each resource instance r ∈ V, if r.Inside is not null, then there
is a resource instance r′ ∈ I such that there is an inside edge
from r to r′; (iii) for each resource key k such that there is an
environment dependency from k to r, there is an hyperedge with
source r containing a target resource instance with key k such that
this resource instance is on the same machine as r; (iv) for each
resource key k such that there is a peer dependency from k to r,
there is an hyperedge with source r containing a target resource
instance with key k.

Intuitively, this lemma states that the generated graph correctly
encodes the dependencies of all resource instances in I.

Constraint Generation Given the directed hypergraph
GraphGen(R,I), we generate Boolean constraints as fol-
lows. An atomic proposition is of the form rsrc(id), where id is a
resource instance identifier; it states that the resource instance with
identifier id is installed in the machine obtained by following its
inside dependencies.
We generate two kinds of constraints from the graph.
First, for each vertex in the constraint graph that represents a

resource instance specified in the partial install specification, we
add the constraint rsrc(m, id). This constraint ensures that each
resource instance mentioned in the partial install specification is
indeed instantiated in the deployment.
Second, we generate dependency constraints for each node v as

follows. For each hyperedge ewith source v and targets {v1, . . . , vn},
we generate a constraint

rsrc(v)→ "{rsrc(v1), . . . , rsrc(vn)} (1)

where "S is the Boolean predicate that is true iff exactly one
proposition from S is true. Formally,

"S ≡ (
∨

p∈S

pi) ∧
∧

p∈S

(p→
∧

q∈S ,q!p

¬q)

We denote the conjunction of the set of all above predicates
for a set of well-formed resource types R and a partial install
specification I as Generate(R,I).

Theorem 1. Let R be a set of well-formed resource types and I a
partial install specification. There exists a full installation speci-
fication extending the partial install specification iff the formula
Generate(R,I) is satisfiable.

A satisfying assignment to the Boolean constraints determines a
full installation specification extending the partial installation spec-
ification. We can compute the values of all input, configuration, and
output ports of all resource instances by a linear pass in topological
order of dependencies, filling in the input ports of each resource
instance based on the already-computed values of output ports.

5. Deployment
Engage’s deployment engine takes a full installation specification
and automatically deploys the application. It provides runtime sup-
port for provisioning servers, co-ordinating installations, as well

of Tomcat running inside server, and an instance openmrs for
the OpenMRS application running inside tomcat. In particular, the
user does not have to explicitly give the other dependencies on Java
and MySQL. The partial installation specification may also define
values for individual configuration port properties. In our example,
the hostname and os user name properties have been assigned
values. Unassigned configuration properties will take the default
values defined in the associated resource types.
The configuration engine takes this partial installation specifi-

cation and expands out all the dependencies to generate a set of
Boolean constraints such that the Boolean constraints are satisfi-
able iff there is a full installation specification which includes all of
the resource instances mentioned in the partial installation specifi-
cation. The atomic propositions in the Boolean constraints consist
of instances of resources: the proposition is true in a satisfying as-
signment iff the corresponding resource instance must be deployed.
For the partial installation specification of Figure 2, the configura-
tion engine generates the following constraints:

server ∧ from install spec
tomcat ∧ from install spec
openmrs ∧ from install spec
openmrs→ !{jdk, jre} ∧ env dep
tomcat→ !{jdk, jre} ∧ env dep
openmrs→ mysql ∧ peer dep
tomcat→ server ∧ inside dep
openmrs→ tomcat ∧ inside dep
mysql→ server ∧ inside dep
jdk→ server ∧ inside dep
jre→ server inside dep

where !S is the “exactly one” predicate that asserts that exactly
one proposition from the set S is true. The first three constraints
arise from the partial installation specification (each instance there
must be deployed). The next three arise out of environment (and
peer, for the last one) dependencies, and state that the deployment
of the l.h.s. implies the deployment of the r.h.s. The final five arise
out of inside dependencies. Note that the peer dependency of Open-
MRS on MySQL could be resolved by “creating” a new machine
instance and installing MySQL on that machine. However, our con-
straint generation process assumes that no new machines should be
created. Thus, unless explicitly specified, a peer dependency is de-
ployed at the same machine as the machine of its dependent.
The constraints are satisfied, e.g., by setting server, jdk,

tomcat, mysql, and openmrs to true, and jre to false. This cor-
responds to a deployment where a Java development kit, a Tomcat
server, a MySQL database instance, and the OpenMRS applica-
tion are all installed on a server running Mac OSX 10.6. Given
this solution, we can also “tie together” the input and output ports
by traversing the resource instances in topological order of depen-
dencies, starting with the output ports of server, and using the
definitions of output ports of preceding resource instances to get
values of input ports according to the port mappings specified in
the dependencies. Valuations to the input ports then determine the
configuration and output ports of the instance. In this way, we can
propagate configuration options along the application stack. The re-
sult of this process is a full installation specification, that details the
components that must be installed, their configuration parameters,
and the order of their installation. The last is obtained via the partial
order imposed by the dependencies of the resource instances.
Finally, the Engage deployment system takes an install spec-

ification and deploys the components in the order of dependen-
cies. The deployment system uses the corresponding driver for
each resource instance. A resource driver is a state machine with
special states uninstalled, active, and inactive (the latter two pos-
sibly the same state), with guarded actions between states. Fig-

inactive active

uninstall

install

[↑ active]
start

stop

[↓ inactive]

restart

uninstalled

Figure 3: Resource driver for Tomcat

ure 3 shows an example resource driver for Tomcat. An action
(e.g., install) is implemented in an underlying programming lan-
guage and performs some modification of the system state. For
example, the install action can call an OS-level package man-
ager to download and install a package. A guard describes a pre-
condition for the action, and is omitted if an action can be per-
formed at any time. A guard of the form ↑ s (respectively, ↓ s) states
that an action can be performed only when the state machines of
all upstream (respectively, downstream) dependencies are in state
s ∈ {uninstalled, active, inactive}. The actions on the state machines
are performed by the Engage runtime system. The runtime system
manages the state machines of all installed components and can
check the status of guards. The runtime system can also monitor
a deployment and shut it down (by shutting down services in the
reverse order of dependencies).
Engage ameliorates the problems of manual deployment in the

following ways. First, dependencies among resource types ensure
that required packages are installed when a resource instance is
being installed (e.g., Java has already been installed before in-
stalling Tomcat). Second, the resource drivers and the runtime
ensure that required services are already started when starting an
application (e.g., Tomcat and MySQL daemons are already started
when OpenMRS is started: their resource drivers are both in active
when starting OpenMRS). While there is work involved in devel-
oping resource types and drivers, they are done once by the pack-
age developer, and any subsequent installation scenario involving
the resource is completely automated. In contrast to ad hoc cus-
tom scripts, the declarative language enables static detection of
configuration problems, e.g., cyclic dependencies between compo-
nents, or unsolvable constraints in installation. In contrast to con-
figuration management systems, the configuration engine signifi-
cantly reduces user input: in our implementation, the (unsimplified)
OpenMRS partial installation specification took 22 lines, and the full
installation specification was 204 lines. Note that resource descrip-
tions are reusable and can be used in different installations; e.g,
the MySQL resource can be used in any deployment that requires a
MySQL database.

3. Resource Types
In Engage, the fundamental abstraction for software and hardware
components is a resource. A resource consists of a description of
the metadata required to configure, install, or upgrade a compo-
nent (its resource type) and a driver consisting of code that reads
the metadata and manages the lifecycle of the component (installa-
tion, upgrade, rollback, etc.). We explain resource types here, and
explain drivers in Section 5.

3.1 Resource Types
A resource type is an abstraction to model how a component may
be instantiated. A resource instance is an instantiation of a resource
type that describes how a specific resource will be (or has been)
configured and installed. In analogy with object-oriented program-
ming, a resource type is a class and a resource instance is an object
of that class. Each resource type has a unique identifier (usually,

Publications and project web site
u  Roberto Di Cosmo, Stefano Zacchiroli, Gianluigi Zavattaro.

Towards a Formal Component Model for the Cloud.
Proc. of SEFM’12: 156-171. LNCS 7504, Springer.

u  Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli,
Gianluigi Zavattaro.
Component Reconfiguration in the Presence of Conflicts.
Proc. of ICALP’13: 187-198. LNCS 7966, Springer.

u  Tudor A. Lascu, Jacopo Mauro, Gianluigi Zavattaro.
Automatic Component Deployment in the Presence of Circular
Dependencies. Proc. of FACS’13. LNCS to appear, Springer.

u  Tudor A. Lascu, Jacopo Mauro, Gianluigi Zavattaro.
A Planning Tool Supporting the Deployment of Cloud Applications.
Proc. of ICTAI’13: 213-220. IEEE Press.

u  http://www.aeolus-project.org
OPCT - Bertinoro - 20.6.2014 Automatic Deployment of Cloud Applications

