
Parallel Pushdown Automata and
Commutative Context-Free Grammars in

Bisimulation Semantics

Jos Baeten

fellow CWI

emeritus UvA & TU/e

OPCT, Bertinoro, 27 June 2023



Draft paper

� Parallel Pushdown Automata and Commutative Context-Free
Grammars in Bisimulation Semantics

� with Bas Luttik (Eindhoven University of Technology)
� to be submitted to EXPRESS/SOS 2023, Antwerp



What is a computation?

� Church-Turing Thesis
� Given by a Turing machine: input at begin, deterministic steps,

output at end
� A computation is a function
� Models a deaf, dumb and blind computer (before advent of

terminal)
� Far removed from a modern-day computer as students see all

around them



Reactive Systems
“A Turing machine cannot drive a car, but a real computer
can!”



Interaction

User interaction: not just initial, final word on the tape.

Make interaction between control and memory explicit.

Integration of automata theory and process theory.

Aim to develop course on foundations of computer science for all
first-year computer science students.
Syllabus: Models of Computation based on Automata: Formal
Languages and Communicating Processes



Reactive Turing Machine

Defined in I&C 2013 with Bas Luttik and Paul van Tilburg

Executability instead of computability, but not more expressive

Robustness: π-calculus (Robin Milner) is the λ-calculus with
interaction (with Bas Luttik and Fei Yang)



Pushdown Automata and Context-Free
Grammars in Bisimulation Semantics

� with Cesare Carissimo and Bas Luttik
� arXiv:2203.01713
� LMCS 2023



Well-known theorem

A language is defined by a pushdown automaton iff it is defined by
a context-free grammar.

A process is defined by a pushdown automaton iff it is defined by a
finite guarded recursive specification over a process algebra with
actions, choice and sequencing including sequential value passing.

What if we replace the stack of the pda by a bag, and value
passing sequencing by parallel composition with value passing
communication?



Well-known theorem

A language is defined by a pushdown automaton iff it is defined by
a context-free grammar.

A process is defined by a pushdown automaton iff it is defined by a
finite guarded recursive specification over a process algebra with
actions, choice and sequencing including sequential value passing.

What if we replace the stack of the pda by a bag, and value
passing sequencing by parallel composition with value passing
communication?



Well-known theorem

A language is defined by a pushdown automaton iff it is defined by
a context-free grammar.

A process is defined by a pushdown automaton iff it is defined by a
finite guarded recursive specification over a process algebra with
actions, choice and sequencing including sequential value passing.

What if we replace the stack of the pda by a bag, and value
passing sequencing by parallel composition with value passing
communication?



Process

Labelled transition system (S,A,−→, ↓)
1. S is a set of states;
2. A is a set of actions, τ 6∈ A is the unobservable or silent action;
3. −→ ⊆ S ×A ∪ {τ} × S is a transition relation
4. ↓ ⊆ S is the set of accepting states

A process graph is a labelled transition system with a root state ↑.
Strong bisimulation↔, branching bisimulation↔b,
divergence-preserving branching bisimulation↔∆

b .
A process is a↔∆

b -equivalence class of process graphs.



Parallel Pushdown Automaton

↑
a[−1/ * 1+]
a[+1/ * 1, 1+]
b[+1/∅]

(↑, ∅) (↑, *1+) (↑, *1, 1+) . . .

a a a

bbb

Insert and remove. Bounded branching under↔. Acceptance by
final state can express more than acceptance by empty bag.



Bounded branching?

τ [−1/ * 1+]
τ [+1/ * 1, 1+]
τ [+1/∅]

a[+1/∅]
a[+1/∅]

τ

a a a a

aaa

a

a



Acceptance by empty bag.

0 1 ≥ 2

a[−1/ * 1+]

b[+1/∅]

a[+1/ * 1, 1+]
a[+1/ * 1, 1+]

b[+1/∅]

τ [+1/∅]

τ [−1/ * 1+]
τ [+1/ * 1, 1+]



Counter slightly changed.

↑
c[−1/ * 1+]
a[+1/ * 1, 1+]
b[+1/∅]

The c can be executed only when no b can be executed any longer.
Executing a b takes priority to executing a c.



Bag always accepting.

ins(d)[−d/ * d+]
ins(d)[+d/ * d, d+]

rem(d)[+d/∅]
show(−d)[−d/∅]

Again, a [−d/x] transition can only occur when a [+d/y] transition
can no longer occur. The remove transition should take priority
over the show absence transition.



Basic Parallel Processes
Use SOS to give automata for syntax 0,1, a.,+, ‖

1 ↓ a.p
a−→ p

p ↓
(p+ q) ↓

q ↓
(p+ q) ↓

p
a−→ p′

p+ q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

p ↓ q ↓
p ‖ q ↓

p
a−→ p′

p ‖ q a−→ p′ ‖ q
q

a−→ q′

p ‖ q a−→ p ‖ q′

p
a−→ p′ X

def
= p

X
a−→ p′

p↓ X
def
= p

X↓



Guardedness necessary

X
def
= a.1+X ‖ b.1 .

X

1 b.1 b.b.1 b.b.b.1

b

a a a a

bbb

a

b

Not divergence-preserving branching bisimilar to the process
graph of a parallel pushdown automaton



BPP to CCFG
Theorem. Every weakly guarded recursive specification has a
process graph that is divergence-preserving branching bisimilar to
the process graph of a parallel pushdown automaton.

Proof. Every process expression p can be brought into basic
parallel normal form p↔ (1+)

∑n
i=1 ai.pi, using

(

n∑
i=1

ai.pi) ‖ (
m∑
j=1

bj .qj)↔
n∑
i=1

ai.(pi ‖ q) +
m∑
j=1

bj .(p ‖ qj)

A weakly guarded specification can be brought with↔ into
Greibach Normal Form X

def
= (1+)

∑n
i=1 ai.ξi (ξi a parallel

composition of identifiers).



BPP to CCFG

S
def
= 1+ a.(S ‖ B) + c.(S ‖ D) B

def
= b.1 D

def
= 1+ d.1

0 1 ≥ 2

> 1?> 0?

c[−S/ * S,D+]
c[+S/ * S,D+]
d[+D/∅]

a[+S/ * S,B+]
a[−S/ * S,B+]

b[+B/∅] c[+S/ * S,D+]
d[+D/∅]

a[+S/ * S,B+] a[+S/ * S,B+]
c[+S/ * S,D+]
d[+D/∅]

b[+B/∅]

τ [+B/∅]

τ [−B/ *B+]
τ [+B/ *B,B+]



One-state counterexample

↑
c[−1/ * 1+]
a[+1/ * 1, 1+]
b[+1/∅]

(↑, ∅) (↑, *1+) (↑, *1, 1+) . . .

c a a

bbb



Specification of the bag.

AB
def
= 1+

∑
d∈D

ins(d).(AB ‖ (1+ rem(d).1)) .

ABag
def
= 1+

∑
d∈D

ins(d).θ(ABag ‖ (1+ rem(d).1))+

+
∑
d∈D

show(−d).ABag .



Priorities.

p ↓
θ(p) ↓

p
a−→ p′ ∀b > a p 6 b−→
θ(p)

a−→ θ(p′)

p
a−→ p′

ρf (p)
f(a)−→ ρf (p

′)

p↓
ρf (p)↓



Theorem: For every one-state parallel pushdown automaton there
is a finite weakly guarded BPP01

θ specification such that their
process graphs are divergence-preserving branching bisimilar.



Not for two states.

a[−1/ * 1+]
a[+1/ * 1, 1+]
b[+1/∅]

c[+1/∅]
d[+1/∅]



Basic Communicating Processes

p
c!d−→ p′ q

c?d−→ q′

p ‖ q c(d)−→ p′ ‖ q′ q ‖ p c(d)−→ q′ ‖ p′

p ↓
∂C(p) ↓

p
a−→ p′ a 6∈ COMC

∂C(p)
a−→ ∂C(p

′)

p ↓
τC(p) ↓

p
c(d)−→ p′ c ∈ C

τC(p)
τ−→ τC(p

′)

p
a−→ p′ a 6= c(d) for c ∈ C

τC(p)
a−→ τC(p

′)



Communicating Bags

ABag io
def
= 1+

∑
d∈D

i?d.θ(ABag io ‖ (1+ o!(+d).1))+
∑
d∈D

o!(−d).ABag io

ABag io ↔∆
b τ{`}(∂{`}(ABag

i` ‖ ABag`o))



Correspondence

Theorem. For every parallel pushdown automaton there is a finite
weakly guarded BCP-specification such that their process graphs
are divergence-preserving branching bisimilar.

Proof. Again, we have parallel head normal form and Greibach
normal form under↔

X
def
= (1+)

n∑
i=1

ai.τC(∂C(θ(ξi))).



Two-state example

s t

a[−1/ * 1+]
a[+1/ * 1, 1+]
b[+1/∅]

c[+1/∅]
d[+1/∅]

S
def
= a−.τp(∂p(θ(p!s.1 ‖ X0 ‖ X1)))

X1
def
= p?s.((a+.p!s.1 ‖ X1 ‖ X1)+(b.p!s.1)+(c.p!t.1))+p?t.(1+d.p!t.1)

X0
def
= p?s.(a−.p!s.1 ‖ X1) + p?t.1



Can do without priorities, but then we need a countable set of
values and countable sum.



Communication not too powerful

For every finite weakly guarded BCP-specification there is a
parallel pushdown automaton such that their process graphs are
divergence-preserving rooted branching bisimilar.



A characterization

A process p is a parallel push-down process, if and only there is a
regular process q such that

p↔∆
b τ{i,o}(∂{i,o}(q ‖ ABag io))



Can do without priorities, but then we need get communication
(asymmetric communication).



Conclusion

The set of processes given by a parallel pushdown automaton
coincides with the set of processes given by a finite weakly
guarded recursive specification over a process algebra with
actions, choice, priorities and parallel composition with value
passing communication.


