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What is a blockchain useful for?

■ Create tokens

■ “Securely” exchange tokens among users:

→ Direct transfers: A sends 1:T to B

→ Programmable transfers (aka “smart contracts”)

contract Birthday {

deposit(a,t) { … } // anyone deposits tokens

withdraw() { … }   // a withdraw tokens after t
}



In practice…

> 1T $



Concurrency(?) theory for blockchains

From a theoretical CS, blockchains should be interesting: 

■ Everything is public  (code & transactions)

■ Huge amounts of $$$ at stake 

■ Complex objects: contracts, PLs, properties

■ Security evaluation is mostly empirical!

→ need for formal defs & analysis techniques

→ huge gap between theory & practice
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Rational miners exploit 
usersʼ tx to gain $$$

… usually, to the 
detriment of usersʼ!

MEV attacks



Example: Automated Market Makers

A[...:T0,...:T1]
A:swap(x :T0, y :T1)

{n0:T0, n1:T1}

sell x T0 
buy y T1 ��

AMM with n0 units of 
T0 and n1 units of T1



Example: Automated Market Makers

{n0+x:T0, n1-y:T1}

Constant-product AMMs:

(n0+x) (n1-y) = n0 n1

sell x T0 
buy y T1 ��

A[...-x:T0,...+y:T1]
A:swap(x :T0, y :T1)



Example: Automated Market Makers

A[8:T0,0:T1] {4:T0, 25:T1}

P(T0) = $1
P(T1) = $1

Aʼs wealth: $WA = $8

�� 4 ⋅ 25 = 100



Example: Automated Market Makers

A[8:T0,0:T1]
A:swap(6:T0, ? :T1)

{4:T0, 25:T1}

P(T0) = $1
P(T1) = $1

Aʼs wealth: $WA = $8

��



Example: Automated Market Makers

A[2:T0,15:T1]
A:swap(6 :T0, 15 :T1)

{10:T0, 10:T1}

P(T0) = $1
P(T1) = $1

Aʼs wealth: $WA = $17

Aʼs gain: $17-$8 = $9

��

equilibrium

10 ⋅10 = 100



Sandwich attack!

A[8:T0,0:T1]
{4:T0, 25:T1}

A:swap(6 :T0, ?:T1)

M[6:T0,0:T1]

$WA = $8 $WM = $6

��

Advs can reorder, drop or 
insert transactions in a block!



Sandwich attack!

A[8:T0,0:T1]
{4:T0, 25:T1}

A:swap(6 :T0, ?:T1)

M:swap(6 :T0, ?:T1)M[6:T0,0:T1]

$WA = $8 $WM = $6

��



Sandwich attack!

A[8:T0,0:T1]
{10:T0, 10:T1}

A:swap(6 :T0, ?:T1)

M:swap(6 :T0, ?:T1)M[0:T0,15:T1] ��



Sandwich attack!

A[2:T0,4:T1]
{16:T0, 6:T1}

A:swap(6 :T0, ?:T1)

M[0:T0,15:T1] �� 16 ⋅6 ≈ 100



Sandwich attack!

A[2:T0,4:T1]
{16:T0, 6:T1}

M[0:T0,15:T1] M:swap(4:T1, ?:T0) ��



Sandwich attack!

A[2:T0,4:T1]
{10:T0, 10:T1}

M[6:T0,11:T1] M:swap(4:T1, ?:T0)

Aʼs gain= $6-$8 = -$2 Mʼs gain = $17-$6 = $11

��



~ USD 400M 



■ Quantification of MEV in the wild

■ Precise & efficient MEV extraction strategies

■ Formal def (current ones are not general, not correct)

■ Verification techniques for MEV-freedom

■ Secure composition of contracts

■ Countermeasures: fair ordering, confidential transactions

Current research & challenges



contract Airdrop {

deposit(a?x:T) { require x>0 && a==EM }

withdraw(a,y)  { require y<#T; a!y:T }   

}

We would like to study this in an abstract setting:

A[1:T]  | Airdrop[9:T] | …  A[10:T] | Airdrop[0:T] | …

Understanding MEV, in an abstract setting

withdraw(A,9)





MEVA(S,P) = max { gainA(S,X) | X ∊KA(P)* }  

This definition is not yet completely satisfactory:

1. what is KA(P) ??

→ not just the tx in P, but any tx that A can infer from P

2. MEVA is the gain of a given set A
→ actual MEV should be extractable by anyone!

MEV, formally

KA(P) = set of tx that users A 
can deduce from mempool P



Adversarial knowledge

Aʼs knowledge KA(P) = set of tx that A can craft using:

■ Aʼs private knowledge KA(∅)

→ deposit(A?1:T) (with A∊A)
→ reveal(s) (with s secret generated by A)

■ mempool P
→ any tx in P belongs to KA(P) 

→ A can combine their private knowledge with parameters in P



1. Extensivity: P ⊆ KA(P)

2. Idempotence: KA(KA(P)) = KA(P)

3. Monotonicity: P⊆Pʼ, A⊆A̓  ⇒ KA(P) ⊆ KA̓(Pʼ)
4. Continuity: KA(⋃i∊ℕ Pi) = ⋃i∊ℕKA(Pi)

5. Finite causes: ∀ P finite . ∃ A finite .  P ⊆ KA(∅)

6. Private knowledge: KA(∅) ⊆ KA̓(∅) ⇒  A⊆A̓
7. No shared secrets: KA(P)∩KB(P) ⊆ KA∩B(P)

Axiomatization of KA(P)

closure 
operator



MEVA(S,P) = max { ɣA(S,X) | X ∊KA(P)* }  

                            MEVA(S,P) = MEVA(S,P \ KA(∅))
P ⊆Pʼ ⇒          MEVA(S,P) ≤ MEVA(S,Pʼ)
A ⊆A̓  ⇒          MEVA(S,P) ≤ MEVA̓(S,P)
∀A . ∃A0⊆finA . MEVA(S,P) = MEVA0(S,P)
∀P . ∃P0⊆finP . MEVA(S,P) = MEVA(S,P0)
C wallet mono ⇒ MEVA(S,P) ≤ MEVA(S + WΔ,P)

Induced properties on MEV 

cont

mono exts idem

fin.cs no.ss

mono

mono



■ In our def of MEVA(S,P): the set A in is fixed;

■ In practice: the identity of the adversary is immaterial!

MEV(S,P) = value that can be extracted by anyone with the 
 power to reorder, drop or insert tx!

Adversarial MEV



contract Whitelist {

pay(a?1:T) { 
require a==A; 
a!#T:T

}
      

}

S = M[1:T] | Whitelist[100:T] MEV(S,P) = 0 (∀P)

Example: Whitelist

Hard-coded users are 
not MEV adversaries!



contract Blacklist {

pay(a?1:T) { 
require a!=A; 
a!#T:T

}
      

}

S = M[1:T] | Blacklist[100:T] MEV(S,P) = 100 P(T) (∀P)

Example: Blacklist

Any MEV adversary can 
generate an identity ≠A



contract Bank {

deposit(a?x:T) { bal[a]+=x }

withdraw(a?0:T,x) { 
require bal[a]>=x;
bal[a]-=x; a!x:T }

}

S = A[0:T] | Bank[bal = {100/A}] MEVA(S,∅) = 100 P(T)

MEV(S,∅) = 0

Example: Bank

Registered users are 
not MEV adversaries!



contract Coinpusher {

pay(a?x:T) { 
if #T>99 then a!#T:T }

}

S = A[1:T] | Coinpusher[0:T] | … MEV(S,∅) = 0

P = { pay(A?1:T) }  MEV(S,P) = 1 P(T)

Example: Coinpusher

Assuming the MEV 
adversary has 98:T



Idea: min-max game between honest users and Adv

■ min: honest users choose Adv (any cofinite set B)

■ max: Adv chooses A⊆B and redistributes tokens:

S ~ Sʼ iff W(S) and W(Sʼ) have the same tokens

Adversarial MEV

MEV(S,P)   =   min    max   MEVA(S ,̓P)
B cofinite A⊆B 

S~Sʼ



P ⊆Pʼ  ⇒ MEV(S,P) ≤ MEV(S,Pʼ)

C wallet mono ⇒ MEV(S,P) ≤ MEV(S + WΔ,P)

Properties of adversarial MEV 

MEV(S,P)   =   min    max   MEVA(S ,̓P)
B cofinite A⊆B 

S~Sʼ



MEV not easy to capture formally! 

→ time? (clogging)

→ MEV of a contract (requires usersʼ strategies)

→ probabilistic strategies?

→ secure contract composition?

Challenges



■ Contract compositions are quite common in DeFi:

→ Lending Protocols + AMMs (“flash loans”)

→ any contract + AMM as price oracles

■ How to def when a contract composition is secure?

→ MEV(C, Cʼ) ≤ (1 + ε) MEV(C) (from Clockwork Finance)

→ several problems with this def…

Further challenges: the “Lego of money”


