OPEN PROBLEMS IN
CONCURRENCY THEORY

Languages and Models for Automatic
Deployment of Cloud Applications

Gianluigi Zavattaro University of Bologna - Italy
FoCUS research team INRIA - France

Based on joint work with:
Roberto Di Cosmo and Stefano Zacchiroli PPS/Paris Diderot
Tudor A. Lascu and Jacopo Mauro Univ. of Bologna

NOVEL OPPORTUNITIES OP IN

FOR CONCURRENCY THEORY

N
P

Languages and Models for Automatic
Deployment of Cloud Applications

Gianluigi Zavattaro University of Bologna - Italy
FoCUS research team INRIA - France

Based on joint work with:
Roberto Di Cosmo and Stefano Zacchiroli PPS/Paris Diderot
Tudor A. Lascu and Jacopo Mauro Univ. of Bologna

N

AGENCE NATIONALE DE LA RECHERCHE
Aeo I us.
[|

Mastering the cloud complexity

N

+ Models, languages and tools for the
administration of cloud applications

= Cloud computing offers the possibility to
build sophisticated software systems on
virtualized infrastructures at a fraction of

the cost necessary just few years ago...

= ...but the administration of such software
systems is a serious challenge, especially
if one wants to take advantage of all the
cloud potentialities

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

New models and languages:
an industrial need

N
\J

¢ Several industrial initiatives pursue the
definition of high-level languages for
the management of applications

deployed on virtualized infrastructures

........

CLOUD FOUNDRY @

/\puppet juju

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

New models and languages:

an industrial need CLOUD FOUNDRY-
J

N

¢ Cloud Foundry (launched by VMware)
provides a PaaS with high-level
primitives for service creation and

binding $ cf create-service

What kind?> 1

Name?> cleardb-e2006
Creating service cleardb-e2006... OK

S cf bind-service

1: myapp
Which application?> 1

l: cleardb-e2006
Which service?> 1
Binding cleardb-e2006 to myapp... OK

New models and languages: @
an industrial need Juju

¢ Juju (an Ubuntu initiative) provides
similar primitives
= service replication and scaling supported
= includes GUI for application management

@ JUJ U ¢ Environment on dummy (@) Alerts a (_57 Charms v
mediawiki
haproxy memcached
{ cache)
cs:precise/memcached-3
——
mysql
@
- cs:precise/mysql
cs:precise/haproxy-14 cs:precise/wordpres ——
N ——

an industrial need A\

New models and languages:
puppet

abs

N

How Puppet Works

— — @ Define: With Puppet's declarative
language you design a graph of

relationships between resources within
-= — reusable modules, These modules define
= = == vour infrastructure in its desired state,

not - i\
LN
%
A

/ \ = >
_|. - 7 (e
D
RS

‘_‘32'0
I ll

@ Report: Puppet Dashboard reports ~| | Simulate: With this resource
graph, Puppet is unique in its

track relationships between . . |
i ’, / ,l' ability to simulate deployments, enabling

components and all changes, allowing .
' you to test changes without disruption

you to keep up with security and \ y
compliance mandates. And with the ! / to your infrastructure.
open APl you can integrate Puppet with \
third party monitoring tools. .
S~ —~— ‘___,, -
CURRENT Enforce: Puppet compares your

system to the desired state as you
& define it, and automatically enforces it
D to the desired state ensuring your system

STATE I
STATE

ﬁ is in compliance.

New models and languages:
an industrial need /\Puppet

¢ Declarative language: three kinds of

resources service

package { "sshd':

{ 'openssh-server': ensure => running,
ensure => installed,} enable => true,

_ hasstatus => true,
file

{ '/etc/ssh/sshd config':
source => 'puppet:///modules/sshd/sshd config',

hasrestart => true,}

owner => 'root',
group => 'root',
mode => '640"',

notify => Service['sshd'],
require => Package['openssh-server'],}

New models and languages:
an industrial need /\Puppet

¢ Declarative language: three kinds of

resources service

package { 'sshd':

{ 'openssh-server': ensure => running,
ensure => installed,} enable => true,

_ hasstatus => true,
file

{ '/etc/ssh/sshd config':
source => 'puppet:///modules/sshd/sshd config',

hasrestart => true,}

owner => 'root',
group => 'root',
mode => '640"',

notify => Service['sshd'],
require => Package['openssh-server'],}

New models and languages:
an industrial need /\Puppet

¢ Declarative language: three kinds of

resources service
package { 'sshd':
{ 'openssh-server': ensure => running,
ensure => installed,} enable => true,
file

{ '/etc/ssh/sshd config':
source => 'puppet:///modules/sshd/sshd config',

owner => 'root',
group => 'root',
mode => '640',

notify => Service['sshd'],
require => Package['openssh-server'],}

New models and languages:
an industrial need

N

" o In all these approaches a lot of human
intervention is needed for

= Service selection
= Deciding the service bindings
(see next slide)

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

.’ juju-gui

openstack-dashboard \ @

[quantum-gateway |

identitysevice)

nava-doud-controller r |
e,
e '
C identityservice
‘ \ n quantum-network-service 3"

| |

‘ - |
B

shared-dd X
(~cloud<ompute)

mysql
. / ‘ nova-compute

k'“"q 2 |de3btﬁer\nc9’)

“ N\ Wegtiky-senvice

" rabbitmg-server ‘

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

New models and languages:
an industrial need

N

" o In all these approaches a lot of human
intervention is needed for

= Service selection
= Deciding the service bindings
(see next slide)

¢ The challenge:

= automatize as much as possible the
management of such applications

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Structure of the talk

N

The Aeolus starting point
¢ Formalizing the “deployment” problem

Solving the “deployment” problem
= Ackermann-hard in the general case
= PolyTime without conflicts

¢ Open issues and related work

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Structure of the talk

N

¢+ The Aeolus starting point
¢ Formalizing the “deployment” problem

Solving the “deployment” problem
= Ackermann-hard in the general case
= PolyTime without conflicts

¢ Open issues and related work

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Automatic management

ManNCQOSI

managing software complexity

of package -based software systems

f\

i Projec t2

er CI

Developed rather sophisticated tools for
FOSS (free and open-source software)

Automatic Deployment of Cloud Applications

OPCT - Bertinoro - 20.6.2014

The dependency/conflict model

¢ Tools are based on the
dependency/conflict model

Package: apache?

Version: 2.4.1-2

Maintainer: Debian Apache Maintainers <debian-apache@...>

Depends: 1sb-base, procps, perl, mime-support, apache2-bin (= 2.4.1-2)
apache2 -data (= 2.4.1-2)

Conflicts: apache2.2-common

Provides: httpd

Description: Apache HTTP Server

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Package configuration

N

as a SAT problem

+ One boolean variable for each package
= TRUE — installed
= FALSE — not installed

¢ Conflic

's/dependencies can be

formalized as boolean formulae

¢ Finding a correct configuration is
mapped to a satisfaction problem

Automatic Deployment of

Cloud Applications OPCT - Bertinoro - 20.6.2014

Package conflguratlon
as a SAT problem ‘

/‘\

0 One booIean varlable for each package

0 Fmdmg a correct conf
j mapped toa satlsfactlon problem

Automatic Deployment of Cloud Applications ~ OPCT - Bertinoro - 20.6.?2014

Structure of the talk

N

The Aeolus starting point
¢ Formalizing the “deployment” problem

Solving the “deployment” problem
= Ackermann-hard in the general case
= PolyTime without conflicts

¢ Open issues and related work

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

The Aeolus component model

¢ A component has provide and require ports

Provide
ports

Automatic Deployment of Cloud Applications

Require
ports

OPCT - Bertinoro - 20.6.2014

The Aeolus component model

¢ A component has provide and require ports
¢ A component has an internal state machine

Require

Provide ports

ports

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

The Aeolus component model

N

¢ A component has provide and require ports
¢ A component has an internal state machine

¢ Ports are active or inactive according to the
current internal state

Require
& ports
_c

—C

Provide

ports ‘™,

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Packages in the Aeolus model

¢ The packages example

installed installed
httpd httpd Isb-base
wordpress mysql-client apache2 procps
php5 perl
inactive provide php5-mysq| mime-support
inactive require libphp-phpmailer apache2-bin
@— active provide
—(active require uninstalled uninstalled apache2-data

wordpress apache2

Package: wordpress
Version: 3.0.5+dfsg-0+squeezel
Depends: httpd, mysql-client, php5, php5-mysql, libphp-phpmailer (>= 1.73-4),

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Packages in the Aeolus model

¢ Binding between two components

installed c htt o installed
*ttpd Et cIsb—base
cmysql—client apache2 ® _cprocps
. v‘\ Ay Cphps N s\\ _cperl

:php5-mysq| N cmime—support

wordpress o

cIibphp-phpmailer capache2-bin
uninstalled uninstalled CapacheZ-data
wordpress apache2

Package: wordpress
Version: 3.0.5+dfsg-0+squeezel
Depends: httpd, mysql-client, php5, php5-mysql, libphp-phpmailer (>= 1.73-4),

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Services in the Aeolus model

+ At the service level, also a running state

becomes relevant:

= wordpress need to know the network
address of a running MySQL instance

mysql_up mysql_up

running_ .. —(- running

mysql_inst

—(® .

™. |httpd httpd | inst L co

inst —(—@®@—-- mysql_inst] inst
uninst uninst uninst

wordpress apache2 mysql

Automatic Deployment of Cloud Applications

OPCT - Bertinoro - 20.6.2014

Conflicts in the Aeolus model

N

¢ Conflicts are ex

= The apache we
the lighttpd we

Automatic Deployment of Cloud Applications

bressed as special ports
0 server is in conflict with

D Server

OPCT - Bertinoro - 20.6.2014

Formalizing the
“deployment” problem

Definition 1 (Component type). The set I of component types of the Aeolus core
model, ranged over by , 9, %, ... contains 4-ples (Q,qo, T, D) where:

— Q is a finite set of states containing the initial state qo;

— T C O X Q is the set of transitions;

— D is a function from Q to a 3-ple (P,R, C) of interface names (i.e. P,R,C C .¥) in-
dicating the provide, require, and conflict ports that each state activates. We assume
that the initial state qo has no requirements and conflicts (i.e. D(qo) = (P,0,0)).

Definition 2 (Configuration). A configuration ¢ is a 4-ple (U,Z,S, B) where:

— U C I’ is the finite universe of the available component types;

— Z C Z is the set of the currently deployed components;

— S is the component state description, i.e. a function that associates to components
in Z a pair {7 ,q) where € U is a component type (Q,qo,T,D), and q € Q is the
current component state;

— B C ¥ X Z X Z is the set of bindings, namely 3-ple composed by an interface,
the component that requires that interface, and the component that provides it; we
assume that the two components are different.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Formalizing the
“deployment” problem

Definition 5 (Actions). The set .o/ contains the following actions:

— stateChange({z1,q1,4));---,(zn,qn.q,,)) where z; € & and Vi # j . z; # zj;
— bind(r,z1,z2) where 21,20 € Z andr € I,

— unbind(r,z1,z2) where 21,20 € Z andr € I,

— newRsrc(z: T) where z € & and . € U is the component type of z;

— delRsrc(z) where z € Z.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Formalizing the
“deployment” problem

Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions ¢ N
meaning that the execution of & € &/ on the configuration € produces a new configu-
ration €'. The transitions from a configuration ¢ = (U,Z,S,B) are defined as follows:

stateChange G113, {20 qns ;1 ind(r,zq,
g JereChanselaaran) - Gatndn)) 1y 7 o1 py @ 22y 7 S BU (R, 7))
ifVi.€[z].state = g; if (r,z1,22) € B
and i . (qi,q}) € €'|zj].trans and r € €[z1].reqN € [z2].prov
v | (€lzi]type,ql) if i . 7 =z
and §'(z) = {%[z’] otherwise

unbind(r,z, .
©), (U,Z,8,B\ (r,z1,22)) if (rz1,22) €B

> neszrC(z:g)> <U,ZU{Z},S’,B> & M <U,Z\{Z},S/,B/>
ifz&€7Z, 7 €U i75'(2) = 1 ifd =z
and S'(7) = { (I anit i gi=2 €'7] otherwise
¢ 7] otherwise and B' = {(r,z1,220) € B|z ¢ {z1,22}}

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

“Deployment” problem

N

¢ Input:
= A set of component types (called Universe)

= One target component type-state pair
+ Output:

= Yes, if there exists a deployment plan
= No, otherwise

Deployment plan:

a sequence of actions leading to a final configuration
containing at least one component of the given target
type, in the given target state

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Deployment problem:
example

Consider the problem of installing
kerberos with Idap support in Debian

= Universe: packages krb5 and openldap
= Target: krb5 in normal state

normal

libldap2-dev normal

—(C

*~._ hibkrb5-dev

libldap2-dev]

libkrb5-dev

uninst

openldap

uninst

krb5
Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Deployment problem:
example
Deployment plan:

newRsrc (krb5) , newRsrc (openldap),

stagel (krb5) , bind(libkrb, openldap, krbb),
normal (openldap), bind(libldap, krb5,openldap),
normal (krbb)

normal

libldap2-dev normal
_c libldap2-dev e
. Jiivkrps-dev
libkrb5-dev
uninst
openldap

uninst

krb5
Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Deployment problem:
example
+ Deployment plan:

newRsrc (krb5) , newRsrc (openldap),
stagel (krb5) , bind(libkrb, openldap, krbb),

normal (openldap), bind(libldap, krb5,openldap),
normal (krbb)

normal

libldap2-dev normal
_c libldap2-dev e
. Jiivkrps-dev
libkrb5-dev
uninst
openldap

uninst

krb5
Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Deployment problem:
example
+ Deployment plan:

newRsrc (krb5) , newRsrc (openldap),
stagel (krb5) , bind(libkrb, openldap, krbb),

normal (openldap), bind(libldap, krb5,openldap),
normal (krbb)

normal

libldap2-dev normal
_c libldap2-dev e
. Jiivkrps-dev
libkrb5-dev
uninst
openldap

uninst

krb5
Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Deployment problem:
example
+ Deployment plan:

newRsrc (krb5) , newRsrc (openldap),
stagel (krb5) , bind(libkrb,openldap, krbb),

normal (openldap), bind(libldap, krb5,openldap),
normal (krbb)

normal

libldap2-dev normal
: libldap2-dev :
“~.. Jlibkrb5-dev
libkrb5-dev
uninst
openldap
uninst
krb5

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Deployment problem:
example
+ Deployment plan:

newRsrc (krb5) , newRsrc (openldap),
stagel (krb5) , bind(libkrb,openldap, krbb),

normal (openldap), bind(libldap, krb5,openldap),
normal (krbb)

normal

libldap2-dev normal
C libldap2-dev
“~.. Jlibkrb5-dev
libkrb5-dev
uninst
openldap
uninst
krb5

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Deployment problem:

example
¢ Deployment plan

newRsrc (krb5) , newRsrc (openldap),
stagel (krb5) , bind(libkrb,openldap, krbb),
normal (openldap), bind(libldap,krb5,openldap),

normal (krbb)

normal

uninst

krb5

Automatic Deployment of Cloud Applications

libldap2-dev

libldap2-dev

*~._ hibkrb5-dev

libkrb5-dev

normal

uninst

openldap

OPCT - Bertinoro - 20.6.2014

Deployment problem:

example
¢ Deployment plan

newRsrc (krb5) , newRsrc (openldap),
stagel (krb5) , bind(libkrb, openldap, krbb),
normal (openldap), bind(libldap,krb5,openldap),

normal (krbb)

normal

uninst

krb5

Automatic Deployment of Cloud Applications

libldap2-dev

libldap2-dev

*~._ hibkrb5-dev

libkrb5-dev

normal

uninst

openldap

OPCT - Bertinoro - 20.6.2014

Structure of the talk

N

The Aeolus starting point
¢ Formalizing the “deployment” problem

¢ Solving the “deployment” problem
= Ackermann-hard in the general case
= PolyTime without conflicts

¢ Open issues and related work

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Reduce to well-known concurrent
models? (as SAT for packages)

¢ Deployment plans recall firing sequences
in Petri nets:

= Tokens are moved from source places to
target places by transitions

normal

libldap2-dev normal

c..—

libidap2-dev]
*~._ hibkrb5-dev
—0

libkrb5-dev

uninst

openldap

uninst

krb5
Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Reduce to well-known concurrent
models? (as SAT for packages)

¢ ...but reachability problems in Petri nets
are undecidable in the presence of
inhibitor arcs (necessary for conflicts)

normal

libldap2-dev normal

+ .— -
.~ libldap2-dev
*~.. |iibkrbs-dev
—.+
libkrb5-dev

uninst

openldap
uninst

krb5
Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Decidability of the
“deployment” problem [icaLr13;

¢ Backward search algorithm based on
the theory of WSTS (Well-Structured
Transition Systems)

= WSTS are popular in the context of infinite
state concurrent systems verification

Initial conf. Target conf.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Decidability of the
“deployment” problem [icaLr13;

+ Key point:
ordering C,<C, on configurations s.t.

= if C; has a given component, also C, has it

Initial conf. Target conf.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Decidability of the
“deployment” problem [icaLr13;

+ Key point:
ordering C,<C, on configurations s.t.

= if C; has a given component, also C, has it
« if C;<C, and C,>C," then C,=>C," with C,'<C,)’

—_—
¢ ... T ¢ e
Initial conf. Target conf.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Decidability of the
“deployment” problem [icaLr13;

N

J + Key point:
ordering C,<C, on configurations s.t.
= if C; has a given component, also C, has it
= if C;<GC, and C;=>C,’ then C,>C," with C,'<C,’
= £ is a wqo: finite basis and finite antichains

Initial conf. Target conf.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Decidability of the
“deployment” problem [icaLr13;

N

J + Key point:
ordering C,<C, on configurations s.t.
= if C; has a given component, also C, has it
« if C;<C, and C,>C," then C,=>C," with C,'<C,)’
= £ is a wqo: finite basis and finite antichains

—.

Initial conf. Target conf.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Decidability of the
“deployment” problem [icaLr13;

N

J + Key point:
ordering C,<C, on configurations s.t.
= if C; has a given component, also C, has it
« if C;<C, and C,>C," then C,=>C," with C,'<C,)’
= < is a wqgo: finite basis and finite antichains

|, S & af

Initial conf. Target conf.

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Complexity [TCALP'13]

¢ The complexity of the problem is
Ackermann-hard (reduction from
coverability in reset Petri nets)

—e counter;(1)
reset;)~ ---
reset’je— “leup)
et Lo
up'in H-
(a) Token in place p. —e counter;(0)

(b) i-th bit counter.
Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Complexity [TCALP'13]
Tr

CommaieriaductonisResd)

.Consumption—>Production Rese)t

(a) Transitions component.

counter;(—h;)
counter,(—h,) T counter;(~h,)
Y Y

4
: § § : g P
, T 1T T & A (c) Encoding of a reset
Vi.reset; upi ¢ dp Vi.counterih) arc for the place p.
V.i.reset) up's

(b) Consumption phase of n tokens from place p for
a transition t (k = [log(n)] and h; is the i-th least
significative bit of the binary representation of n).

Quadratic algorithm
(without conflicts) [SEFM'12]

+ Forward reachability algorithm
= all reachable states computed by saturation

Algorithm 1 Checking achievability in the Aeolus™ model

function AcCHIEVABILITY (U, T, q)
absConf := {(T', T .init) | T' € U}
provPort := .11 i1 capscons {dom(T" . P(q'))}
repeat
new = {{T".¢) | (T",q") € absConf,(q",q') € T .trans}\ absConf
newPort == Ui senewldom(T P(q'))}
while (77, ¢') € new . dom(T"R(q")) € provPort U newPort do
new := new \ {(T",¢)}
newPort := .11 iy epewidom(T . P(q))}
end while
absConf := absConf U new
provPort := provPort U newPort
until new = ()
if (T,q) € absConf then return true
else return false
end if
end function

Example:
the kerberos case-study

normal :
libldap2-dev normal
% F .'~.
libldap2-dev
s, llibkrb5-dev

libkrb5-dev

uninst
openldap

krb5

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Example:
the kerberos case-study

normal libldap2-dev normal
_c libldap2-dev h
libkrb5-dev
libkrb5-dev
uninst Initial states
openldap
krb5 krb5,uninst openldap,uninst

krb5,stagel krb5,uninst openldap,uninst

krb5,stagel krb5,uninst openldap,uninst openldap,normal

krb5,normal krb5,stagel krb5,uninst openldap,uninst openldap,normal

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Example:
the kerberos case-study

normal libldap2-dev normal
_c libldap2-dev h
libkrb5-dev
libkrb5-dev
uninst Initial states
openldap
unins
krb5 krb5,uninst openldap,uninst
New states

kro5,stagel krb5,uninst openldap,uninst

krb5,stagel krb5,uninst openldap,uninst openldap,normal

krb5,normal krb5,stagel krb5,uninst openldap,uninst openldap,normal

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Example:
the kerberos case-study

normal libldap2-dev normal
—(C libldap2-dev]
libkrb5-dev
libkrb5-dev
uninst Initial states
openldap
unins
krb5 krb5,uninst openldap,uninst
New states s
A” krb5,stagel krb5,uninst openldap,uninst
reaChabIe krb5,stagel krb5,uninst openldap,uninst openldap,normal
states : : :
/
krb5,normall] | krb5,stagel krb5,uninst openldap,uninst openldap,normal

Automatic Deployment of Cloud Applications

OPCT - Bertinoro - 20.6.2014

Structure of the talk

N

The Aeolus starting point
¢ Formalizing the “deployment” problem

Solving the “deployment” problem
= Ackermann-hard in the general case
= PolyTime without conflicts

¢+ Open issues and related work

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Real-life deployment tools

N

¢ The deployment problem simply replies
ves / no

¢ A real deployment tool needs to know
how to reach the target configuration

= In other words, an actual deployment plan
should be computed

¢ We have preliminary results...

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Ad-hoc planning [FACS'13,ICTAI'13]

¢ Use the reachability graph bottom-up
from the target state

= Select the bindings (red arrows)
= Select the predecessors (black arrows)

krb5,uninst openldap,uninst
krb5,stagel openldap,uninst
€ - likrb5-dev
krb5,stagel openldap,normal
libldap2-dev _ . o == == 7

- e—

krb5,normal

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Ad-hoc planning

krb5,normal

Automatic Deployment of Cloud Applications

z,uninst,stagel

openldap,normal

krb5,uninst openldap,uninst
krb5,stagel openldap,uninst
: € — _libkrb5-dev
krb5,stagel
libldap2-dev | = — =7 -
Z,€,uninst w,€,uninst
l libkrb5-dev l

w,uninst,normal

:

w,normal,g

v libldap2-dev
z,stagel,normal -
liokrB5-dev
7
y /7
~”
z,normal,€ -

~ libldap2-dev

[FACS'13,ICTAI'13]

¢ Generate an

abstract plan
(one component

for each maximal
path)

OPCT - Bertinoro - 20.6.2014

Ad-hoc planning

krb5,normal

Time

Automatic Deployment of Cloud Applications

openldap,normal

~ libldap2-dev

krb5,uninst openldap,uninst
krb5,stagel openldap,uninst
: € — -ligkrb5-dev
krb5,stagel
libldap2-dev | _— = — =:7 ~
Z,€,uninst w,€,uninst
l libkrb5-dev l
z,uninst,stagel w,uninst,normal
v libldap2-dev l
z,stagel,normal o w,normal,&
lipkrB5-dev
7
A 4 /
”
z,normal,€ ~

[FACS'13,ICTAI'13]

¢ Generate an

abstract plan
(one component

for each maximal
path)

OPCT - Bertinoro - 20.6.2014

Ad-hoc planning [FACS'13,ICTAI'13]

krb5,uninst openlda:p,uninst ‘ Generate an
o], abstract plan

— e— e e—— -

krb5,stagel openldap,normal (One COm pOnent

e ' for each maximal

path)

T|me z,€,uninst W,€,uninst
! ity Arrows represent a
L 4

z,uninst,stagel w,uninst,normal - .
. ™ | precedence relation:
z,stageI,normaI o —_— = W,nor'ma|,g ‘ blue: Start reqL”rement
I e ¢ red: end requirement
z,normal,€ - -

~ libldap2-dev

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Ad-hoc planning [FACS'13,ICTAI'13]
+ Plan as a topological visit until target:

newRsrc (krb5) , newRsrc (openldap),
stagel (krb5) , bind(libkrb, openldap, krb)),

normal (openldap), bind(libldap,krb5,openldap),
normal (krbb)

Time Z,€,uninst W,€,uninst
! ity Arrows represent a
z,uninst,stagel R w,uninst,normal - .
| . precedence relation:
z,stagef,normm =L wnormal e + blue: start requirement
I e ¢ red: end requirement
z,normal,e - = Iitjdap2—dev

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Reconfiguration vs.

Deployment

¢+ Reconfiguration problem:

= Same as deployment,
but with non empty initial configuration

¢ We recently proved that reconfiguration

is PSpace-complete
(relation with 1-safe Petri nets)

¢+ Open issue:

= Find restrictions to the model that make
reconfiguration tractable
(seems very useful in practice)

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

N

Other open issues

N

¢ In real systems there is a flow of
configuration data among components:

= Room for name-passing models?
Hierarchical modeling

(virtual machines, administrative
domains, geographical areas,...):

= Room for higher-order models?

¢ Services consume resources:
= Room for resource-aware models?

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Related work

N

¢ ConfSolve [J.A.Hewson, P.Anderson, A.D.Gordon - LISA'12]
= Object-oriented language for services and

machines
= Type system for checking configuration
COI‘reCtneSS class DatabaseServer extends Role {
. var role as DatabaseRole;
= Constraint solver for
automatic placement of +-slave oF master

var peer as ref DatabaseServer;

services on machines

// the peer cannot be itself

peer != this;
class Machine {
var os as OperatingSystem; // a master’s peer must be a slave,
var cpus as 1..4; // and a slave’s peer must be a master
var memory as int; role != peer.role;
3 }

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Related work

N

¢ Engage [J.Fischer, R.Majumdar, S.Esmaeilsabzali - PLDI'12]

= Architectural specification in terms of
inside / peer / environment relationships

= Automata with resource lifecycle and transient
dependencies

= Assumption on acyclic relationships
(to always guarantee topological visit)

inside v inside
— Server [T active]
mszde/’) insh install start restart
eny eny peers uninstall stop
Tomcat inside Open MRS [inactive]

‘v
v v

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

Publications and project web site

N

¢ Roberto Di Cosmo, Stefano Zacchiroli, Gianluigi Zavattaro.
Towards a Formal Component Model for the Cloud.
Proc. of SEFM12: 156-171. LNCS 7504, Springer.

¢ Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli,
Gianluigi Zavattaro.
Component Reconfiguration in the Presence of Conflicts.
Proc. of ICALP’13: 187-198. LNCS 7966, Springer.

¢ Tudor A. Lascu, Jacopo Mauro, Gianluigi Zavattaro.
Automatic Component Deployment in the Presence of Circular
Dependencies. Proc. of FACS'13. LNCS to appear, Springer.

¢ Tudor A. Lascu, Jacopo Mauro, Gianluigi Zavattaro.
A Planning Tool Supporting the Deployment of Cloud Applications.
Proc. of ICTAI'13: 213-220. IEEE Press.

¢ http://www.aeolus-project.org

Automatic Deployment of Cloud Applications OPCT - Bertinoro - 20.6.2014

