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Equivalences  vs. Pseudometrics

ImplementationSpecification ∼ ImplementationSpecification ε

EQUIVALENCE RELATION: 
Reflexive:  
Symmetric:  
Transitive:  and  

s ∼ s
s ∼ t ⟹ t ∼ s

s ∼ u u ∼ t ⟹ s ∼ t

PSEUDOMETRIC: 
Reflexive:  
Symmetric:  
Triangular inequality: 

d(s, s) = 0
d(s, t) = d(t, s)

d(s, u) + d(u, t) ≤ d(s, t)

• Reason about observational 
equivalence 


• Often used to minimise the 
set of states of the system


• Not informative when the 
equivalence is not found

• Measure observational 
dissimilarities


• May be used to minimise the set 
of states beyond equivalence


• Provide information about the 
magnitude of dissimilarity 
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We consider Linear Dynamical Systems (LDS) 

x(t + 1) = Ax(t) + b



• Bisimilarity Pseudometrics for Markov Chains [Desharnais et 
al.,CONCUR’99] [van Breugel & Worrell, ICALP’01]


• Coagebraic Behavioural Metrics [Baldan et al., LMCS’18]


• Weighted Bisimulations for Linear WA [Boreale, CONCUR’09]


• Bisimulation Metrics for WA [Balle, Gourdeau, Panangaden, 
ICALP’17]


• Approximate Bisimulations for linear control systems [Girard 
& Pappas, CDC’05—TAC’07]


…and many more

Some related work



Backward Equivalence

–:4 Dissimilarity for Linear Dynamical Systems

Of these systems we want to study how the dynamics of the state variables vary in the137

presence of di�erent forms of perturbations.138

In this respect, it is relevant to understand what it means for two state variables to have139

equivalent dynamics. This concept is formally captured by the notion of backward equivalence140

(BE) [16] here cast to LDSs.141

I Definition 2 (Backward Equivalence). Let x(t + 1) = Ax(t) + b be an LDS with n variables.142

An equivalence relation R ™ [n] ◊ [n] is a backward equivalence if, for all x œ Rn,143

fi

(i,j)œR

(xi = xj) =∆

fi

(i,j)œR

1
Aix + bi = Ajx + bj

2
. (1)144

I Example 3. Let x(t + 1) = Ax(t) + b be as in Example 1. Then, the equivalence relation145

R = id fi {(2, 3), (3, 2)}, where id = {(i, i) | 1 Æ i Æ 3} denotes the identity relation, is a BE.146

A BE relates state variables with identical solutions whenever these are initialized147

equally [16, Theorem 3]. Specifically, if R is a BE and xi(0) = xj(0) for all (i, j) œ R,148

then xi(t) = xj(t) for all (i, j) œ R and t > 0. Notably, BE generalizes the notion of exact149

lumpability for Markov chains [13], also known as backward bisimulation [54], which is150

recovered when A represents the (transpose of) the probability matrix of a discrete-time151

Markov chain and b = 0, such that x(t) represents the probability distribution of the chain152

at time step t. Typically, one is interested in finding the largest BE to reduce the size of153

the dynamical system by equating state variables with equivalent dynamics. The largest BE154

always exists and there are algorithms to compute it [16, 18].155

I Example 4. Consider the following perturbation of the LDS from Example 1, where one156

of the entries of A has been modified by subtracting an 0 < ‘ <
2

10
:157

x(t + 1) = A
‘
x(t) + b , where A

‘ =
A
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10 0

2
10 0

8
10

B
, and b =
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159

With this, the relation R from Example 3 is not a BE for x(t + 1) = A
‘
x(t) + b. This shows160

that BE is not be robust w.r.t. perturbations on a dynamical system.161

3 Backward Dissimilarity162

In this section we introduce backward dissimilarity (BD), a concept that generalizes BE163

by allowing for an approximate pairwise comparison of the dynamics of state variables.164

Intuitively, a BD estimates the di�erence of the dynamics governing two state variables xi,165

xj of a LDS by establishing an invariant that, if satisfied in the initial conditions, is then166

preserved along the entire time course evolution of the LDS. The definition of BD depends167

on a set I of initial conditions, which can be interpreted as the degree of variability that one168

allows on the choice of the initial conditions x(0). Thus, BD can also be used to estimate169

the di�erence between dynamics in the presence of perturbations of the initial conditions.170

I Definition 5 (Backward dissimilarity). Let x(t + 1) = Ax(t) + b be an LDS. A symmetric171

matrix D œ Rn◊n
Ø0

is a backward dissimilarity for a set I ™ Rn of initial conditions if, for all172

x(0) œ I and t œ N,173

fi

1Æi,jÆn

1
|xi(t) ≠ xj(t)| Æ Dij

2
=∆

fi

1Æi,jÆn

1
|xi(t + 1) ≠ xj(t + 1)| Æ Dij

2
.174

• Model reduction w.r.t. BE preserves the exact solutions!
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adaptation from [Cardelli et al., LICS’16]

Example
Consider the LDS  

where  and

x(t + 1) = Ax(t)
τ = 0.1

 is a BER = Id ∪ {(1,2), (2,1)}
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BE relies on strong assumptions 

• Initial conditions: for  and  to be equivalent we need 



• Small perturbations in the coefficients break the equivalence

xi xj
xi(0) = xj(0)

Limitations of Backward Equivalence
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Consider the LDS  

where  and

x(t + 1) = Ax(t)
ϵ > 0 x1 ≁ x2



Quantitative generalisation of backward equivalence: Di,j = 0 ⟺ i ∼ j
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The temperature  in room 
 depends on:


• The temperature of the adjacent 
rooms


• Outside temperature 

• Control of the air conditioning in 

each room 

xi(t)
i ∈ 1,2,3

ui(t)

Case Study: room heating
G. Bacci et al. –:9

The above LP can be solved by using the interior point method in O(n4.5 log(n/–)) time [56] ,326

where – is the relative accuracy (in our implementation – = 10≠6). Therefore, the worst-case327

runtime of a single iteration of the algorithm is O(n4.5 log(n/–) + n
5 log n) = O(n5 log n).328

Similarly to the policy iteration algorithm for MDPs [21], the number of iterations is, in329

the worst case, exponential in the number of state variables. However, in the next section330

our experiments show that, in practice, the algorithm converges after few iterations.331

5 The Thermostat Case Study332

In this section we showcase possible applications of BDs on a simple, yet informative, model.333

To this end, we consider as LDS x(k + 1) = Ax(k) + b + u(k), a modification of a thermostat334

model from [24] with three rooms. The temperature in each room depends on that of the335

adjacent rooms, the temperature outside the building and the control setting of the air336

conditioning in each room, modeled by a linear feedback control [2]. Formally, xi(k) is the337

temperature in room i at time k, b accounts for the outside temperate, while ui(k) is the338

control input applied in room i at time k. The matrix A and vector b are as shown below1339

A =

Q

a
0.9910 0.0050 0
0.0050 0.9830 0.0055

0 0.0055 0.9915

R

b , b =

Q

a
1.6
1.2
1.6

R

b . (4)340

341

In the rest of the section we demonstrate how to compute a BD for the above LDS and342

showcase how such BD can be used to implement digital twins replacing malfunctioning343

sensors as well as performing approximate model reduction.344

Computing Backward Dissimilarities. In the case when u(k) = 0 for all k Ø 0 (i.e.,345

all thermostats are kept o�) the temperature converges to 4°C in all rooms. The constant346

control input u
ú, ensuring that all three room temperatures attain 20°C, can be obtained by347

solving x
ú = f(xú

, u
ú), where f(x, u) = Ax + b + u and x

ú = (20, 20, 20)T .348

An estimation of ⁄ can be achieved as in Example 7 by noting that ÎAÎŒ < 1. However,349

we point out that a sharper estimation of ⁄ is often possible when a reference point x
ú is350

given. Indeed, we can perform a simple change of variable x̄ = x ≠ x
ú and ū = u ≠ u

ú351

corresponding to a shifting of the graph. Since x̄(k + 1) + x
ú = f(x̄(k) + x

ú
, ū(k) + u

ú) the352

dynamics x̄(k + 1) = g(x̄(k), ū(k)) of the shifted system can be obtained via353

g(x̄(k), ū(k)) = x̄(k + 1) = f(x̄(k) + x
ú
, ū(k) + u

ú) ≠ x
ú = Ax̄(k) + ū(k), (5)354

355

where the last identity uses u
ú = (I ≠ A)xú

≠ b. Noting that g has no additive constant and356

ÎAÎŒ < 1, we can set ū(k) = 0 and ⁄ = 5, provided that Îx̄(0)ÎŒ = Îx(0) ≠ x
ú
ÎŒ Æ 5.357

With this in place, we obtain for x
ú = (20, 20, 20)T the BD D depicted in Figure 2 (left),358

where we see that the variables x1 and x3 are the least dissimilar (D13 = 0.56).359

Digital Twins and Property Transfer. The control of cyber-physical systems can360

be compromised by malfunctioning sensors [2]. In the thermostat example, for instance, a361

feedback control may require all room temperatures to be known. Assume, for example, that362

the thermometer in room 1 is malfunctioning. We can exploit the BD D in Figure 2 (left) to363

recover good estimates for the missing readings x1(t) from those of the other rooms, because364

max(x2(t) ≠ D12, x3(t) ≠ D13) Æ x1(t) Æ min(x2(t) + D12, x3(t) + D13) ,365

1 The matrix A was obtained by discretizing the original model [24, Eq. 8] with time step 10≠2 and by
additionally perturbing the matrix entries in the order of 10≠3, to replicate a typical real-case scenario
where fragile model symmetries do not occur.

CONCUR 2023

G. Bacci et al. –:9

The above LP can be solved by using the interior point method in O(n4.5 log(n/–)) time [56] ,326

where – is the relative accuracy (in our implementation – = 10≠6). Therefore, the worst-case327

runtime of a single iteration of the algorithm is O(n4.5 log(n/–) + n
5 log n) = O(n5 log n).328

Similarly to the policy iteration algorithm for MDPs [21], the number of iterations is, in329

the worst case, exponential in the number of state variables. However, in the next section330

our experiments show that, in practice, the algorithm converges after few iterations.331

5 The Thermostat Case Study332

In this section we showcase possible applications of BDs on a simple, yet informative, model.333

To this end, we consider as LDS x(k + 1) = Ax(k) + b + u(k), a modification of a thermostat334

model from [24] with three rooms. The temperature in each room depends on that of the335

adjacent rooms, the temperature outside the building and the control setting of the air336

conditioning in each room, modeled by a linear feedback control [2]. Formally, xi(k) is the337

temperature in room i at time k, b accounts for the outside temperate, while ui(k) is the338

control input applied in room i at time k. The matrix A and vector b are as shown below1339

A =

Q

a
0.9910 0.0050 0
0.0050 0.9830 0.0055

0 0.0055 0.9915

R

b , b =

Q

a
1.6
1.2
1.6

R

b . (4)340

341

In the rest of the section we demonstrate how to compute a BD for the above LDS and342

showcase how such BD can be used to implement digital twins replacing malfunctioning343

sensors as well as performing approximate model reduction.344

Computing Backward Dissimilarities. In the case when u(k) = 0 for all k Ø 0 (i.e.,345

all thermostats are kept o�) the temperature converges to 4°C in all rooms. The constant346

control input u
ú, ensuring that all three room temperatures attain 20°C, can be obtained by347

solving x
ú = f(xú

, u
ú), where f(x, u) = Ax + b + u and x

ú = (20, 20, 20)T .348

An estimation of ⁄ can be achieved as in Example 7 by noting that ÎAÎŒ < 1. However,349

we point out that a sharper estimation of ⁄ is often possible when a reference point x
ú is350

given. Indeed, we can perform a simple change of variable x̄ = x ≠ x
ú and ū = u ≠ u

ú351

corresponding to a shifting of the graph. Since x̄(k + 1) + x
ú = f(x̄(k) + x

ú
, ū(k) + u

ú) the352

dynamics x̄(k + 1) = g(x̄(k), ū(k)) of the shifted system can be obtained via353

g(x̄(k), ū(k)) = x̄(k + 1) = f(x̄(k) + x
ú
, ū(k) + u

ú) ≠ x
ú = Ax̄(k) + ū(k), (5)354

355

where the last identity uses u
ú = (I ≠ A)xú

≠ b. Noting that g has no additive constant and356

ÎAÎŒ < 1, we can set ū(k) = 0 and ⁄ = 5, provided that Îx̄(0)ÎŒ = Îx(0) ≠ x
ú
ÎŒ Æ 5.357

With this in place, we obtain for x
ú = (20, 20, 20)T the BD D depicted in Figure 2 (left),358

where we see that the variables x1 and x3 are the least dissimilar (D13 = 0.56).359

Digital Twins and Property Transfer. The control of cyber-physical systems can360

be compromised by malfunctioning sensors [2]. In the thermostat example, for instance, a361

feedback control may require all room temperatures to be known. Assume, for example, that362

the thermometer in room 1 is malfunctioning. We can exploit the BD D in Figure 2 (left) to363

recover good estimates for the missing readings x1(t) from those of the other rooms, because364

max(x2(t) ≠ D12, x3(t) ≠ D13) Æ x1(t) Æ min(x2(t) + D12, x3(t) + D13) ,365

1 The matrix A was obtained by discretizing the original model [24, Eq. 8] with time step 10≠2 and by
additionally perturbing the matrix entries in the order of 10≠3, to replicate a typical real-case scenario
where fragile model symmetries do not occur.
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x(t + 1) = f(x(t), u(t)) = Ax(t) + b + u(k)

21 3

One obtains the constant control input 
 as the solution of  

 where 
u* = (I − A)x* − b
x* = f(x*, u*) x* = (20,20,20)

Linear dynamics

inspired from [Fehnker&Ivančić, HSCC’04]
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On-line Data Imputation 

<latexit sha1_base64="TX5ukKRn8NhY7lHFEfEHkOPYkHA="></latexit>

x1 x2 x3

x1 0 0.71 0.56
x2 0.71 0 0.9
x3 0.56 0.9 0

Assume one gives you the BD matrix D

Assume that the thermometer in room 1 is malfunctioning. We 
can recover good estimates for the missing readings of  asx1(t)

max(x2(t) − D12, x3(t) − D13) ≤ x1(t) ≤ min(x2(t) + D12, x3(t) + D13)

In particular we ensure that  is at most  from x1(t) 0.56∘C x3(t)
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21 3

Approximate Model Reduction 

1. Perform clustering using  as 
underlying distance, obtaining the 
partitioning 


2. Obtain from  the reduced LDS



3. Get a BD  for the “union” LDS 

D

ℋ = {{x1, x3}, {x2}}

ℋ
y(t + 1) = By(t) + c

D′ 

(x(t + 1), y(t + 1)) = (Ax(t) + b, By(t) + c)

max
j

yj(t) − D′ ij ≤ xi(t) ≤ min
j

yj(t) + D′ ij

We approximately recover the original model as follows



How do we compute 
backward dissimilarities?



Working Assumption

–:4 Dissimilarity for Linear Dynamical Systems

Of these systems we want to study how the dynamics of the state variables vary in the137

presence of di�erent forms of perturbations.138

In this respect, it is relevant to understand what it means for two state variables to have139

equivalent dynamics. This concept is formally captured by the notion of backward equivalence140

(BE) [16] here cast to LDSs.141

I Definition 2 (Backward Equivalence). Let x(t + 1) = Ax(t) + b be an LDS with n variables.142

An equivalence relation R ™ [n] ◊ [n] is a backward equivalence if, for all x œ Rn,143

fi

(i,j)œR

(xi = xj) =∆

fi

(i,j)œR

1
Aix + bi = Ajx + bj

2
. (1)144

I Example 3. Let x(t + 1) = Ax(t) + b be as in Example 1. Then, the equivalence relation145

R = id fi {(2, 3), (3, 2)}, where id = {(i, i) | 1 Æ i Æ 3} denotes the identity relation, is a BE.146

A BE relates state variables with identical solutions whenever these are initialized147

equally [16, Theorem 3]. Specifically, if R is a BE and xi(0) = xj(0) for all (i, j) œ R,148

then xi(t) = xj(t) for all (i, j) œ R and t > 0. Notably, BE generalizes the notion of exact149

lumpability for Markov chains [13], also known as backward bisimulation [54], which is150

recovered when A represents the (transpose of) the probability matrix of a discrete-time151

Markov chain and b = 0, such that x(t) represents the probability distribution of the chain152

at time step t. Typically, one is interested in finding the largest BE to reduce the size of153

the dynamical system by equating state variables with equivalent dynamics. The largest BE154

always exists and there are algorithms to compute it [16, 18].155

I Example 4. Consider the following perturbation of the LDS from Example 1, where one156

of the entries of A has been modified by subtracting an 0 < ‘ <
2

10
:157

x(t + 1) = A
‘
x(t) + b , where A

‘ =
A

6
10 ≠ 2

10
2

10
2

10 ≠‘ 8
10 0

2
10 0

8
10

B
, and b =

3
0
1
5
1
5

4
158

159

With this, the relation R from Example 3 is not a BE for x(t + 1) = A
‘
x(t) + b. This shows160

that BE is not be robust w.r.t. perturbations on a dynamical system.161

3 Backward Dissimilarity162

In this section we introduce backward dissimilarity (BD), a concept that generalizes BE163

by allowing for an approximate pairwise comparison of the dynamics of state variables.164

Intuitively, a BD estimates the di�erence of the dynamics governing two state variables xi,165

xj of a LDS by establishing an invariant that, if satisfied in the initial conditions, is then166

preserved along the entire time course evolution of the LDS. The definition of BD depends167

on a set I of initial conditions, which can be interpreted as the degree of variability that one168

allows on the choice of the initial conditions x(0). Thus, BD can also be used to estimate169

the di�erence between dynamics in the presence of perturbations of the initial conditions.170

I Definition 5 (Backward dissimilarity). Let x(t + 1) = Ax(t) + b be an LDS. A symmetric171

matrix D œ Rn◊n
Ø0

is a backward dissimilarity for a set I ™ Rn of initial conditions if, for all172

x(0) œ I and t œ N,173

fi

1Æi,jÆn

1
|xi(t) ≠ xj(t)| Æ Dij

2
=∆

fi

1Æi,jÆn

1
|xi(t + 1) ≠ xj(t + 1)| Æ Dij

2
.174
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Note that not all LDSs admit the existence of backward dissimilarities.175

I Example 6. Consider the system {x1(t + 1) = 2x1(t) + 1, x2(t + 1) = x2(t)}. No BD can176

exist for it, because the di�erence |x1(t) ≠ x2(t)| diverges for t æ Œ. This fact does not177

depend on the chosen set I of initial conditions.178

Then, it is reasonable to work under the following assumption of boundedness, which179

provides su�cient conditions for the existence of BDs.180

Working assumption: for the given set I ™ Rn of initial conditions, there exist
⁄ > 0 such that, for any x(0) œ I, Îx(t)ÎŒ Æ ⁄ for all t Ø 0. (wa)181

The above condition ensures that all dynamics are bounded within the interval [≠⁄, ⁄], thus182

a BD always exists (the matrix with all entries Dij = 2⁄ is a BD).183

Note that (wa) is weaker than stability known from control theory [2] because it only184

requires that the reachable set is bounded with respect to the given set I of initial conditions.185

In practice, (wa) is satisfied by many models of physical systems from several domains due186

to properties related to the preservation of mass or energy. Examples include [18, 15]187

closed chemical systems (e.g., monomolecular reaction networks in the linear case [25]),188

where no chemical species is exchanged with the environment; here each state variable189

can represent the population/concentration of a chemical species, and closedness implies190

that the overall population across all species is constant (hence bounded) over time;191

electrical circuits (e.g., linear RLC networks), where Kircho� current and voltage laws192

prescribe preservation of energy such that the currents or voltages cannot exceed those of193

the external sources;194

models of closed economy, represented as a linear dynamical system owing to the fun-195

damental work of Leontief [39], which postulates that all goods that are produced are196

consumed and that expenditure matches income overall.197

To benefit the presentation, below we show a direct but loose estimation of ⁄.198

I Example 7. Consider the LDS x(t + 1) = A
‘
x(t) + b from Example 4 and fix ‘ = 1

10
. By199

assuming the set of initial conditions I = [≠1, 1]3, a value for ⁄ that satisfies our working200

assumption (wa) is ⁄ = 2. Indeed, as A
‘
b = 4

5
b (i.e., b is an eigenvector of A

‘) and ÎA
‘
ÎŒ = 1,201

the following inequality holds for all t œ N and x(0) œ I:202

Îx(t)ÎŒ = Î(A‘)t
x(0) +

qt≠1

i=0
(A‘)i

bÎŒ Æ ÎA
‘
Î

t
ŒÎx(0)ÎŒ + Î

qt≠1

i=0
( 4

5
)i

bÎŒ203

Æ 1 + 1

5

qŒ
i=0

( 4

5
)i = 2 .204

205

I Example 8. Consider the LDS from Example 7 with same set of initial conditions206

I = [≠1, 1]3. Then, the corresponding BD is D =
3

0 2
5
3

2 0 1
5
3 1 0

4
. The coe�cients of D have207

been found by a suitable estimation of the di�erences in the dynamics. For example, the208

dissimilarity D2,3 = 1 between the dynamics of x2 and x3 can be understood by looking at209

the following inequalities, with ⁄ = 2 as in Example 7:210

|x2(t + 1) ≠ x3(t + 1)| = |
1

10
(x1(t) ≠ x1(t)) + 8

10
(x2(t) ≠ x3(t)) + 1

10
x1(t)|211

Æ
8

10
|x2(t) ≠ x3(t)| + 1

10
|x1(t)|212

Æ
8

10
|x2(t) ≠ x3(t)| + 1

10
⁄ .213

214

Indeed, the above shows that |x2(t) ≠ x3(t)| Æ 1 implies |x2(t + 1) ≠ x3(t + 1)| Æ 1.215

CONCUR 2023

• Bounds the set of relevant 
dissimilarities


• 

• Simplifies our framework

x(0) ∈ I ⟹ {xi(t)}t∈ℕ ⊆ [−λ, λ]

• Estimation of  may be tricky   
(  subset of (generalised) eigenspaces 
with eigenvalues  s.t. )


• Restriction on LDS we consider

λ
I

γ |γ | ≤ 1

PROS CONS

(*) If the time horizon is bounded (i.e.  ), then WA can be dropped{xi(t)}0≤t≤T
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Our method to find BDs follows the technique outlined in Example 8: factorizing the216

di�erence of the solutions at time t+1 in terms of the di�erences at time t. Such a factorization217

is always possible and can be found as the solution of a transportation problem [22, 27].218

I Definition 9 (Transportation problem). For two vectors c, d œ Rn and cost matrix D œ Rn◊n219

we define T⁄(D)(c, d) as the optimal value of the following linear program220

T⁄(D)(c, d) = min
s,s̄,Ê

Ë
⁄

q
i(si + s̄i) +

q
i,j DijÊij

È
221

subject to
q

j Êij + si = c
+

i + d
≠
i i = 1 . . . n222

q
i Êij + s̄j = c

≠
j + d

+

j j = 1 . . . n223

Êij Ø 0, si Ø 0, s̄j Ø 0 i, j = 1 . . . n224
225

where c = c
+

≠ c
≠ and d = d

+
≠ d

≠ are decomposed in their positive and negative parts. An226

assignment of the variables (s, s̄, Ê) that satisfies the constraints above is called transportation227

schedule, and we call it perfect when s, s̄ = 0.228

We denote by �(c, d) the polytope containing all transportation schedules for (c, d), and by229

�V (c, d) the (finite) subset of its vertices.230

I Example 10. Let us try to reinterpret the factorization provided in Example 8 as an231

instance of a transportation schedule. For convenience, we recall the dynamics of x2 and x3232

and show the (nonzero) assignments of the variables s, s̄, Ê, corresponding to a transportation233

schedule as in Definition 9:234

x2(t + 1) =

c1˙˝¸˚
1

10
x1(t) +

c2˙˝¸˚
8

10
x2(t) x3(t + 1) =

d1˙˝¸˚
2

10
x1(t) +

d3˙˝¸˚
8

10
x3(t)235

= 1

10¸˚˙˝
Ê1,1

x1(t) + 8

10¸˚˙˝
Ê2,3

x2(t) = ( 1

10¸˚˙˝
Ê1,1

+ 1

10¸˚˙˝
s̄1

)x1(t) + 8

10¸˚˙˝
Ê2,3

x3(t)236

237

Then, the factorization from Example 8 matches the expression used as objective function in238

the transportation problem as shown below for Dij = |xi(t) ≠ xj(t)|239

⁄
q

i(si + s̄i) +
q

i,j DijÊij = ⁄
1

10
+ 8

10
|x2(t) ≠ x3(t)| .240

BDs are clearly not unique and di�erent factorizations might give better estimations on241

the di�erence of the dynamics. The transportation problem finds the tightest one for any two242

given state variables. By applying this idea to each pair of state variables of the dynamical243

system x(t + 1) = Ax(t) + b, we can define the operator244

�⁄(D)ij = T⁄(D)(Ai, Aj) + |bi ≠ bj | ,245

that, given an estimation D œ Rn◊n
Ø0

of the pair-wise di�erences of the dynamics at time t,246

provides an updated estimate �⁄(D) œ Rn◊n
Ø0

for time t + 1. In the following, we just write247

� when ⁄ is clear from the context (or when the discussion is generic on the value of ⁄ > 0).248

I Lemma 11. The operator � is well-defined on the complete lattice ([0, Œ]n◊n
, ı) and249

monotone w.r.t. ı, where D ı D
Õ i� Dij Æ D

Õ
ij for all 1 Æ i, j Æ n.250

Our first major result ensures that the pre-fixpoints of � are BDs for the given set of251

initial conditions satisfying our working assumptions.252

I Theorem 12. Let x(t + 1) = Ax(t) + b be an LDS, I ™ Rn, and ⁄ > 0 satisfying253

assumption (wa). Then, any D œ Rn◊n
Ø0

such that �⁄(D) ı D is a BD for I.254

For  be an LDS,  and  satisfying (WA)  x(t + 1) = Ax(t) + b I ⊆ ℝn λ > 0

Fixed point characterisation

If , then  is a backward dissimilarity for Δλ(D) ⊑ D D I

Theorem (Fixed point characterisation of BD)

Let  be the least fixpoint of , and  be the greatest BE, thenδ Δλ ∼
Theorem (Generalisation of BE)

δij = 0 ⟺ i ∼ j

Optimal solution of a 
transportation problem
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Our method to find BDs follows the technique outlined in Example 8: factorizing the216

di�erence of the solutions at time t+1 in terms of the di�erences at time t. Such a factorization217

is always possible and can be found as the solution of a transportation problem [22, 27].218

I Definition 9 (Transportation problem). For two vectors c, d œ Rn and cost matrix D œ Rn◊n219

we define T⁄(D)(c, d) as the optimal value of the following linear program220

T⁄(D)(c, d) = min
s,s̄,Ê

Ë
⁄

q
i(si + s̄i) +

q
i,j DijÊij

È
221

subject to
q

j Êij + si = c
+

i + d
≠
i i = 1 . . . n222

q
i Êij + s̄j = c

≠
j + d

+

j j = 1 . . . n223

Êij Ø 0, si Ø 0, s̄j Ø 0 i, j = 1 . . . n224
225

where c = c
+

≠ c
≠ and d = d

+
≠ d

≠ are decomposed in their positive and negative parts. An226

assignment of the variables (s, s̄, Ê) that satisfies the constraints above is called transportation227

schedule, and we call it perfect when s, s̄ = 0.228

We denote by �(c, d) the polytope containing all transportation schedules for (c, d), and by229

�V (c, d) the (finite) subset of its vertices.230

I Example 10. Let us try to reinterpret the factorization provided in Example 8 as an231

instance of a transportation schedule. For convenience, we recall the dynamics of x2 and x3232

and show the (nonzero) assignments of the variables s, s̄, Ê, corresponding to a transportation233

schedule as in Definition 9:234

x2(t + 1) =

c1˙˝¸˚
1

10
x1(t) +

c2˙˝¸˚
8

10
x2(t) x3(t + 1) =

d1˙˝¸˚
2

10
x1(t) +

d3˙˝¸˚
8

10
x3(t)235

= 1

10¸˚˙˝
Ê1,1

x1(t) + 8

10¸˚˙˝
Ê2,3

x2(t) = ( 1

10¸˚˙˝
Ê1,1

+ 1

10¸˚˙˝
s̄1

)x1(t) + 8

10¸˚˙˝
Ê2,3

x3(t)236

237

Then, the factorization from Example 8 matches the expression used as objective function in238

the transportation problem as shown below for Dij = |xi(t) ≠ xj(t)|239

⁄
q

i(si + s̄i) +
q

i,j DijÊij = ⁄
1

10
+ 8

10
|x2(t) ≠ x3(t)| .240

BDs are clearly not unique and di�erent factorizations might give better estimations on241

the di�erence of the dynamics. The transportation problem finds the tightest one for any two242

given state variables. By applying this idea to each pair of state variables of the dynamical243

system x(t + 1) = Ax(t) + b, we can define the operator244

�⁄(D)ij = T⁄(D)(Ai, Aj) + |bi ≠ bj | ,245

that, given an estimation D œ Rn◊n
Ø0

of the pair-wise di�erences of the dynamics at time t,246

provides an updated estimate �⁄(D) œ Rn◊n
Ø0

for time t + 1. In the following, we just write247

� when ⁄ is clear from the context (or when the discussion is generic on the value of ⁄ > 0).248

I Lemma 11. The operator � is well-defined on the complete lattice ([0, Œ]n◊n
, ı) and249

monotone w.r.t. ı, where D ı D
Õ i� Dij Æ D

Õ
ij for all 1 Æ i, j Æ n.250

Our first major result ensures that the pre-fixpoints of � are BDs for the given set of251

initial conditions satisfying our working assumptions.252

I Theorem 12. Let x(t + 1) = Ax(t) + b be an LDS, I ™ Rn, and ⁄ > 0 satisfying253

assumption (wa). Then, any D œ Rn◊n
Ø0

such that �⁄(D) ı D is a BD for I.254

Transport schedule
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As �⁄ is monotonic, by Knaster-Taski’s fixpoint theorem, it has least fixpoint, hereafter255

denoted by ”⁄ (or simply ”). The next result, in combination with Theorem 12, tells us that256

BD is indeed an approximate extension of BE.257

I Theorem 13. Let R be the greatest BE. Then, ”i,j = 0 i� (i, j) œ R.258

I Remark 14. Our framework, in particular the invariant computation, carries over to finite259

time intervals [0; T ]. In this case, it su�ces to require that, given a set of initial conditions,260

the dynamics on [0; T ] is bounded by some ⁄. For LDS such a bound trivially exists.261

4 Computation of Backward Dissimilarity262

In this section we discuss how to compute pre-fixpoints of �⁄. To this end we provide an263

algorithm which is inspired by the simple policy iteration algorithm for Markov decision264

processes [49, Chapter 6.4].265

The algorithm will make use of two key concepts, namely that of transport policy and266

policy dissimilarity. A transport policy, in line with the concept of policy in MDPs, is a map267

that assigns a factorization strategy (i.e., a transportation schedule) with each pair of state268

variables. Each policy is then associated with the smallest dissimilarity that can be achieved269

by fixing such factorization strategy, here called policy dissimilarity.270

I Definition 15. A transport policy fi for x(t + 1) = Ax(t) + b is a map that assigns to each271

pair of indices (i, j) a transportation schedule fi(i, j) œ �(Ai, Aj). If fi(i, j) œ �V (Ai, Aj) for272

all (i, j), fi is referred to as vertex transport policy.273

We denote by �(A, b) (resp. �V (A, b)) the set of transport policies (resp. vertex transport274

policies) for x(t + 1) = Ax(t) + b. Note that �V (A, b) is finite.275

Given a transport policy fi œ �(A, b), we define the operator276

�fi
⁄(D)ij =

!
⁄

q
h(sh + s̄h) +

q
h,k DhkÊh,k

"
+ |bi ≠ bj | (2)277

where fi(i, j) = (s, s̄, Ê). In contrast to �⁄ from Theorem 12, given an estimate D œ Rn◊n
Ø0

278

of the pair-wise di�erences of the dynamics at time t, �fi
⁄(D) computes an updated estimate279

for time t + 1 via the factorization strategy described by fi.280

As in Lemma 11 one can show that �fi
⁄ is well-defined and monotone in ([0, Œ]n◊n

, ı).281

I Definition 16. Let fi œ �(A, b) and ⁄ > 0. The transport dissimilarity for fi, denoted ”
fi
⁄ ,282

is the least fixed point of �fi
⁄.283

The following result states that for any transport policy fi œ �(A, b), the pre-fixpoints284

of �fi
⁄ are also pre-fixpoints of �⁄. Thus, by Theorem 12, ”

fi
⁄ is a BD for a set of initial285

conditions I ™ Rn and ⁄ > 0 satisfying assumption (wa).286

I Proposition 17. Let fi œ �(A, b). Then �fi
⁄(D) ı D implies �⁄(D) ı D.287

With this in hand, we show that the least fixed point of �⁄ is the minimum policy dissimilarity288

ranging over all vertex transport policies.289

I Theorem 18. ”⁄ = min{”
fi
⁄ | fi œ �V (A, b)}.290

As in the classical policy iteration algorithm, our procedure starts from some suitable291

transport policy. At each iteration, the current policy is replaced by one having a smaller292

policy dissimilarity. The algorithm terminates when such an update no longer yields a better293

dissimilarity (cf. lines 6–8 in Figure 1).294
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Let  be a transport policy, then  implies π Δπ
λ(D) ⊑ D Δλ(D) ⊑ D

Proposition

Let  be the least fixpoint of , thenδ Δλ

Theorem (Min Vertex Policy)

δ = min{D ∣ π ∈ ΠV(A, b) and Δπ
λ(D) ⊑ D}

Δπ
λ(D)ij = (λ∑h sh + s̄h + ∑h,k Dhkωhk) + |bi − bj |

where π(i, j) = (s, s̄, ω)



Simple policy iteration
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• Make an e↵ort to present your solutions neatly and precisely.

SimplePolicyIteration(A, b,�, R)

1 // Construct initial policy
2 let Dij = 0 if (i, j) 2 R and Dij = 1 if (i, j) /2 R.
3 for each (i, j) 2 [n]⇥ [n]
4 if (i, j) 2 R

5 ⇡[i, j] = k�(D)(Ai, Aj)
6 else ⇡[i, j] = (A+

i +A
�
j , A

�
i +A

+
j ,0)

7 // Iterative policy improvement
8 let D be the least fixpoint of �⇡

�
9 while 9(i, j).��(D)ij < (D)ij

10 ⇡[i, j] = k�(D)(Ai, Aj)
11 let D be the least fixpoint of �⇡

�
12 return D

Question 1. 15Pts

Identifying asymptotic notation. (Note: lg means logarithm in base 2)

(1.1) [5 Pts] Mark ALL the correct answers. 2
p
n+ lg nn + lg 2n is

a) O(n2)⇤ b) ⌦( 3
p
n)⇤ c) ⇥(n)⇤ d) ⇥(n lg n)⇤ e) ⌦(lg 2n)⇤

(1.2) [5 Pts] Mark ALL the correct answers. n100 + 2n � 100 is

a) ⇥(n100)⇤ b) O(2n)⇤ c) O(nn)⇤ d) ⌦(1)⇤ e) ⇥(3n)⇤

(1.3) [5 Pts] Mark ALL the correct answers. (lg n) · (5 lg n+ 1
3n

2 + 900) is

a) ⇥(n2)⇤ b) ⌦(n2)⇤ c) O(n2)⇤ d) ⇥(n lg n)⇤ e)⇥(n+lg n2)⇤

1



Simple policy iteration
LDS satisfying (WA) 

policy not optimal at (i, j)

Update policy at  (i, j)
kλ(D)(c, d) ∈ argmin

(s,s̄,ω)∈ΓV(c,d)
λ∑i (si + s̄i) + ∑i,j Dijωij

Exam - June 2023
Algorithms and Data Structures (DAT2, SW2, DVML2)

Instructions. This exam consists of five questions, each divided into sub-questions. You must
hand-in your solutions in digital exam as a single pdf file. You are encouraged to mark the multiple
choice answers as well as the labelling of graphs directly in this exam sheet.

• Before starting solving the questions, read carefully the exam guidelines at https://www.

moodle.aau.dk/mod/page/view.php?id=1524278.

• Read carefully the text of each exercise. Pay particular attention to the terms in bold.

• You are allowed to refer to results in the textbook as well as exercise or self-study solutions
posted in Moodle to support your arguments used in your answers.

• Make an e↵ort to present your solutions neatly and precisely.

SimplePolicyIteration(A, b,�, R)

1 // Construct initial policy
2 let Dij = 0 if (i, j) 2 R and Dij = 1 if (i, j) /2 R.
3 for each (i, j) 2 [n]⇥ [n]
4 if (i, j) 2 R

5 ⇡[i, j] = k�(D)(Ai, Aj)
6 else ⇡[i, j] = (A+

i +A
�
j , A

�
i +A

+
j ,0)

7 // Iterative policy improvement
8 let D be the least fixpoint of �⇡

�
9 while 9(i, j).��(D)ij < (D)ij

10 ⇡[i, j] = k�(D)(Ai, Aj)
11 let D be the least fixpoint of �⇡

�
12 return D

Question 1. 15Pts

Identifying asymptotic notation. (Note: lg means logarithm in base 2)

(1.1) [5 Pts] Mark ALL the correct answers. 2
p
n+ lg nn + lg 2n is

a) O(n2)⇤ b) ⌦( 3
p
n)⇤ c) ⇥(n)⇤ d) ⇥(n lg n)⇤ e) ⌦(lg 2n)⇤

(1.2) [5 Pts] Mark ALL the correct answers. n100 + 2n � 100 is

a) ⇥(n100)⇤ b) O(2n)⇤ c) O(nn)⇤ d) ⌦(1)⇤ e) ⇥(3n)⇤

(1.3) [5 Pts] Mark ALL the correct answers. (lg n) · (5 lg n+ 1
3n

2 + 900) is

a) ⇥(n2)⇤ b) ⌦(n2)⇤ c) O(n2)⇤ d) ⇥(n lg n)⇤ e)⇥(n+lg n2)⇤

1

Fixpoint of Δλ

Lemma: D(n+1) ⊏ D(n)



Simple policy iteration
BE for x(t + 1) = Ax(t) + b

 D(0)
ij = 0 ⟺ i R j
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 such that 
 

π(i, j) = (0,0,ω)
wij = 0 ⟹ i R j



• How to compute the least backward dissimilarity?


• Getting rid of the working assumption


• We’ll need to consider dissimilarities 


• Can we generalise the fixpoint characterisation?


• Extend the dissimilarity framework to:


• Continuous time models (e.g., ODEs, hybrid automata)


• Non-linear dynamics (e.g., polynomials)

D ∈ (ℝ ∪ {∞})n×n

Open problems


