
Blockchain Extractable Value
& other open problems in decentralized systems

Massimo Bartoletti
University of Cagliari

What is a blockchain useful for?

■ Create tokens

■ “Securely” exchange tokens among users:

→ Direct transfers: A sends 1:T to B

→ Programmable transfers (aka “smart contracts”)

contract Birthday {

deposit(a,t) { … } // anyone deposits tokens

withdraw() { … } // a withdraw tokens after t
}

In practice…

> 1T $

Concurrency(?) theory for blockchains

From a theoretical CS, blockchains should be interesting:

■ Everything is public (code & transactions)

■ Huge amounts of $$$ at stake

■ Complex objects: contracts, PLs, properties

■ Security evaluation is mostly empirical!

→ need for formal defs & analysis techniques

→ huge gap between theory & practice

X0 X1

Transaction ordering

XA

XB

XC

Mempool

Blockchain

X0 X1

Transaction ordering

Mempool

Blockchain

XA

XB

XC

ideally: fair ordering

X0 X1

Transaction ordering

XC

Mempool

Blockchain

XB

XA

reorder & drop tx

X0 X1

Transaction ordering

XB

XC

Mempool

Blockchain

XM0

front-run usersʼ tx

XA

X0 X1

Transaction ordering

XB

XC

Mempool

Blockchain

XM0

XA

XM1

“sandwich” usersʼ tx

X0 X1

Transaction ordering

Mempool

Blockchain

XM0

XA

XM1

Rational miners exploit
usersʼ tx to gain $$$

… usually, to the
detriment of usersʼ!

MEV attacks

Example: Automated Market Makers

A[...:T0,...:T1]
A:swap(x :T0, y :T1)

{n0:T0, n1:T1}

sell x T0
buy y T1 ��

AMM with n0 units of
T0 and n1 units of T1

Example: Automated Market Makers

{n0+x:T0, n1-y:T1}

Constant-product AMMs:

(n0+x) (n1-y) = n0 n1

sell x T0
buy y T1 ��

A[...-x:T0,...+y:T1]
A:swap(x :T0, y :T1)

Example: Automated Market Makers

A[8:T0,0:T1] {4:T0, 25:T1}

P(T0) = $1
P(T1) = $1

Aʼs wealth: $WA = $8

�� 4 ⋅ 25 = 100

Example: Automated Market Makers

A[8:T0,0:T1]
A:swap(6:T0, ? :T1)

{4:T0, 25:T1}

P(T0) = $1
P(T1) = $1

Aʼs wealth: $WA = $8

��

Example: Automated Market Makers

A[2:T0,15:T1]
A:swap(6 :T0, 15 :T1)

{10:T0, 10:T1}

P(T0) = $1
P(T1) = $1

Aʼs wealth: $WA = $17

Aʼs gain: $17-$8 = $9

��

equilibrium

10 ⋅10 = 100

Sandwich attack!

A[8:T0,0:T1]
{4:T0, 25:T1}

A:swap(6 :T0, ?:T1)

M[6:T0,0:T1]

$WA = $8 $WM = $6

��

Advs can reorder, drop or
insert transactions in a block!

Sandwich attack!

A[8:T0,0:T1]
{4:T0, 25:T1}

A:swap(6 :T0, ?:T1)

M:swap(6 :T0, ?:T1)M[6:T0,0:T1]

$WA = $8 $WM = $6

��

Sandwich attack!

A[8:T0,0:T1]
{10:T0, 10:T1}

A:swap(6 :T0, ?:T1)

M:swap(6 :T0, ?:T1)M[0:T0,15:T1] ��

Sandwich attack!

A[2:T0,4:T1]
{16:T0, 6:T1}

A:swap(6 :T0, ?:T1)

M[0:T0,15:T1] �� 16 ⋅6 ≈ 100

Sandwich attack!

A[2:T0,4:T1]
{16:T0, 6:T1}

M[0:T0,15:T1] M:swap(4:T1, ?:T0) ��

Sandwich attack!

A[2:T0,4:T1]
{10:T0, 10:T1}

M[6:T0,11:T1] M:swap(4:T1, ?:T0)

Aʼs gain= $6-$8 = -$2 Mʼs gain = $17-$6 = $11

��

~ USD 400M

■ Quantification of MEV in the wild

■ Precise & efficient MEV extraction strategies

■ Formal def (current ones are not general, not correct)

■ Verification techniques for MEV-freedom

■ Secure composition of contracts

■ Countermeasures: fair ordering, confidential transactions

Current research & challenges

contract Airdrop {

deposit(a?x:T) { require x>0 && a==EM }

withdraw(a,y) { require y<#T; a!y:T }

}

We would like to study this in an abstract setting:

A[1:T] | Airdrop[9:T] | … A[10:T] | Airdrop[0:T] | …

Understanding MEV, in an abstract setting

withdraw(A,9)

MEVA(S,P) = max { gainA(S,X) | X ∊KA(P)* }

This definition is not yet completely satisfactory:

1. what is KA(P) ??

→ not just the tx in P, but any tx that A can infer from P

2. MEVA is the gain of a given set A
→ actual MEV should be extractable by anyone!

MEV, formally

KA(P) = set of tx that users A
can deduce from mempool P

Adversarial knowledge

Aʼs knowledge KA(P) = set of tx that A can craft using:

■ Aʼs private knowledge KA(∅)

→ deposit(A?1:T) (with A∊A)
→ reveal(s) (with s secret generated by A)

■ mempool P
→ any tx in P belongs to KA(P)

→ A can combine their private knowledge with parameters in P

1. Extensivity: P ⊆ KA(P)

2. Idempotence: KA(KA(P)) = KA(P)

3. Monotonicity: P⊆Pʼ, A⊆A̓ ⇒ KA(P) ⊆ KA̓(Pʼ)
4. Continuity: KA(⋃i∊ℕ Pi) = ⋃i∊ℕKA(Pi)

5. Finite causes: ∀ P finite . ∃ A finite . P ⊆ KA(∅)

6. Private knowledge: KA(∅) ⊆ KA̓(∅) ⇒ A⊆A̓
7. No shared secrets: KA(P)∩KB(P) ⊆ KA∩B(P)

Axiomatization of KA(P)

closure
operator

MEVA(S,P) = max { ɣA(S,X) | X ∊KA(P)* }

 MEVA(S,P) = MEVA(S,P \ KA(∅))
P ⊆Pʼ ⇒ MEVA(S,P) ≤ MEVA(S,Pʼ)
A ⊆A̓ ⇒ MEVA(S,P) ≤ MEVA̓(S,P)
∀A . ∃A0⊆finA . MEVA(S,P) = MEVA0(S,P)
∀P . ∃P0⊆finP . MEVA(S,P) = MEVA(S,P0)
C wallet mono ⇒ MEVA(S,P) ≤ MEVA(S + WΔ,P)

Induced properties on MEV

cont

mono exts idem

fin.cs no.ss

mono

mono

■ In our def of MEVA(S,P): the set A in is fixed;

■ In practice: the identity of the adversary is immaterial!

MEV(S,P) = value that can be extracted by anyone with the
 power to reorder, drop or insert tx!

Adversarial MEV

contract Whitelist {

pay(a?1:T) {
require a==A;
a!#T:T

}

}

S = M[1:T] | Whitelist[100:T] MEV(S,P) = 0 (∀P)

Example: Whitelist

Hard-coded users are
not MEV adversaries!

contract Blacklist {

pay(a?1:T) {
require a!=A;
a!#T:T

}

}

S = M[1:T] | Blacklist[100:T] MEV(S,P) = 100 P(T) (∀P)

Example: Blacklist

Any MEV adversary can
generate an identity ≠A

contract Bank {

deposit(a?x:T) { bal[a]+=x }

withdraw(a?0:T,x) {
require bal[a]>=x;
bal[a]-=x; a!x:T }

}

S = A[0:T] | Bank[bal = {100/A}] MEVA(S,∅) = 100 P(T)

MEV(S,∅) = 0

Example: Bank

Registered users are
not MEV adversaries!

contract Coinpusher {

pay(a?x:T) {
if #T>99 then a!#T:T }

}

S = A[1:T] | Coinpusher[0:T] | … MEV(S,∅) = 0

P = { pay(A?1:T) } MEV(S,P) = 1 P(T)

Example: Coinpusher

Assuming the MEV
adversary has 98:T

Idea: min-max game between honest users and Adv

■ min: honest users choose Adv (any cofinite set B)

■ max: Adv chooses A⊆B and redistributes tokens:

S ~ Sʼ iff W(S) and W(Sʼ) have the same tokens

Adversarial MEV

MEV(S,P) = min max MEVA(S ,̓P)
B cofinite A⊆B

S~Sʼ

P ⊆Pʼ ⇒ MEV(S,P) ≤ MEV(S,Pʼ)

C wallet mono ⇒ MEV(S,P) ≤ MEV(S + WΔ,P)

Properties of adversarial MEV

MEV(S,P) = min max MEVA(S ,̓P)
B cofinite A⊆B

S~Sʼ

MEV not easy to capture formally!

→ time? (clogging)

→ MEV of a contract (requires usersʼ strategies)

→ probabilistic strategies?

→ secure contract composition?

Challenges

■ Contract compositions are quite common in DeFi:

→ Lending Protocols + AMMs (“flash loans”)

→ any contract + AMM as price oracles

■ How to def when a contract composition is secure?

→ MEV(C, Cʼ) ≤ (1 + ε) MEV(C) (from Clockwork Finance)

→ several problems with this def…

Further challenges: the “Lego of money”

