
Verification of weak memory models

Elli Anastasiadi

OPCT 2023, Bertinoro, Italy

26-30 June



1 Weak memory
Why - how - examples

2 Verification
Basic problems
Basic principles

Elli Anastasiadi Weak memory models 26-30 June 2 / 19



Starting point: distributed programs & architectures.

→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification.

...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.

→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x :=1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a:=y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y :=1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b:=x
if b = 0 then
CS2

Assertion: not(CS1 and CS2)

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Starting point: distributed programs & architectures.
→ Need for verification. ...so far so good.

Necessary: a model for distributed execution.
→ Before weak memory: interleaving.

An example (Dekker protocol):

P1 :=
x := 1
a := y
if a = 0 then
CS1

P2 :=
y := 1
b := x
if b = 0 then
CS2

Assertion: not(CS1 and CS2) ✓

Elli Anastasiadi Weak memory models 26-30 June 3 / 19



Interleaving: implementation

atomic writes,

read-from-memory

Elli Anastasiadi Weak memory models 26-30 June 4 / 19



Interleaving: implementation

atomic writes,

read-from-memory

Elli Anastasiadi Weak memory models 26-30 June 4 / 19



Interleaving: formally

Sequential consistency - SC

On a global trace, the evens of a process will occur in the order
stated locally for the process.

Or: only the events of different processes can be shuffled.

Elli Anastasiadi Weak memory models 26-30 June 5 / 19



Interleaving: formally

Sequential consistency - SC

On a global trace, the evens of a process will occur in the order
stated locally for the process.

Or: only the events of different processes can be shuffled.

Elli Anastasiadi Weak memory models 26-30 June 5 / 19



So what is weak memory?

Rule of thumb: Anything “below” interleaving.

...extra reorderings

Elli Anastasiadi Weak memory models 26-30 June 6 / 19



So what is weak memory?

Rule of thumb: Anything “below” interleaving.

...extra reorderings

Elli Anastasiadi Weak memory models 26-30 June 6 / 19



So what is weak memory?

Rule of thumb: Anything “below” interleaving.

...extra reorderings

Elli Anastasiadi Weak memory models 26-30 June 6 / 19



How?

Elli Anastasiadi Weak memory models 26-30 June 7 / 19



How?

Elli Anastasiadi Weak memory models 26-30 June 7 / 19



How?

Elli Anastasiadi Weak memory models 26-30 June 7 / 19



How?

Elli Anastasiadi Weak memory models 26-30 June 7 / 19



An example: total store order (TSO)

non-atomic writes

read locally or from memory

Elli Anastasiadi Weak memory models 26-30 June 8 / 19



An example: total store order (TSO)

non-atomic writes

read locally or from memory

Elli Anastasiadi Weak memory models 26-30 June 8 / 19



An example: total store order (TSO)

non-atomic writes

read locally or from memory

Elli Anastasiadi Weak memory models 26-30 June 8 / 19



An example: total store order (TSO)

non-atomic writes

read locally or from memory

Elli Anastasiadi Weak memory models 26-30 June 8 / 19



An example: total store order (TSO)

non-atomic writes

read locally or from memory

Elli Anastasiadi Weak memory models 26-30 June 8 / 19



A specification of how an implementation will tackle parallel memory
access is called a memory model.

A weak memory model is one that allows extra behaviors.

potentially bad behaviors

Elli Anastasiadi Weak memory models 26-30 June 9 / 19



A specification of how an implementation will tackle parallel memory
access is called a memory model.

A weak memory model is one that allows extra behaviors.

potentially bad behaviors

Elli Anastasiadi Weak memory models 26-30 June 9 / 19



A specification of how an implementation will tackle parallel memory
access is called a memory model.

A weak memory model is one that allows extra behaviors.

potentially bad behaviors

Elli Anastasiadi Weak memory models 26-30 June 9 / 19



Dekker under TSO

Elli Anastasiadi Weak memory models 26-30 June 10 / 19



Dekker under TSO

Elli Anastasiadi Weak memory models 26-30 June 10 / 19



Dekker under TSO

Elli Anastasiadi Weak memory models 26-30 June 10 / 19



The dichotomy

Sequential consistency

intuitive, well-researched

slow, unrealistic

Weak memory

not intuitive

fast, realistic

What about verification?

Road-map: Semantics → Complexity → Techniques

Elli Anastasiadi Weak memory models 26-30 June 11 / 19



The dichotomy

Sequential consistency

intuitive, well-researched

slow, unrealistic

Weak memory

not intuitive

fast, realistic

What about verification?

Road-map: Semantics → Complexity → Techniques

Elli Anastasiadi Weak memory models 26-30 June 11 / 19



The dichotomy

Sequential consistency

intuitive, well-researched

slow, unrealistic

Weak memory

not intuitive

fast, realistic

What about verification?

Road-map: Semantics → Complexity → Techniques

Elli Anastasiadi Weak memory models 26-30 June 11 / 19



Common scenarios

New software: only works when the architecture below satisfies at
least a specific weak memory model.

We need: algorithm for detecting “illegal” memory accesses.

New architecture: claims it satisfies some weak memory model.

We need: guarantee all runs of the new architecture are safe.

Elli Anastasiadi Weak memory models 26-30 June 12 / 19



Common scenarios

New software: only works when the architecture below satisfies at
least a specific weak memory model.

We need: algorithm for detecting “illegal” memory accesses.

New architecture: claims it satisfies some weak memory model.

We need: guarantee all runs of the new architecture are safe.

Elli Anastasiadi Weak memory models 26-30 June 12 / 19



Scenario 1

Potentially we don’t know the architecture.

We look at the memory accesses of different processes:

P1 P2 P3 P4

p
q
p

p
q
q

p
q
p

p
q
p

P1 : write(x,0), write(y,1), read(x,1)
P2 : read(y,1), write(x,1), write(x,0)

P1 : write(x,0), write(x,1), write(y,1)
P2 : read(y,1), read(x,1), read(x,0)

Elli Anastasiadi Weak memory models 26-30 June 13 / 19



Scenario 1

Potentially we don’t know the architecture.

We look at the memory accesses of different processes:

P1 P2 P3 P4

p
q
p

p
q
q

p
q
p

p
q
p

P1 : write(x,0), write(y,1), read(x,1)
P2 : read(y,1), write(x,1), write(x,0)

P1 : write(x,0), write(x,1), write(y,1)
P2 : read(y,1), read(x,1), read(x,0)

Elli Anastasiadi Weak memory models 26-30 June 13 / 19



Scenario 1

Potentially we don’t know the architecture.

We look at the memory accesses of different processes:

P1 P2 P3 P4

p
q
p

p
q
q

p
q
p

p
q
p

P1 : write(x,0), write(y,1), read(x,1)
P2 : read(y,1), write(x,1), write(x,0)

P1 : write(x,0), write(x,1), write(y,1)
P2 : read(y,1), read(x,1), read(x,0)

Elli Anastasiadi Weak memory models 26-30 June 13 / 19



Scenario 1

Potentially we don’t know the architecture.

We look at the memory accesses of different processes:

P1 P2 P3 P4

p
q
p

p
q
q

p
q
p

p
q
p

P1 : write(x,0), write(y,1), read(x,1)
P2 : read(y,1), write(x,1), write(x,0)

P1 : write(x,0), write(x,1), write(y,1)
P2 : read(y,1), read(x,1), read(x,0)

Elli Anastasiadi Weak memory models 26-30 June 13 / 19



Some verification primitives: Shasha-Snir traces

P1 : read(x,1), write(y,1)
P2 : read(y,1), write(x,1)

r1x r1y

w1
y w1

x

rf

po

rf

po

Example use: for SC the execution graph must be acyclic.

Sad result: Given the traces, to solve this is NP-complete

Elli Anastasiadi Weak memory models 26-30 June 14 / 19



Some verification primitives: reachability

Execution graphs are in away the composition/product of a program
with the semantics of a memory model.

Why would reachability be hard?

Reminder:

Elli Anastasiadi Weak memory models 26-30 June 15 / 19



Some verification primitives: reachability

Execution graphs are in away the composition/product of a program
with the semantics of a memory model.

Why would reachability be hard?

Reminder:

Elli Anastasiadi Weak memory models 26-30 June 15 / 19



Some verification primitives: reachability

Execution graphs are in away the composition/product of a program
with the semantics of a memory model.

Why would reachability be hard?

Reminder:

Elli Anastasiadi Weak memory models 26-30 June 15 / 19



Weak memory (almost always) has semantics involving unbounded
data structures.

..sad realization

Elli Anastasiadi Weak memory models 26-30 June 16 / 19



Weak memory (almost always) has semantics involving unbounded
data structures.

..sad realization

Elli Anastasiadi Weak memory models 26-30 June 16 / 19



Some cool things

Bad patterns

Well quasi-orderings & monotonicity

Well-structured systems

Elli Anastasiadi Weak memory models 26-30 June 17 / 19



Some cool things

Bad patterns

Event sequences that are known to be violating a weak memory
model.

When we are lucky: a finite set of bad patterns characterizes a given
weak memory model.

Use: Only test these and we get answers for any sequence of events.

Elli Anastasiadi Weak memory models 26-30 June 17 / 19



Some cool things

Well quasi orderings

Orderings between states of the (unavoidable) unbounded data
structure associated to the semantics of the model.

When we are lucky: ordering between configurations means
monotonicity in satisfaction of memory model.

Use: help us prune the infinitely large tree of configurations that we
explore for reachability.

Elli Anastasiadi Weak memory models 26-30 June 17 / 19



Some cool things

Well-structured systems

Semantic models for weak memory that have:

Unbounded but FIFO components.

Monotonicity

When we are lucky: we manage to transform the semantics of a weak
memory model to a form that is well-structured.

Use: (Theorem) Reachability is always decidable.

Elli Anastasiadi Weak memory models 26-30 June 17 / 19



Summary:

basic idea of how weak memory shows up

why is it problematic

what we (usually) do about it.

Future:

develop good algorithms for specific memory models

develop hardness results

(maybe) unification results.

Elli Anastasiadi Weak memory models 26-30 June 18 / 19



Thank you for your
attention!

Questions?

Elli Anastasiadi Weak memory models 26-30 June 19 / 19



Questions?

Elli Anastasiadi Weak memory models 26-30 June 19 / 19


	Weak memory
	Why - how - examples

	Verification
	Basic problems
	Basic principles


