From Bisimulations to Dissimilarities for Linear Dynamical Systems

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin

OPCT 2023-27 June 2023

Equivalences vs. Pseudometrics

 Specification
EQUIVALENCE RELATION:

Reflexive: $s \sim s$
Symmetric: $s \sim t \Longrightarrow t \sim s$
Transitive: $s \sim u$ and $u \sim t \Longrightarrow s \sim t$

- Reason about observational equivalence
- Often used to minimise the set of states of the system
- Not informative when the equivalence is not found

- Measure observational dissimilarities
- May be used to minimise the set of states beyond equivalence
- Provide information about the magnitude of dissimilarity

Equivalences vs. Dissimilarities

Specification
 Implementation

EQUIVALENCE RELATION:

Reflexive: $s \sim s$
Symmetric: $s \sim t \Longrightarrow t \sim s$
Transitive: $s \sim u$ and $u \sim t \Longrightarrow s \sim t$

- Reason about observational equivalence
- Often used to minimise the set of states of the system
- Not informative when the equivalence is not found

DISSIMILARITY:

Reflexive: $d(s, s)=0$
Symmetric: $d(s, t)=d(t, s)$
Triangular inequality: $d(s, u)+d(u, t) \leq d(s, t)$

- Measure observational dissimilarities
- May be used to minimise the set of states beyond equivalence
- Provide information about the magnitude of dissimilarity

Equivalences vs. Dissimilarities

EQUIVALENCE RELATION:

DISSIMILARITY:

Reflexive $d(c$ c -0
Reflexive: $s \sim s$ \square

Symmetric
Transitive:

- Rea equ

We consider Linear Dynamical Systems (LDS)

$$
x(t+1)=A x(t)+b
$$

- Often used to minimise the set of states of the system
- Not informative when the equivalence is not found
- May be used to minimise the set of states beyond equivalence
- Provide information about the magnitude of dissimilarity

Some related work

- Bisimilarity Pseudometrics for Markov Chains [Desharnais et al.,CONCUR'99] [van Breugel \& Worrell, ICALP'01]
- Coagebraic Behavioural Metrics [Baldan et al., LMCS'18]
- Weighted Bisimulations for Linear WA [Boreale, CONCUR’09]
- Bisimulation Metrics for WA [Balle, Gourdeau, Panangaden, ICALP'17]
- Approximate Bisimulations for linear control systems [Girard \& Pappas, CDC'05-TAC'07]
...and many more

Backward Equivalence

adaptation from [Cardelli et al., LICS'16]

- Definition 2 (Backward Equivalence). Let $x(t+1)=A x(t)+b$ be an LDS with n variables. An equivalence relation $R \subseteq[n] \times[n]$ is a backward equivalence if, for all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\bigwedge_{(i, j) \in R}\left(x_{i}=x_{j}\right) \Longrightarrow \bigwedge_{(i, j) \in R}\left(A_{i} x+b_{i}=A_{j} x+b_{j}\right) \tag{1}
\end{equation*}
$$

- Example

Consider the LDS $x(t+1)=A x(t)$ where $\tau=0.1$ and

$$
A=\left(\begin{array}{ccc}
1-\tau & \tau & \tau \\
\tau & 1-\tau & \tau \\
0 & 0 & 1-2 \tau
\end{array}\right)
$$

$R=I d \cup\{(1,2),(2,1)\}$ is a BE

- Model reduction w.r.t. BE preserves the exact solutions!

Backward Equivalence

adaptation from [Cardelli et al., LICS'16]

- Definition 2 (Backward Equivalence). Let $x(t+1)=A x(t)+b$ be an LDS with n variables. An equivalence relation $R \subseteq[n] \times[n]$ is a backward equivalence if, for all $x \in \mathbb{R}^{n}$,

$$
\bigwedge_{(i, j) \in R}\left(x_{i}=x_{j}\right) \Longrightarrow \bigwedge_{(i, j) \in R}\left(A_{i} x+b_{i}=A_{j} x+b_{j}\right) \cdot\left\{\begin{array}{l}
\begin{array}{c}
\text { Relates variables with identical } \\
\text { orbits when initialised equally }
\end{array}
\end{array}\right.
$$

- Example

Consider the LDS $x(t+1)=A x(t)$ where $\tau=0.1$ and

$$
A=\left(\begin{array}{ccc}
1-\tau & \tau & \tau \\
\tau & 1-\tau & \tau \\
0 & 0 & 1-2 \tau
\end{array}\right)
$$

$$
R=I d \cup\{(1,2),(2,1)\} \text { is a } \mathrm{BE}
$$

- Model reduction w.r.t. BE preserves the exact solutions!

Limitations of Backward Equivalence

BE relies on strong assumptions

- Initial conditions: for x_{i} and x_{j} to be equivalent we need

$$
x_{i}(0)=x_{j}(0)
$$

- Small perturbations in the coefficients break the equivalence

Perturbed Example

Consider the LDS $x(t+1)=A x(t)$ where $\epsilon>0$ and

$$
A=\left(\begin{array}{ccc}
1-\tau & \tau & (1+\epsilon) \tau \\
\tau & 1-\tau & (1-\epsilon) \tau \\
0 & 0 & 1-2 \tau
\end{array}\right)
$$

Backward Dissimilarity

- Definition 5 (Backward dissimilarity). Let $x(t+1)=A x(t)+b$ be an LDS. A symmetric matrix $D \in \mathbb{R}_{\geq 0}^{n \times n}$ is a backward dissimilarity for a set $I \subseteq \mathbb{R}^{n}$ of initial conditions if, for all $x(0) \in I$ and $t \in \mathbb{N}$,

$$
\bigwedge_{1 \leq i, j \leq n}\left(\left|x_{i}(t)-x_{j}(t)\right| \leq D_{i j}\right) \Longrightarrow \bigwedge_{1 \leq i, j \leq n}\left(\left|x_{i}(t+1)-x_{j}(t+1)\right| \leq D_{i j}\right)
$$

Quantitative generalisation of backward equivalence: $D_{i, j}=0 \Longleftrightarrow i \sim j$

Perturbed Example

Consider the LDS $x(t+1)=A x(t)$ where $\epsilon>0$ and

$$
A=\left(\begin{array}{ccc}
1-\tau & \tau & (1+\epsilon) \tau \\
\tau & 1-\tau & (1-\epsilon) \tau \\
0 & 0 & 1-2 \tau
\end{array}\right)
$$

$\left(^{*}\right)$ for ϵ sufficiently small

Backward Dissimilarity

- Definition 5 (Backward dissimilarity). Let $x(t+1)=A x(t)+b$ be an LDS. A symmetric matrix $D \in \mathbb{R}_{\geq 0}^{n \times n}$ is a backward dissimilarity for a set $I \subseteq \mathbb{R}^{n}$ of initial conditions if, for all $x(0) \in I$ and $t \in \mathbb{N}$,

$$
\bigwedge_{1 \leq i, j \leq n}\left(\left|x_{i}(t)-x_{j}(t)\right| \leq D_{i j}\right) \Longrightarrow \bigwedge_{1 \leq i, j \leq n}\left(\left|x_{i}(t+1)-x_{j}(t+1)\right| \leq D_{i j}\right)
$$

Quantitative generalisation of backward equivalence: $D_{i, j}=0 \Longleftrightarrow i \sim j$

Perturbed Example

Consider the LDS $x(t+1)=A x(t)$ where $\epsilon>0$ and

$$
A=\left(\begin{array}{ccc}
1-\tau & \tau & (1+\epsilon) \tau \\
\tau & 1-\tau & (1-\epsilon) \tau \\
0 & 0 & 1-2 \tau
\end{array}\right)
$$

$\left(^{*}\right)$ for ϵ sufficiently small

Case Study: room heating inspired from [Fehnker\&Ivančić, HSCC'04]

The temperature $x_{i}(t)$ in room $i \in 1,2,3$ depends on:

- The temperature of the adjacent rooms
- Outside temperature
- Control of the air conditioning in each room $u_{i}(t)$

Linear dynamics

$$
\begin{gathered}
x(t+1)=f(x(t), u(t))=A x(t)+b+u(k) \\
A=\left(\begin{array}{ccc}
0.9910 & 0.0050 & 0 \\
0.0050 & 0.9830 & 0.0055 \\
0 & 0.0055 & 0.9915
\end{array}\right) \quad b=\left(\begin{array}{l}
1.6 \\
1.2 \\
1.6
\end{array}\right) \quad \begin{array}{l}
\text { One obtains the constant control input } \\
u^{*}=(I-A) x^{*}-b \text { as the solution of } \\
x^{*}=f\left(x^{*}, u^{*}\right) \text { where } x^{*}=(20,20,20)
\end{array}
\end{gathered}
$$

Case Study: room heating

On-line Data Imputation
Assume one gives you the BD matrix D

	x_{1}	x_{2}	x_{3}
x_{1}	0	0.71	0.56
x_{2}	0.71	0	0.9
x_{3}	0.56	0.9	0

Assume that the thermometer in room 1 is malfunctioning. We can recover good estimates for the missing readings of $x_{1}(t)$ as
$\max \left(x_{2}(t)-D_{12}, x_{3}(t)-D_{13}\right) \leq x_{1}(t) \leq \min \left(x_{2}(t)+D_{12}, x_{3}(t)+D_{13}\right)$

In particular we ensure that $x_{1}(t)$ is at most $0.56^{\circ} \mathrm{C}$ from $x_{3}(t)$

Case Study: room heating

Approximate Model Reduction

1. Perform clustering using D as underlying distance, obtaining the partitioning $\mathscr{H}=\left\{\left\{x_{1}, x_{3}\right\},\left\{x_{2}\right\}\right\}$
2. Obtain from \mathscr{H} the reduced LDS

$$
y(t+1)=B y(t)+c
$$

3. Get a BD D^{\prime} for the "union" LDS

$$
(x(t+1), y(t+1))=(A x(t)+b, B y(t)+c)
$$

We approximately recover the original model as follows

$$
\max _{j} y_{j}(t)-D_{i j}^{\prime} \leq x_{i}(t) \leq \min _{j} y_{j}(t)+D_{i j}^{\prime}
$$

How do we compute backward dissimilarities?

Working Assumption

- Definition 5 (Backward dissimilarity). Let $x(t+1)=A x(t)+b$ be an LDS. A symmetric matrix $D \in \mathbb{R}_{\geq 0}^{n \times n}$ is a backward dissimilarity for a set $I \subseteq \mathbb{R}^{n}$ of initial conditions if, for all $x(0) \in I$ and $t \in \mathbb{N}$,

$$
\bigwedge_{1 \leq i, j \leq n}\left(\left|x_{i}(t)-x_{j}(t)\right| \leq D_{i j}\right) \Longrightarrow \bigwedge_{1 \leq i, j \leq n}\left(\left|x_{i}(t+1)-x_{j}(t+1)\right| \leq D_{i j}\right) .
$$

Working assumption: for the given set $I \subseteq \mathbb{R}^{n}$ of initial conditions, there exist $\lambda>0$ such that, for any $x(0) \in I,\|x(t)\|_{\infty} \leq \lambda$ for all $t \geq 0$.

PROS

- Bounds the set of relevant dissimilarities
- $x(0) \in I \Longrightarrow\left\{x_{i}(t)\right\}_{t \in \mathbb{N}} \subseteq[-\lambda, \lambda]$
- Simplifies our framework

CONS

- Estimation of λ may be tricky (I subset of (generalised) eigenspaces with eigenvalues γ s.t. $|\gamma| \leq 1$)
- Restriction on LDS we consider
$\left(^{*}\right)$ If the time horizon is bounded (i.e. $\left\{x_{i}(t)\right\}_{0 \leq t \leq T}$), then WA can be dropped

Fixed point characterisation

For $x(t+1)=A x(t)+b$ be an LDS, $I \subseteq \mathbb{R}^{n}$ and $\lambda>0$ satisfying (WA)

$$
\begin{aligned}
\Delta_{\lambda}(D)_{i j} & =\mathcal{T}_{\lambda}(D)\left(A_{i}, A_{j}\right)+\left|b_{i}-b_{j}\right| \\
& \begin{array}{c}
\text { Optimal solution of a } \\
\text { transportation problem }
\end{array}
\end{aligned}
$$

Theorem (Fixed point characterisation of BD)
If $\Delta_{\lambda}(D) \sqsubseteq D$, then D is a backward dissimilarity for I

Theorem (Generalisation of BE)
Let δ be the least fixpoint of Δ_{λ}, and \sim be the greatest BE, then

$$
\delta_{i j}=0 \Longleftrightarrow i \sim j
$$

Transportation Problem

- Definition 9 (Transportation problem). For two vectors $c, d \in \mathbb{R}^{n}$ and cost matrix $D \in \mathbb{R}^{n \times n}$ we define $\mathcal{T}_{\lambda}(D)(c, d)$ as the optimal value of the following linear program

$$
\begin{array}{cl}
\mathcal{T}_{\lambda}(D)(c, d)=\min _{s, \bar{s}, \omega}\left[\lambda \sum_{i}\left(s_{i}+\bar{s}_{i}\right)+\sum_{i, j} D_{i j} \omega_{i j}\right] & \\
\text { subject to } \sum_{j} \omega_{i j}+s_{i}=c_{i}^{+}+d_{i}^{-} & i=1 \ldots n \\
\sum_{i} \omega_{i j}+\bar{s}_{j}=c_{j}^{-}+d_{j}^{+} & j=1 \ldots n \\
\omega_{i j} \geq 0, s_{i} \geq 0, \bar{s}_{j} \geq 0 & i, j=1 \ldots n
\end{array}
$$

Example (Transport schedule)

$$
\begin{aligned}
& c(\bar{x})=\frac{1}{10} x_{1}-\frac{8}{10} x_{3} \\
& d(\bar{x})=\frac{2}{10} x_{1}-\frac{9}{10} x_{2} \\
& D=\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
2 & 0 & 1 \\
5 / 3 & 1 & x_{1} \\
x_{2} \\
x_{3}
\end{array}\right. \\
& \lambda=2
\end{aligned}
$$

Transport Policies

- Definition 15. A transport policy π for $x(t+1)=A x(t)+b$ is a map that assigns to each pair of indices (i, j) a transportation schedule $\pi(i, j) \in \Gamma\left(A_{i}, A_{j}\right)$. If $\pi(i, j) \in \Gamma_{V}\left(A_{i}, A_{j}\right)$ for all $(i, j), \pi$ is referred to as vertex transport policy.

$$
\Delta_{\lambda}^{\pi}(D)_{i j}=\left(\lambda \sum_{h} s_{h}+\bar{s}_{h}+\sum_{h, k} D_{h k} \omega_{h k}\right)+\left|b_{i}-b_{j}\right|
$$

where $\pi(i, j)=(s, \bar{s}, \omega)$

Proposition
Let π be a transport policy, then $\Delta_{\lambda}^{\pi}(D) \sqsubseteq D$ implies $\Delta_{\lambda}(D) \sqsubseteq D$

Theorem (Min Vertex Policy)
Let δ be the least fixpoint of Δ_{λ}, then

$$
\delta=\min \left\{D \mid \pi \in \Pi_{V}(A, b) \text { and } \Delta_{\lambda}^{\pi}(D) \sqsubseteq D\right\}
$$

Simple policy iteration

```
SimplePolicyIteration \((A, b, \lambda, R)\)
    1 // Construct initial policy
    2 let \(D_{i j}=0\) if \((i, j) \in R\) and \(D_{i j}=1\) if \((i, j) \notin R\).
    3 for each \((i, j) \in[n] \times[n]\)
    \(4 \quad\) if \((i, j) \in R\)
                \(\pi[i, j]=k_{\lambda}(D)\left(A_{i}, A_{j}\right)\)
        else \(\pi[i, j]=\left(A_{i}^{+}+A_{j}^{-}, A_{i}^{-}+A_{j}^{+}, \mathbf{0}\right)\)
    // Iterative policy improvement
    let \(D\) be the least fixpoint of \(\Delta_{\lambda}^{\pi}\)
    while \(\exists(i, j) . \Delta_{\lambda}(D)_{i j}<(D)_{i j}\)
        \(\pi[i, j]=k_{\lambda}(D)\left(A_{i}, A_{j}\right)\)
\(10-\pi[, j]=k_{\lambda}(D)\left(A_{i}, A_{j}\right)\)
\(11 \quad\) let \(D\) be the least fixpoint of \(\Delta_{\lambda}^{\pi}\)
12 return \(D\)
```


Simple policy iteration

LDS satisfying (WA)

$\operatorname{SimplePolicyIteration}(A, b, \lambda, R)$
1 // Construct initial policy
2 let $D_{i j}=0$ if $(i, j) \in R$ and $D_{i j}=1$ if $(i, j) \notin R$.
3 for each $(i, j) \in[n] \times[n]$
$4 \quad$ if $(i, j) \in R$

$$
\pi[i, j]=k_{\lambda}(D)\left(A_{i}, A_{j}\right)
$$

$$
\text { else } \pi[i, j]=\left(A_{i}^{+}+A_{j}^{-}, A_{i}^{-}+A_{j}^{+}, \mathbf{0}\right)
$$

7 // Iterative policy improvement let D be the least fixpoint of Δ_{λ}^{π} policy not optimal at (i, j) while $\exists(i, j) . \Delta_{\lambda}(D)_{i j}<(D)_{i j}$ $\pi[i, j]=k_{\lambda}(D)\left(A_{i}, A_{j}\right)$

Update policy at (i, j)

Simple policy iteration

$$
\mathrm{BE} \text { for } x(t+1)=A x(t)+b
$$

$\operatorname{SimplePolicyIteration}(A, b, \lambda, R)$
1 // Construct initial policy
2
let $D_{i j}=0$ if $(i, j) \in R$ and $D_{i j}=1$ if $(i, j) \notin R$.
for each $(i, j) \in[n] \times[n]$

$$
\text { if } \begin{aligned}
(i, j) \in R & \pi(i, j)
\end{aligned}=(0,0, \omega) \text { such that } \begin{gathered}
\\
\quad \pi[i, j]=k_{\lambda}(D)\left(A_{i}, A_{j}\right) \\
w_{i j}=0 \Longrightarrow i R j
\end{gathered}
$$

$$
\text { else } \pi[i, j]=\left(A_{i}^{+}+A_{j}^{-}, A_{i}^{-}+A_{j}^{+}, \mathbf{0}\right)
$$

// Iterative policy improvement
$\begin{aligned} & \text { let } D \text { be the least fixpoint of } \Delta_{\lambda}^{\pi} \\ & \text { while } \exists(i, j) \cdot \Delta_{\lambda}(D)_{i j}<(D)_{i j}\end{aligned} \quad D_{i j}^{(0)}=0 \Longleftrightarrow i R j$ while $\exists(i, j) . \Delta_{\lambda}(D)_{i j}<(D)_{i j}$

$$
\pi[i, j]=k_{\lambda}(D)\left(A_{i}, A_{j}\right)
$$

11
12
return D

Open problems

- How to compute the least backward dissimilarity?
- Getting rid of the working assumption
- We'll need to consider dissimilarities $D \in(\mathbb{R} \cup\{\infty\})^{n \times n}$
- Can we generalise the fixpoint characterisation?
- Extend the dissimilarity framework to:
- Continuous time models (e.g., ODEs, hybrid automata)
- Non-linear dynamics (e.g., polynomials)

