
OPCT 2023 - Bertinoro - Italy

ar
X

iv
:1

40
1.

49
73

v1
 [

cs
.L

O
]

20
 Ja

n
20

14
APC 2005

What are the fundamental structures of
concurrency? We still don’t know!

Samson Abramsky 1,2

Oxford University Computing Laboratory

Oxford, U.K.

Abstract

Process algebra has been successful in many ways; but we don’t yet see the linea-
ments of a fundamental theory. Some fleeting glimpses are sought from Petri Nets,
physics and geometry.

Key words: Concurrency, process algebra, Petri nets, geometry,
quantum information and computation.

1 Process Calculi as Generic Theories

What counts as a successful theory in Computer Science? Consider obvious
exemplars such as

• Process Calculi

• Type Systems

• Model-checking

It is not the case that there is a single agreed model, notation, formalism, tool
or language in any of the above areas. In fact there are a profusion of all of
these, although some have been particularly influential. (Insert your favourite
examples here . . .)

The ‘Next 700 · · ·’ syndrome

Is this profusion a ‘scandal’ of our subject? I used to think so — and I
wasn’t alone (e.g. Robin Milner’s quest to find the ‘λ-calculus of concurrency’).
Now I am not so sure.

1 This research was supported by U.K. EPSRC
2 Email: samson@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

It starts with considerations
similar to those by Hubert...

... but it ends up with rather
different conclusions

(similar to those of Kim, Radu and Ilaria)

ar
X

iv
:1

40
1.

49
73

v1
 [

cs
.L

O
]

20
 Ja

n
20

14

APC 2005

What are the fundamental structures of
concurrency? We still don’t know!

Samson Abramsky 1,2

Oxford University Computing Laboratory

Oxford, U.K.

Abstract

Process algebra has been successful in many ways; but we don’t yet see the linea-
ments of a fundamental theory. Some fleeting glimpses are sought from Petri Nets,
physics and geometry.

Key words: Concurrency, process algebra, Petri nets, geometry,
quantum information and computation.

1 Process Calculi as Generic Theories

What counts as a successful theory in Computer Science? Consider obvious
exemplars such as

• Process Calculi

• Type Systems

• Model-checking

It is not the case that there is a single agreed model, notation, formalism, tool
or language in any of the above areas. In fact there are a profusion of all of
these, although some have been particularly influential. (Insert your favourite
examples here . . .)

The ‘Next 700 · · ·’ syndrome

Is this profusion a ‘scandal’ of our subject? I used to think so — and I
wasn’t alone (e.g. Robin Milner’s quest to find the ‘λ-calculus of concurrency’).
Now I am not so sure.

1 This research was supported by U.K. EPSRC
2 Email: samson@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Abramsky

easy to cook up yet another variant process calculus or algebra; there are too
few constraints. This plasticity of definitions has become so familiar in our
field that we may not be aware of it as an issue. The mathematician André
Weil apparently compared finding the right definitions in algebraic number
theory — which was like carving adamantine rock — to making definitions
in the theory of uniform spaces (which he founded), which was like sculpting
with snow. In concurrency theory, we are very much at the snow-sculpture end
of the spectrum. We lack the kind of external reality, whether it comes from
fundamental mathematical objects like the integers, or manifolds, or differen-
tial equations, or from physical reality as determined by experiment, which is
hard and obdurate, and resistant to our definitions. Is this a necessary feature
of our existence, or have we just not yet found the real bedrock?

An important quality of Petri’s conception of concurrency is that it does
seek to determine fundamental concepts: causality, concurrency, process, etc.
in a syntax-independent fashion. Another important point, which may origi-
nally have seemed merely eccentric, but now looks rather ahead of its time, is
the extent to which Petri’s thinking was explicitly influenced by physics (see
e.g. [6]. As one example, note that K-density comes from one of Carnap’s
axiomatizations of relativity). To a large extent, and by design, Net Theory
can be seen as a kind of discrete physics : lines are time-like causal flows,
cuts are space-like regions, process unfoldings of a marked net are like
the solution trajectories of a differential equation.

This acquires new significance today, when the consequences of the idea
that ‘Information is physical’ are being explored in the rapidly developing
field of quantum informatics. Moreover, the need to recognize the spatial
structure of distributed systems has become apparent, and is made explicit in
formalisms such as the Ambient calculus, and Milner’s bigraphs.

Some morals

• The genius, the success, and the limitation of process calculi is their lin-
guistic character. This provides an ingenious way of studying processes,
information flow, etc. without quite knowing, independently of the partic-
ular linguistic setting, what any of these notions are. One could try to say
that they are implicitly defined by the calculus. But then the fact that
there are so many calculi, potential and actual, does not leave us on very
firm ground.
We lack syntax-independent, intrinsic definitions of the fundamental no-

tions of concurrency theory. Net theory and some related approaches (e.g.
event structures) still offer the best extant accounts of these issues. But we
are still far from home.
Thus for example consider the issue of expressiveness. There are some

fragmentary results, but there is no single compelling notion of ‘expressive
completeness’ for a process calculus, or of a ‘Church’s thesis for concur-
rency’.

3

Abramsky

It’s the Paradigms!

The paradigms and tool-kits, both technical and conceptual, provided by
these theories have been deeply absorbed by the research communities and
have increasingly influenced applications.
Examples:

• labelled transition systems and bisimulation

• naming and scope restriction and extrusion

• the automata-theoretic paradigm for model-checking

• the type systems paradigm, with compositional typing rules for terms-in-
context, and key structural properties such as Subject Reduction.

By their fruits shall ye know them.

These tool-kits are the real fruits of these theories. They may be compared
to the traditional tool-kits of physics and engineering: Differential Equations,
Laplace and Fourier Transforms, Numerical Linear Algebra, etc.

They can be applied to a wide range of situations, going well beyond
those originally envisaged, e.g. Security, Computational Biology, Quantum
Computing, etc. So, is everything in the garden rosy?

Dreams of Final Theories

But can we do better than this? After all, in physics there are great
theories which transcend mere tool-kits. We largely lack such theories, in
Computer Science as a whole, and in concurrency and process calculus in
particular. Is this unavoidable, as part of the nature of our subject, or will
such theories emerge?

Some may find such questions uninteresting, or even meaningless; they can
safely stop reading here.

2 Process Calculi vs. Concurrency Theory

1980 marked the start of a new era in concurrency theory, but not its be-
ginning. A meaningful theory of concurrency, incorporating some profound
insights, had been originated by Petri in the 1960’s, and Net theory, as well
as other approaches to concurrency, continues to be actively developed.

There is no doubt that the advent of algebraic process calculi marked a
decisive advance in concurrency theory, in particular in the use of composi-
tional algebraic methods for the description of complex systems. It is often
the case, though, that when an advance is made, something valuable is also
lost, or at least, temporarily forgotten.

Let us start with the problem of canonicity — the ‘next 700 process alge-
bras’ syndrome. In a sense, the very success of the paradigmatic tool-kit, as
described in the previous section, is also the source of the problem. It is too

2

Defining

ar
X

iv
:1

40
1.

49
73

v1
 [

cs
.L

O
]

20
 Ja

n
20

14

APC 2005

What are the fundamental structures of
concurrency? We still don’t know!

Samson Abramsky 1,2

Oxford University Computing Laboratory

Oxford, U.K.

Abstract

Process algebra has been successful in many ways; but we don’t yet see the linea-
ments of a fundamental theory. Some fleeting glimpses are sought from Petri Nets,
physics and geometry.

Key words: Concurrency, process algebra, Petri nets, geometry,
quantum information and computation.

1 Process Calculi as Generic Theories

What counts as a successful theory in Computer Science? Consider obvious
exemplars such as

• Process Calculi

• Type Systems

• Model-checking

It is not the case that there is a single agreed model, notation, formalism, tool
or language in any of the above areas. In fact there are a profusion of all of
these, although some have been particularly influential. (Insert your favourite
examples here . . .)

The ‘Next 700 · · ·’ syndrome

Is this profusion a ‘scandal’ of our subject? I used to think so — and I
wasn’t alone (e.g. Robin Milner’s quest to find the ‘λ-calculus of concurrency’).
Now I am not so sure.

1 This research was supported by U.K. EPSRC
2 Email: samson@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Abramsky

easy to cook up yet another variant process calculus or algebra; there are too
few constraints. This plasticity of definitions has become so familiar in our
field that we may not be aware of it as an issue. The mathematician André
Weil apparently compared finding the right definitions in algebraic number
theory — which was like carving adamantine rock — to making definitions
in the theory of uniform spaces (which he founded), which was like sculpting
with snow. In concurrency theory, we are very much at the snow-sculpture end
of the spectrum. We lack the kind of external reality, whether it comes from
fundamental mathematical objects like the integers, or manifolds, or differen-
tial equations, or from physical reality as determined by experiment, which is
hard and obdurate, and resistant to our definitions. Is this a necessary feature
of our existence, or have we just not yet found the real bedrock?

An important quality of Petri’s conception of concurrency is that it does
seek to determine fundamental concepts: causality, concurrency, process, etc.
in a syntax-independent fashion. Another important point, which may origi-
nally have seemed merely eccentric, but now looks rather ahead of its time, is
the extent to which Petri’s thinking was explicitly influenced by physics (see
e.g. [6]. As one example, note that K-density comes from one of Carnap’s
axiomatizations of relativity). To a large extent, and by design, Net Theory
can be seen as a kind of discrete physics : lines are time-like causal flows,
cuts are space-like regions, process unfoldings of a marked net are like
the solution trajectories of a differential equation.

This acquires new significance today, when the consequences of the idea
that ‘Information is physical’ are being explored in the rapidly developing
field of quantum informatics. Moreover, the need to recognize the spatial
structure of distributed systems has become apparent, and is made explicit in
formalisms such as the Ambient calculus, and Milner’s bigraphs.

Some morals

• The genius, the success, and the limitation of process calculi is their lin-
guistic character. This provides an ingenious way of studying processes,
information flow, etc. without quite knowing, independently of the partic-
ular linguistic setting, what any of these notions are. One could try to say
that they are implicitly defined by the calculus. But then the fact that
there are so many calculi, potential and actual, does not leave us on very
firm ground.
We lack syntax-independent, intrinsic definitions of the fundamental no-

tions of concurrency theory. Net theory and some related approaches (e.g.
event structures) still offer the best extant accounts of these issues. But we
are still far from home.
Thus for example consider the issue of expressiveness. There are some

fragmentary results, but there is no single compelling notion of ‘expressive
completeness’ for a process calculus, or of a ‘Church’s thesis for concur-
rency’.

3

Abramsky

It’s the Paradigms!

The paradigms and tool-kits, both technical and conceptual, provided by
these theories have been deeply absorbed by the research communities and
have increasingly influenced applications.
Examples:

• labelled transition systems and bisimulation

• naming and scope restriction and extrusion

• the automata-theoretic paradigm for model-checking

• the type systems paradigm, with compositional typing rules for terms-in-
context, and key structural properties such as Subject Reduction.

By their fruits shall ye know them.

These tool-kits are the real fruits of these theories. They may be compared
to the traditional tool-kits of physics and engineering: Differential Equations,
Laplace and Fourier Transforms, Numerical Linear Algebra, etc.

They can be applied to a wide range of situations, going well beyond
those originally envisaged, e.g. Security, Computational Biology, Quantum
Computing, etc. So, is everything in the garden rosy?

Dreams of Final Theories

But can we do better than this? After all, in physics there are great
theories which transcend mere tool-kits. We largely lack such theories, in
Computer Science as a whole, and in concurrency and process calculus in
particular. Is this unavoidable, as part of the nature of our subject, or will
such theories emerge?

Some may find such questions uninteresting, or even meaningless; they can
safely stop reading here.

2 Process Calculi vs. Concurrency Theory

1980 marked the start of a new era in concurrency theory, but not its be-
ginning. A meaningful theory of concurrency, incorporating some profound
insights, had been originated by Petri in the 1960’s, and Net theory, as well
as other approaches to concurrency, continues to be actively developed.

There is no doubt that the advent of algebraic process calculi marked a
decisive advance in concurrency theory, in particular in the use of composi-
tional algebraic methods for the description of complex systems. It is often
the case, though, that when an advance is made, something valuable is also
lost, or at least, temporarily forgotten.

Let us start with the problem of canonicity — the ‘next 700 process alge-
bras’ syndrome. In a sense, the very success of the paradigmatic tool-kit, as
described in the previous section, is also the source of the problem. It is too

2

To design a new formal language is a bit like programming...

...and one can program with different languages

Programming in Javascript is rather easy, since the language poses few constraints,
but then one can write horrible code

Defining

ar
X

iv
:1

40
1.

49
73

v1
 [

cs
.L

O
]

20
 Ja

n
20

14

APC 2005

What are the fundamental structures of
concurrency? We still don’t know!

Samson Abramsky 1,2

Oxford University Computing Laboratory

Oxford, U.K.

Abstract

Process algebra has been successful in many ways; but we don’t yet see the linea-
ments of a fundamental theory. Some fleeting glimpses are sought from Petri Nets,
physics and geometry.

Key words: Concurrency, process algebra, Petri nets, geometry,
quantum information and computation.

1 Process Calculi as Generic Theories

What counts as a successful theory in Computer Science? Consider obvious
exemplars such as

• Process Calculi

• Type Systems

• Model-checking

It is not the case that there is a single agreed model, notation, formalism, tool
or language in any of the above areas. In fact there are a profusion of all of
these, although some have been particularly influential. (Insert your favourite
examples here . . .)

The ‘Next 700 · · ·’ syndrome

Is this profusion a ‘scandal’ of our subject? I used to think so — and I
wasn’t alone (e.g. Robin Milner’s quest to find the ‘λ-calculus of concurrency’).
Now I am not so sure.

1 This research was supported by U.K. EPSRC
2 Email: samson@comlab.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Abramsky

easy to cook up yet another variant process calculus or algebra; there are too
few constraints. This plasticity of definitions has become so familiar in our
field that we may not be aware of it as an issue. The mathematician André
Weil apparently compared finding the right definitions in algebraic number
theory — which was like carving adamantine rock — to making definitions
in the theory of uniform spaces (which he founded), which was like sculpting
with snow. In concurrency theory, we are very much at the snow-sculpture end
of the spectrum. We lack the kind of external reality, whether it comes from
fundamental mathematical objects like the integers, or manifolds, or differen-
tial equations, or from physical reality as determined by experiment, which is
hard and obdurate, and resistant to our definitions. Is this a necessary feature
of our existence, or have we just not yet found the real bedrock?

An important quality of Petri’s conception of concurrency is that it does
seek to determine fundamental concepts: causality, concurrency, process, etc.
in a syntax-independent fashion. Another important point, which may origi-
nally have seemed merely eccentric, but now looks rather ahead of its time, is
the extent to which Petri’s thinking was explicitly influenced by physics (see
e.g. [6]. As one example, note that K-density comes from one of Carnap’s
axiomatizations of relativity). To a large extent, and by design, Net Theory
can be seen as a kind of discrete physics : lines are time-like causal flows,
cuts are space-like regions, process unfoldings of a marked net are like
the solution trajectories of a differential equation.

This acquires new significance today, when the consequences of the idea
that ‘Information is physical’ are being explored in the rapidly developing
field of quantum informatics. Moreover, the need to recognize the spatial
structure of distributed systems has become apparent, and is made explicit in
formalisms such as the Ambient calculus, and Milner’s bigraphs.

Some morals

• The genius, the success, and the limitation of process calculi is their lin-
guistic character. This provides an ingenious way of studying processes,
information flow, etc. without quite knowing, independently of the partic-
ular linguistic setting, what any of these notions are. One could try to say
that they are implicitly defined by the calculus. But then the fact that
there are so many calculi, potential and actual, does not leave us on very
firm ground.
We lack syntax-independent, intrinsic definitions of the fundamental no-

tions of concurrency theory. Net theory and some related approaches (e.g.
event structures) still offer the best extant accounts of these issues. But we
are still far from home.
Thus for example consider the issue of expressiveness. There are some

fragmentary results, but there is no single compelling notion of ‘expressive
completeness’ for a process calculus, or of a ‘Church’s thesis for concur-
rency’.

3

Abramsky

It’s the Paradigms!

The paradigms and tool-kits, both technical and conceptual, provided by
these theories have been deeply absorbed by the research communities and
have increasingly influenced applications.
Examples:

• labelled transition systems and bisimulation

• naming and scope restriction and extrusion

• the automata-theoretic paradigm for model-checking

• the type systems paradigm, with compositional typing rules for terms-in-
context, and key structural properties such as Subject Reduction.

By their fruits shall ye know them.

These tool-kits are the real fruits of these theories. They may be compared
to the traditional tool-kits of physics and engineering: Differential Equations,
Laplace and Fourier Transforms, Numerical Linear Algebra, etc.

They can be applied to a wide range of situations, going well beyond
those originally envisaged, e.g. Security, Computational Biology, Quantum
Computing, etc. So, is everything in the garden rosy?

Dreams of Final Theories

But can we do better than this? After all, in physics there are great
theories which transcend mere tool-kits. We largely lack such theories, in
Computer Science as a whole, and in concurrency and process calculus in
particular. Is this unavoidable, as part of the nature of our subject, or will
such theories emerge?

Some may find such questions uninteresting, or even meaningless; they can
safely stop reading here.

2 Process Calculi vs. Concurrency Theory

1980 marked the start of a new era in concurrency theory, but not its be-
ginning. A meaningful theory of concurrency, incorporating some profound
insights, had been originated by Petri in the 1960’s, and Net theory, as well
as other approaches to concurrency, continues to be actively developed.

There is no doubt that the advent of algebraic process calculi marked a
decisive advance in concurrency theory, in particular in the use of composi-
tional algebraic methods for the description of complex systems. It is often
the case, though, that when an advance is made, something valuable is also
lost, or at least, temporarily forgotten.

Let us start with the problem of canonicity — the ‘next 700 process alge-
bras’ syndrome. In a sense, the very success of the paradigmatic tool-kit, as
described in the previous section, is also the source of the problem. It is too

2

To design the syntax of a new formal language, we use always the same methodology

Context Free Grammar
Variables
Binders

(In my analogy, always the same programming language)

Is there a better language to define languages?

DefiningCATEGORY THEORY

Syntax

C
Category

Semantics
Domain

D
Category

Semantic Map

Functor

Defining a language like this is not easy at all!
There are many constraints:

The semantics Domain D acts as our bedrock

cipline to guide the translation of terms to string diagrams:

n ⊢ P n ⊢ Q

n ⊢ P |Q

n+ 1 ⊢ P

n ⊢ νan+1(P)

ar(f) = n

n ⊢ f

n ⊢ P degree(σ) ≤ n

n ⊢ Pσ

n ⊢ P

n+ 1 ⊢ P

(16)

The meaning of the types is explained by the following lemma, easily proven452

by induction.453

Lemma 12. If n ⊢ P then al(P) ⊆ {a1, . . . an}.454

We will translate processes to the CW prop freely generated from Σ =

{f : (n, 0) | f ∈ V and ar(f) = n}; in particular a typed process n ⊢ P results

in a string diagram of SCW(Σ)(n, 0). The translation 〈〈·〉〉 is defined recursively

on typed terms as follows:

〈〈n ⊢ P |Q〉〉 =
〈〈P 〉〉

〈〈Q〉〉
n 〈〈n ⊢ νan+1(P)〉〉 =

n
〈〈P 〉〉

〈〈n ⊢ f〉〉 = f
n 〈〈n ⊢ Pσ〉〉 = 〈〈P 〉〉n

σ
n

〈〈n+ 1 ⊢ P 〉〉 = 〈〈P 〉〉
n

where for σ with degree(σ) < n, σ : n → n is the obvious corresponding arrow455

in SCW(Σ).456

Example 13. Let V = {f, g} with ar(f) = 1 and ar(g) = 2. Let [a2/a1] : N →
N be the permutation swapping a1 and a2. One can easily check that 1 ⊢
νa2(f[a2/a1] | g). Then 〈〈1 ⊢ νa2(f[a2/a1] | g)〉〉 is as below.

f

g
≡

f

g

6.2. Semantics457

In order to give semantics to the calculus, we assume a set A of actions, α,458

β, Since, we will consider different sets of actions (for Hoare and Milner459

synchronisation), we assume them to be functions of type N → M for some460

monoid (M,+, 0). The support of an action α is the set {ai | α(ai) ∕= 0}. The461

alphabet of α, written al(α) is identified with its support.462

For Hoare synchronisation, the monoid M is (2,∪, 0), while for Milner it is463

(Z,+, 0). In both cases, we will write ai for the function mapping the name464

20

cipline to guide the translation of terms to string diagrams:

n ⊢ P n ⊢ Q

n ⊢ P |Q

n+ 1 ⊢ P

n ⊢ νan+1(P)

ar(f) = n

n ⊢ f

n ⊢ P degree(σ) ≤ n

n ⊢ Pσ

n ⊢ P

n+ 1 ⊢ P

(16)

The meaning of the types is explained by the following lemma, easily proven452

by induction.453

Lemma 12. If n ⊢ P then al(P) ⊆ {a1, . . . an}.454

We will translate processes to the CW prop freely generated from Σ =

{f : (n, 0) | f ∈ V and ar(f) = n}; in particular a typed process n ⊢ P results

in a string diagram of SCW(Σ)(n, 0). The translation 〈〈·〉〉 is defined recursively

on typed terms as follows:

〈〈n ⊢ P |Q〉〉 =
〈〈P 〉〉

〈〈Q〉〉
n 〈〈n ⊢ νan+1(P)〉〉 =

n
〈〈P 〉〉

〈〈n ⊢ f〉〉 = f
n 〈〈n ⊢ Pσ〉〉 = 〈〈P 〉〉n

σ
n

〈〈n+ 1 ⊢ P 〉〉 = 〈〈P 〉〉
n

where for σ with degree(σ) < n, σ : n → n is the obvious corresponding arrow455

in SCW(Σ).456

Example 13. Let V = {f, g} with ar(f) = 1 and ar(g) = 2. Let [a2/a1] : N →
N be the permutation swapping a1 and a2. One can easily check that 1 ⊢
νa2(f[a2/a1] | g). Then 〈〈1 ⊢ νa2(f[a2/a1] | g)〉〉 is as below.

f

g
≡

f

g

6.2. Semantics457

In order to give semantics to the calculus, we assume a set A of actions, α,458

β, Since, we will consider different sets of actions (for Hoare and Milner459

synchronisation), we assume them to be functions of type N → M for some460

monoid (M,+, 0). The support of an action α is the set {ai | α(ai) ∕= 0}. The461

alphabet of α, written al(α) is identified with its support.462

For Hoare synchronisation, the monoid M is (2,∪, 0), while for Milner it is463

(Z,+, 0). In both cases, we will write ai for the function mapping the name464

20

String diagrams are circuits that can be composed in

c
a−→
b

c′ d
b−→
c

d′

λsq

c ; d
a−→
c

c′ ; d′

s
a1−−→
b1

c′ d
a2−−→
b2

d′

λmp

c⊕ d
a1a2−−−−→
b1b2

d′ ⊕ d′

λ#
ε−→
ε

λid
k−→
k

λsy
k l−−→
l k

Figure 3: Structural operational semantics for the operations of CircR.

Our chief focus in this paper is the study of semantics specifications of the92

kind given in Figs. ?? and ??. So far, the technical difference with typical93

GSOS examples [?] is the presence of a sorting discipline. A more significant94

difference, which we will now highlight, is that sorted terms are considered up-to95

the laws of symmetric monoidal categories. As such, they are “2-dimensional96

syntax” and enjoy a pictorial representation in terms of string diagrams.97

2.1. From Terms to String Diagrams98

In (??)-(??) we purposefully used a graphical rendering of the components.
Indeed, terms of CircR are usually represented graphically, according to the con-

vention that c ; c′ is drawn c c0...
...

... and c⊕c′ is drawn
c

c0 ...

...
...

...

. For instance,

the term ((;)⊕) ; ((⊕ (; x

k

;))) ; ((;)⊕
) is depicted as the following diagram.

pk ::=
x
k (5)

Given this graphical convention, a sort gives the number of dangling wires on99

each side of the diagram induced by a term. A transition c
a−→
b

d means that100

c may evolve to d when the values on the dangling wires on the left are a and101

those on the right are b. When R is the natural numbers, the diagram in (??)102

behaves as a place of a Petri nets containing k tokens: any number of tokens103

can be inserted from its left and at most k tokens can be removed from its right.104

Indeed, by the rules in Figs. ?? and ??, pk
i−→
o

pk′ iff o ≤ k and k′ = i+ k − o.105

The graphical notation is appealing as it highlights connectivity and the ca-
pability for resource exchange. However, syntactically different terms can yield

the same diagram, e.g. (⊕) ; (⊕) ; (⊕) ; (⊕ x

k

) ; (⊕
) ; (⊕) ; (⊕) also yields (??). Indeed, one defines diagrams

to be terms modulo structural congruence, denoted by ≡. This is the smallest
congruence over terms generated by the equations of strict symmetric monoidal

5

sequence

c
a−→
b

c′ d
b−→
c

d′

λsq

c ; d
a−→
c

c′ ; d′

s
a1−−→
b1

c′ d
a2−−→
b2

d′

λmp

c⊕ d
a1a2−−−−→
b1b2

d′ ⊕ d′

λ#
ε−→
ε

λid
k−→
k

λsy
k l−−→
l k

Figure 3: Structural operational semantics for the operations of CircR.

Our chief focus in this paper is the study of semantics specifications of the92

kind given in Figs. ?? and ??. So far, the technical difference with typical93

GSOS examples [?] is the presence of a sorting discipline. A more significant94

difference, which we will now highlight, is that sorted terms are considered up-to95

the laws of symmetric monoidal categories. As such, they are “2-dimensional96

syntax” and enjoy a pictorial representation in terms of string diagrams.97

2.1. From Terms to String Diagrams98

In (??)-(??) we purposefully used a graphical rendering of the components.
Indeed, terms of CircR are usually represented graphically, according to the con-

vention that c ; c′ is drawn c c0...
...

... and c⊕c′ is drawn
c

c0 ...

...
...

...

. For instance,

the term ((;)⊕) ; ((⊕ (; x

k

;))) ; ((;)⊕
) is depicted as the following diagram.

pk ::=
x
k (5)

Given this graphical convention, a sort gives the number of dangling wires on99

each side of the diagram induced by a term. A transition c
a−→
b

d means that100

c may evolve to d when the values on the dangling wires on the left are a and101

those on the right are b. When R is the natural numbers, the diagram in (??)102

behaves as a place of a Petri nets containing k tokens: any number of tokens103

can be inserted from its left and at most k tokens can be removed from its right.104

Indeed, by the rules in Figs. ?? and ??, pk
i−→
o

pk′ iff o ≤ k and k′ = i+ k − o.105

The graphical notation is appealing as it highlights connectivity and the ca-
pability for resource exchange. However, syntactically different terms can yield

the same diagram, e.g. (⊕) ; (⊕) ; (⊕) ; (⊕ x

k

) ; (⊕
) ; (⊕) ; (⊕) also yields (??). Indeed, one defines diagrams

to be terms modulo structural congruence, denoted by ≡. This is the smallest
congruence over terms generated by the equations of strict symmetric monoidal

5

parallelDiagrammatic Algebra: From Linear to Concurrent Systems 25:21

E������ 36. The diagrams of Petri[0, 0] corresponding to the net of Example 35 is:

More generally, a place with multiple inputs and outputs is depicted as

using and , while transitions are represented with the help of and .

Any ordinary Petri net P can be encoded as a diagram dP in Petri[0, 0]. By choosing an ordering
on places and transitions, the functions ��,�� : T ! NP can be regarded as N-matrices of type
|T | ! |P |. Such matrices can be seen as special cases of additive relations (cf. Theorem 20, Section
3.3): let s and t be the diagrams in Rc corresponding to ��, �� respectively. We let dP be

t

s |P |

|T |

That this assignement is well-de�ned is proven in Appendix A.3. It is easy to show that P and dP
have the same operational behaviour.

P���������� 37. Given a Petri net P, we have [[P]] ⇠ [[dP]].
P����. In Appendix A.3. ⇤

Similarly, for every diagram d 2 Petri[0, 0], one can construct a Petri net Pd with the following
recipe: by Lemma 29, d can be written in trace canonical form, namely there exists a diagram
c 2 Rc[p,p] such that (23) holds. The diagram c denotes an additive relation I (c) ✓ Np ⇥ Np that,
by Proposition 23, has a Hilbert basis. This basis can be represented as matrix A : t ! p + p for
some t 2 N representing the dimension of the basis. The matrix A can be decomposed into two
matrices A1,A2 : t ! p such that A =

� A1
A2

�
. We de�ne Pd := (p, t,A2,A1), that is p and t (seen as

ordinal sets) are the set of places and transitions, A1 and A2 play the role of �� and ��.
Again, it is easy to prove that the operational behaviour is preserved.

P���������� 38. For all d 2 Petri[0, 0], [[d]] ⇠ [[Pd]]
P����. In Appendix A.3. ⇤

By virtue of Propositions 37 and 38 together, Petri nets and diagrams in Petri[0, 0] are in one-to-
one correspondence modulo semantic equivalence.

5.2 Classifying stateful extensions
Recall that diagram c2 (3) in the introduction behaves like a place of a Petri net. We now use it to
embed Petri in Rcs . The prop morphism E(�) : Circp ! Circs takes:

E() := x (27)

and acts as the identity for the constants of Circ. Following the discussion in Section 2.2, it is
immediate that E() is exactly the behaviour de�ned by (26), that is

[[E()]] = {(m, i,m0,o) | o m andm0 =m � o + i} = [[]] (28)
A simple induction allows us to extend the correspondence (28) to all diagrams in Circp .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 25. Publication date: January 2019.

Intuitive graphical representation
easily understandable by engineers

(as Hubert suggested...)

But equipped with a formal
compositional semantics

Inf. Comp. 2021

Hoare and Milner
synchronisation mechanism

satisfy the same algebraic laws

close to
Synchronise
Hyperedge

Replacement

POPL 2019

Petri nets are nothing else than linear
dynamical systems on the natural

numbers
(rather than the reals)

Monoid Comonoid Frobenius

Lax naturality Adjointness

Monoid Comonoid Frobenius

Adjointness

Cartesian Bicategories

Lax naturality

Monoid Comonoid Frobenius

Adjointness

Cartesian Bicategories

Lax naturality

MonoidComonoid Bialgebra Naturality

MonoidComonoid Bialgebra Naturality

Finite Biproducts

MonoidComonoid Bialgebra Naturality

Finite Biproducts

Cartesian BicategoriesCartesian BicategoriesCartesian Bicategories

Adjointness

MonoidComonoid Bialgebra Naturality

Finite Biproducts

Cartesian BicategoriesCartesian BicategoriesCartesian Bicategories

Adjointness

Finite Biproducts Cartesian Bicategories

