Blockchain Extractable Value

& other open problems in decentralized systems

Massimo Bartoletti

University of Cagliari

What is a blockchain useful for?

Create tokens

“Securely” exchange tokens among users:

> Direct transfers: Asends 1:Tto B

> Programmable transfers (aka “smart contracts”)

contract Birthday {
deposit(a,t) { .. } // anyone deposits tokens
withdraw() { .. } // a withdraw tokens after t

In practice...

>1TS

“
5\
-~

“
5P

W

W

w

sA
X

Q Ethereum ETH

& Tether USDT

“ BNB BNB

@ USD Coin USDC

8 XRP XRP

.;;. Cardano ADA

Price

$30,717.73

$1,884.38

$1.00

$239.74

$0.9999

$0.4826

$0.2844

1h %

v 0.03%

a0.15%

20.01%

~0.13%

~0.01%

0.39%

v0.01%

24h %

21.20%

2 0.01%

+0.01%

2 0.67%

+0.01%

v 0.15%

v1.50%

7d %

~14.45%

~8.88%

2 0.05%

v 0.41%

v0.02%

~0.17%

2 9.30%

Market Cap (0

$596,336,486,922

$226,477,114,273

$83,236,539,174

$37,363,576,373

$28,318,731,452

$25,220,475,802

$9,936,328,176

Concurrency(?) theory for blockchains

From a theoretical CS, blockchains should be interesting:

Everything is public (code & transactions)
Huge amounts of $SS at stake
Complex objects: contracts, PLs, properties

Security evaluation is mostly empirical!

> need for formal defs & analysis techniques

> huge gap between theory & practice

Transaction ordering

ey

XB
Mempool -

X0 X1
Blockchain -

Transaction ordering

Mempool

Blockchain

b

X0

X1

!

"

XB

XC

-

ideally: fair ordering

Transaction ordering

Mempool

Blockchain

T

o

X0

X1

XB

~

reorder & drop tx

Transaction ordering

Mempool

Blockchain

X,

XB

X0

X1

~_

front-run users’ tx

Transaction ordering
® &6 A
| | |

XB XC

Mempool

X0 X1
Blockchain -

“sandwich” users’ tx

Transaction ordering

Mempool

Blockchain

T

|

Rational miners exploit
users’ tx to gain $$$

92

X0

X1

XMO

XM1

... usually, to the
detriment of users’!

LS

&k

MEV attacks

Example: Automated Market Makers

sellx TO
buyyT1

A:swap(x:T0,y:T1)

Al....TO,...:T1]

AN

AMM with n0 units of
TOand nlunitsof T1

Example: Automated Market Makers

sellx TO
buyyT1

A:swap(x:T0,y:T1)

Al...-x:TO,...+y:T1]

Constant-product AMMs:
(n0+x) (n1-y) =n0 nl

Example: Automated Market Makers

A[8:T0,0:T1]

A’s wealth: SWA =$8

Example: Automated Market Makers

° A:swap(6:T0, 2:T1)

A[8:T0,0:T1]

A’s wealth: SWA =$8 =

Example: Automated Market Makers

P(T0)=$1
o

° A:swap(6:T0,15:T1) ° ?
A[2:T0,15:T1] t10:T0, 10:TL;

A’s wealth: SWA =S$17

A’s gain: $17-$8 = $9 equilibrium

Sandwich attack!

Q Advs can reorder, drop or
x insert transactions in a block!

M[6:T0,0:T1]

A[8:T0,0:T1]

A:swap(6:T0, 2:T1)

Sandwich attack!

&

M[6:T0,0:T1]

M:swap(6:T0, 2:T1)

....
....
....
....
....

A[8:T0,0:T1]

Sandwich attack!

&

M[0:T0,15:T1]

M:swap(6:T0, 2:T1)

{10:TO, 10:T1}

....
....
....
....
....

A[8:T0,0:T1]

Sandwich attack!

&

M[0:T0,15:T1]

16 -6 =100

.oo

{16:TO, 6:T1}
A[2:T0,4:T1]

A:swap(6:T0, 2:T1)

Sandwich attack!

&

M[0:T0,15:T1]

M:swap(4:T1, 2:T0)

{16:TO, 6:T1}
A[2:T0,4:T1]

Sandwich attack!

&

M[6:T0,11:T1]

M:swap(4:T1, 2:T0)

{10:TO, 10:T1}
A[2:T0,4:T1]

A’s gain=$6-$8 =-$2 M’s gain = $17-$6 =

216,620 ETH

Total extracted REV since the merge

Cumulative weekly ETH paid to proposers from all ~ U S D 400M

175.3k

/é

162.0k™
153.7ke

114.8k
P

103.6k/9’/

Cumulative sum of ETH paid to proposer

1
October, 2022 November, 2022 December, 2022 January, 2023 February, 2023 March, 2023 April, 2023 May, 2023

Current research & challenges

Quantification of MEV in the wild
Precise & efficient MEV extraction strategies
Formal def (current ones are not general, not correct)

Verification techniques for MEV-freedom

Secure composition of contracts

Countermeasures: fair ordering, confidential transactions

Understanding MEV, in an abstract setting

contract Airdrop {
deposit(a?x:T) { require x>0 && a==EM }
withdraw(a,y) { require y<#T; aly:T }
}

We would like to study this in an abstract setting:

withdraw(A,9)

A[1:T] | Airdrop[9:T] | ... > A[10:T] | Airdrop[0:T] | ...

[cs.CR] 9 Sep 2021

Clockwork Finance: Automated Analysis of Economic Security in
Smart Contracts

Kushal Babel* Philip Daian* Mahimna Kelkar* Ari Juels

Cornell Tech, Cornell University, and IC3

September 10, 2021

Abstract

We introduce the Clockwork Finance Framework (CFF), a general purpose, formal verifica-
tion framework for mechanized reasoning about the economic security properties of composed
decentralized-finance (DeFi) smart contracts.

CFF features three key properties. It is contract complete, meaning that it can model any
smart contract platform and all its contracts—Turing complete or otherwise. It does so with
asymptotically optimal model size. 1t is also attack-erhaustive by construction, meaning that it
can automatically and mechanically extract all possible economic attacks on users’ cryptocur-
rency across modeled contracts.

MEYV, formally

MEVA(S,P) = maXx { gainA(S,)_() |)_(EKA(P)* } K,(P) = set of tx that users A

can deduce from mempool P

This definition is not yet completely satisfactory:
1. whatisK, (P)??
> notjustthe txin P, but any tx that A can infer from P

2. MEV, isthe gain of a given set A

- actual MEV should be extractable by anyone!

Adversarial knowledge

A’s knowledge K, (P) = set of tx that A can craft using:

A’s private knowledge K (9)

> deposit(A?1:T) (with A€A)
> reveal(s) (with s secret generated by A)
mempool P

> any txin P belongs to K, (P)

> A can combine their private knowledge with parametersin P

Axiomatization of K A(P)

Extensivity: P < K,(P)

ldempotence: KA(KA P)) = KA(P) *
Monotonicity: PSP ,ACSA =K, (P) S K, (P’ E
Continuity: K,(Uc, P)=U_ K, (P)

Finite causes: V Pfinite. 3 Afinite. P S K (9)

Private knowledge: K (?) S K (¢) = ACA’

No shared secrets: K, (P)NK_(P) S K, .(P)

Induced properties on MEV

MEV,(S,P) = max {y,(SX) | X€K,(P)'}

MEVA(S,P) — MEVA(S,P\ KA(@)) mono || exts || idem

pCp = MEV,(S,P) MEV,(S,P") [mono
ACA = MEV,(S,P) < MEV,(S,P)
VA. aAogﬁnA . MEV (S P) = MEV (S,P) mono || fin.cs " no.ss

VP.3POS_P. MEV(

P) MEV (S,PO) cont
C wallet mono = MEV/,(S,P)

MEV, (S + W ,P)

AN

Adversarial MEV

In our def of MEV, (S,P): the set Ain is fixed,

In practice: the identity of the adversary is immaterial!

MEV(S,P) = value that can be extracted by anyone with the
power to reorder, drop or insert tx!

Example: Whitelist

contract Whitelist {

pay(a?1:T) {
require a==A;
al#T:T

} Hard-coded users are
} not MEV adversaries!

—
S =M[1:T] | Whitelist[100:T] MEV(S,P) =0 (VP)

Example: Blacklist

contract Blacklist {

pay(a?1:T) {
require al=A;
al#T:T

S =MI[1:T] | Blacklist[100:T]

Any MEV adversary can
generate an identity #A

—
MEV(S,P) = 100 P(T) (VP)

Example: Bank

contract Bank {
deposit(a?x:T) { bal[a]+=x }

withdraw(a?0:T,x) {
require ball[a]>=x;
bal[a]-=x; alx:T }
}

S =A[0:T] | Bank[bal = {100/A}] MEV (S,2) = 100 P(T)

M EV(S,Q) =0 Registered users are
not MEV adversaries!

Example: Coinpusher

contract Coinpusher {

pay(a?x:T) {
if #7>99 then al!#T:T }

}
S=A[1:T]| Coinpusher[0:T] | ... ~ MEV(S,2)=0
P={pay(A?1:T) } MEV(S,P) =1 P(T)

Assuming the MEV
adversary has 98:T

Adversarial MEV

Idea: min-max game between honest users and Adv
min: honest users choose Adv (any cofinite set B)
max: Adv chooses A< B and redistributes tokens:

S~S iff W(S)and W(S’) have the same tokens
MEV(S,P) = min max MEV,(S,P)

B cofinite ACB
S~S’

Properties of adversarial MEV

MEV(S,P) = min max MEV,(S,P)
B cofinite ASB
S~§’

PCP’ = MEV(S,P) < MEV(S,P’)

C wallet mono = MEV(S,P) = MEV(S +W ,P)

Challenges

MEV not easy to capture formally!
time? (clogging)
MEV of a contract (requires users’ strategies)

probabilistic strategies?

v vV

secure contract composition?

Further challenges: the “Lego of money”

Contract compositions are quite common in DeFi:

> Lending Protocols + AMMs (“flash loans”)

> any contract + AMM as price oracles
How to def when a contract composition is secure?

> MEV(C, C’) =< (1+¢) MEV(C) (from Clockwork Finance)

- several problems with this def...

