‘Undecidability of Asynchronous Session
Subtyping:

the Hunt for Significant Decidable Variants

Mario Bravetti Department of Computer Science
University of Bologna

1N

N

Session Types

¢ Session types are types for controlling
the communication behaviour of
processes over channels.

= they express the pattern of sends and
receives that a process must perform

= they can guarantee freedom from (some)

communication errors, i.e. locking/data types

+ becoming popular with main stream language
implementations, e.qg., Haskell, GO, or RUST.

Simple binary session types

4

N
Definition (Session types). Given a set of labels L, ranged over by [, the syntax
of binary session types is given by the following grammar:

b —— @{lt - Ti}ie] &{l T }LEI [,Lt o t

g

selection branching recursion termination

among among (success)
outputs iInputs

Session Subtyping

N

¢ Traditional notion of subtyping in
programming languages

= @ given program with type 7 can be used in
place of program with type S whenever 7 <S5
(7 is a subtype of 5)

Subtyping: output Covariance
and input Contravariance

N

¢ Output Covariance
= subtype may have a subset of outputs
= example:

S{lh T} <®{ly : Th,l: To}

+ Input Contravariance
= subtype may have a superset of inputs
= example:

&{ll ZTl,ZQ " TQ} S &{ll ITl}

Synchronous Session Subtyping

N

Definition (Synchronous Subtyping, <). R is a synchronous subtyping relation
whenever (T, S) € R implies that:

1. if T = end then 3n > 0 such that unfold”(S) = end;

2. if T =|®&{l; : Ti;}icr|then In > 0 such that unfold”(S) =|®{l; : S;}icd,
I C JlandYiel.(T;,S;) € R;

3. if T = &{l; : T;}icr|then In > 0 such that unfold™(S) =|&{l; : S;};e
JC I|and Vj € J.(1},S5;) € R;

.

4. if T = pt.T" then (T'{T/t},S) € R.

T s al|synchronous subtype of S, written T'<S| if there is a synchronous sub-
typing relation R such that (T,S) € R.

Asynchronous Subtyping

N

¢ Bidirectional asynchronous channel with
unbounded queues

= messages sent by outputs are received in an
ordered manner

¢ subtype may have outputs anticipated w.r.t.
inputs (but order w.r.t. alike preserved)

= example:

@{l) &{ll) Tl,lg : TQ}} < &{ll I @{l : T1}7l2 : @{l : T2}}

|
Asynchron pin
bty
u
ous S
ro
C
Sy g

b
- T
.ol -
13,12

[y ®{l: T!l

&{l;
b <

- T

[y :

: £

a{l:

T,
T]
7]) ; | |
e &
|/

Input Context

N

' Definition (Input Context). An input context A is a session type with multiple
holes defined by the syntax:

A= [| &{li : Aitier

¢ Using input contexts:

A[T,|FEttmt denotes the type obtained by filling each hole k in A with T},

&fly: [1Ml <[]}
/

“h:oll:Tik kb ofl: T} o{l: Ty} @{> T>}

Asynchronous Session Subtyping

N

Definition (Asynchronous Subtyping, <). R is an asynchronous subtyping
relation whenever (1,S) € R tmplies that:

1. if T'=end then In > 0 such that unfold”(S) = end:

2. 4f T = &{l; : T;}icr then In > 0, A such that

& UﬂfOldn(S) _ A[@{IJ : Skj}jEJA-]kE{l -m}?
o Vk e {1,..., m}.I C Ji and

o Vic I. (Ti:A[Ski]ke{l m}') c R

S.if T = &{l; : Ti}ier then In > 0 such that unfold™(S) = &{l; : S;} e,
J € I and ¥j € JAT;,55) €R;

4. if T = pt.T" then (T"{T/t},S) € R.

1" 1s an asynchronous subtype of S, written T'<S, if there is an asynchronous
subtyping relation R such that (1,5) € R.

Undecidability of Asynchronous
Session Subtyping [BCZ InfoComp17]

N

¢ We prove undecidability of asynchronous
subtyping by reduction from the
termination problem for queue machines

¢ Queue machines are a formalism similar
to pushdown automata, but with a queue
instead of a stack.

¢ Queue machines are Turing equivalent

N

Queue Machine

Definition (Queue machine). A queue machine M is defined by a siz-tuple

(Q} Ev F, $3 . 8 5) where:
o () is a finite set of states;

e X C I' 1s a finite set denoting the input alphabet;

o [' is a finite set denoting the queue alphabet;
o $ €' — X is the initial queue symbol;
e s < () s the start state;

e):Q xI' = Q xTI'" is the transition function.

Queue Machine Execution

N

e A configuration of a queue machine is an orderedl pair (q,)| where ¢ € Q
is its current state and v € I'* is the content of the queue.

e The starting configuration on an input string x is (s, x$).

e The transition relation —jp; from one configuration to the next one is
deﬁned as (p7 AOd) — M (Q7a7)7 when (5(]9, A) — (Q77)

e A machine M accepts an input x if it blocks by emptying the queue.

— Formally| x is accepted by M if (s,z$) —3; (g, €)|where € is the empty
string and —; is the reflexive and transitive closure of — ;.

Control encoding

B, B!, |
A17 [> @ cocee ®) [[ql]]
[q] -\
Bk | Bk |
Ak? [] L > @ oo ® k + @ [[qk]]
where:
D= {A]i < k)

0(q, A;) = (g, B} --- By,,) for every 1

Queue encoding

We have: subtyping
corresponds to non-termination

N

¢ Our encoding yields an immediate correspondanc
between subtyping and (non) termination

Theorem. Given a queue machine M = (Q,%,1',%,s,0) and an input string
xr € X*, we have [s]| <[z$] if and only if M does not terminate on x.

Corollary. Asynchronous subtyping < is undecidable.

Output Covariance and Input
Contravariance are not needed

N

+ Undecidability of Asynchronous Subtyping can
also be shown without resorting to
= Output Covariance
» possibility, in T <S, for T to have a subset of outputs

= Input Contravariance
» possibility, in T <S, for T to have a superset of inputs

Some insight inthe T < S
decidability problem

N

¢ Procedure just enacting the simulation
game (S simulates moves of T) may not
terminate in case T < S holds

¢ Even adding a check thata pair T'< S’
has been already met [MYH ESOP 09]
is not enough

Example. T = put. ® {l; : &{la : t}} and S = ut. & {ll : &{ly : &{ls t}}}

Decidability of k-bounded
Asynchronous Subtyping

N

¢ If we establish a bound k for the capability of
anticipating outputs, we get termination

We say that an input context A is k-bounded if the maximal number of nested
inputs in A is less or equal to k.

Definition (A-bounded Asynchronous Subtyping). The k-bounded asynchronous
subtyping <. is defined as before, with the only difference that the input context
A in item 2. 1s assumed to be k-bounded

Decidability of Subtyping for
Single-Out and Single-In Types

N

¢ Algorithm that terminates if types are restricted
to be single-out only or single-in only

= Single-out session types are types where output
selections are always singleton

+ common in web-services where a server accepts alternative
clients requests but then it reacts deterministically
= Single-in session types are types where input
branches are always singleton
+ common in web-services where client code internally choses
outputs and the corresponding inputs are always singletons
= Our algorithm is thus usable in typing systems for
client and server code.

[BCZ TCS18]

branching /selection structure buffer
> <==<pcC
..... 7 \\
Stin < Stout
A S \
Stin._tout Sbound
| : AN : A
undecidable : : :
decidable :
Ssi n S sout
N ' ' A4
<2
. | A
Ssin.tout Stin.sout Sl
Ssin.sout <0 =<5

<, synchronous subtyping

........... > set inclusion

< |orphan-message-free|asynchronous subtyping

N

Orphan-message-free Subtyping

Definition (Orphan-Message-Free Subtyping, <). R is an orphan-message-free
subtyping relation whenever (1',S) € R implies items 1., 3., and 4., plus an
extended version of 2.|that contains also the following requirement:

-lif A # [|! then Vi € 1.& € T;

1" is a orphan-message-free subtype of S, simply written T'<S, if there is a
orphan-message-free subtyping relation R such that (1, 5) € R.

Effect of Additional Requirement

N

¢ It does not hold:

pt. & {l:t<ut. &{l - a{l : t}}

¢ That is, types must be related without
"orphan” messages

= messages sent by a communicating partner
that remain forever in the queue

N

Orphan-message-free Subtyping

¢ Our alternative equivalent formulation :

Definition (Asynchronous Subtyping, <). R is an asynchronous subtyping re-
lation whenever|it is dual closed|and (T, S) € R implies that:

1. if T = end then 3n > 0 such that unfold"(S) = end;

2. if T =&{l; : T; }icr then In >0, A such that

o Vkc{l,...,m}.I C J and
o Vi € I.(T;, A[S;]F€{lrm}) € R;

3. if T = &{l; : T;}ier then In > 0 such that unfold”(S) = &{l; : S;}e,
J C I and Vi€ J4.(1;,5;)€R;

4. if T = pt. T then (T'{T/t},S) € R.

N

Dual type and Dual closeness

Given a session type 7T, its dual T is defined as:
£ @{lz ; Ti}z’EI = &{lz . Ti}iela
[&{lz v Ti}iEI = @{lz : Ti}’ié[a

e end =end, t =t, and

o ut.l'= ut.T.

¢ Dual closeness:

relation R on session types is dual closed if (S,T) € R implies (T,S) € R

N

Conclusion: Impact of undecidability
(not only session types)

¢ Consequences of our results:

= Orphan-message-free asynchronous Session
subtyping is also undecidable

= Asynchronous Session subtyping for standard session

types (with communication with carried types
besides branching/selection) is undecidable

= Asynchronous Multiparty Session subtyping is
undecidable

= Refinement over Communicating

Automata/Behavioural Contracts is undecidable
[BZ SOSYM21]

The Hunt for Decidable Variants
Continues...

N

¢ Investigation of other forms of restriction that
allow us to obtain decidability, while retaining:
» general branching for both inputs and outputs
+ queue unboundedness

¢ Sound algorithmic approximations based on
characterizing looping accumulation patterns,
e.g. [BCLYZ LMCS21] and [BLZ FOSSACS21] for

fair asynchronous subtyping

¢ Decidability for specific forms of asynchronous
communication used in practice?

