
Mario Bravetti Department of Computer Science
University of Bologna

Undecidability of Asynchronous Session
Subtyping:
the Hunt for Significant Decidable Variants

Session Types

Session types are types for controlling
the communication behaviour of
processes over channels.
 they express the pattern of sends and

receives that a process must perform
 they can guarantee freedom from (some)

communication errors, i.e. locking/data types
 becoming popular with main stream language

implementations, e.g., Haskell, GO, or RUST.

Simple binary session types

selection
among
outputs

branching
among
inputs

recursion termination
(success)

Session Subtyping

Traditional notion of subtyping in
programming languages
 a given program with type T can be used in

place of program with type S whenever T ≤ S
(T is a subtype of S)

Subtyping: output Covariance
and input Contravariance

Output Covariance
 subtype may have a subset of outputs
 example:

 Input Contravariance
 subtype may have a superset of inputs
 example:

Synchronous Session Subtyping

Asynchronous Subtyping

Bidirectional asynchronous channel with
unbounded queues
 messages sent by outputs are received in an

ordered manner

 subtype may have outputs anticipated w.r.t.
inputs (but order w.r.t. alike preserved)
 example:

Asynchronous Subtyping

?l1

?l2

!l

!l

T1

T2

?l1

?l2

T1

T2

!l ≤

Input Context

 Using input contexts:

=

Asynchronous Session Subtyping

Undecidability of Asynchronous
Session Subtyping [BCZ InfoComp17]

We prove undecidability of asynchronous
subtyping by reduction from the
termination problem for queue machines

Queue machines are a formalism similar
to pushdown automata, but with a queue
instead of a stack.

Queue machines are Turing equivalent

Queue Machine

Queue Machine Execution

Control encoding

where:

Queue encoding

We have: subtyping
corresponds to non-termination

 Our encoding yields an immediate correspondance
between subtyping and (non) termination

Output Covariance and Input
Contravariance are not needed

 Undecidability of Asynchronous Subtyping can
also be shown without resorting to
 Output Covariance

 possibility, in T S, for T to have a subset of outputs

 Input Contravariance
 possibility, in T S, for T to have a superset of inputs

Some insight in the T S
decidability problem

Procedure just enacting the simulation
game (S simulates moves of T) may not
terminate in case T S holds

Even adding a check that a pair T’ S’
has been already met [MYH ESOP 09]
is not enough

Decidability of k-bounded
Asynchronous Subtyping
 If we establish a bound k for the capability of

anticipating outputs, we get termination

Decidability of Subtyping for
Single-Out and Single-In Types
 Algorithm that terminates if types are restricted

to be single-out only or single-in only
 Single-out session types are types where output

selections are always singleton
 common in web-services where a server accepts alternative

clients requests but then it reacts deterministically

 Single-in session types are types where input
branches are always singleton
 common in web-services where client code internally choses

outputs and the corresponding inputs are always singletons

 Our algorithm is thus usable in typing systems for
client and server code.

[BCZ TCS18]

Orphan-message-free Subtyping

Effect of Additional Requirement

 It does not hold:

That is, types must be related without
"orphan" messages
 messages sent by a communicating partner

that remain forever in the queue

Orphan-message-free Subtyping

Our alternative equivalent formulation :

Dual type and Dual closeness

 Dual closeness:

Conclusion: Impact of undecidability
(not only session types)

 Consequences of our results:
 Orphan-message-free asynchronous Session

subtyping is also undecidable
 Asynchronous Session subtyping for standard session

types (with communication with carried types
besides branching/selection) is undecidable

 Asynchronous Multiparty Session subtyping is
undecidable

 Refinement over Communicating
Automata/Behavioural Contracts is undecidable
[BZ SOSYM21]

The Hunt for Decidable Variants
Continues…
 Investigation of other forms of restriction that

allow us to obtain decidability, while retaining:
 general branching for both inputs and outputs
 queue unboundedness

 Sound algorithmic approximations based on
characterizing looping accumulation patterns,
e.g. [BCLYZ LMCS21] and [BLZ FOSSACS21] for
fair asynchronous subtyping

 Decidability for specific forms of asynchronous
communication used in practice?

