
Mario Bravetti Department of Computer Science
University of Bologna

Undecidability of Asynchronous Session
Subtyping:
the Hunt for Significant Decidable Variants

Session Types

Session types are types for controlling
the communication behaviour of
processes over channels.
 they express the pattern of sends and

receives that a process must perform
 they can guarantee freedom from (some)

communication errors, i.e. locking/data types
 becoming popular with main stream language

implementations, e.g., Haskell, GO, or RUST.

Simple binary session types

selection
among
outputs

branching
among
inputs

recursion termination
(success)

Session Subtyping

Traditional notion of subtyping in
programming languages
 a given program with type T can be used in

place of program with type S whenever T ≤ S
(T is a subtype of S)

Subtyping: output Covariance
and input Contravariance

Output Covariance
 subtype may have a subset of outputs
 example:

 Input Contravariance
 subtype may have a superset of inputs
 example:

Synchronous Session Subtyping

Asynchronous Subtyping

Bidirectional asynchronous channel with
unbounded queues
 messages sent by outputs are received in an

ordered manner

 subtype may have outputs anticipated w.r.t.
inputs (but order w.r.t. alike preserved)
 example:

Asynchronous Subtyping

?l1

?l2

!l

!l

T1

T2

?l1

?l2

T1

T2

!l ≤

Input Context

 Using input contexts:

=

Asynchronous Session Subtyping

Undecidability of Asynchronous
Session Subtyping [BCZ InfoComp17]

We prove undecidability of asynchronous
subtyping by reduction from the
termination problem for queue machines

Queue machines are a formalism similar
to pushdown automata, but with a queue
instead of a stack.

Queue machines are Turing equivalent

Queue Machine

Queue Machine Execution

Control encoding

where:

Queue encoding

We have: subtyping
corresponds to non-termination

 Our encoding yields an immediate correspondance
between subtyping and (non) termination

Output Covariance and Input
Contravariance are not needed

 Undecidability of Asynchronous Subtyping can
also be shown without resorting to
 Output Covariance

 possibility, in T  S, for T to have a subset of outputs

 Input Contravariance
 possibility, in T  S, for T to have a superset of inputs

Some insight in the T  S
decidability problem

Procedure just enacting the simulation
game (S simulates moves of T) may not
terminate in case T  S holds

Even adding a check that a pair T’  S’
has been already met [MYH ESOP 09]
is not enough

Decidability of k-bounded
Asynchronous Subtyping
 If we establish a bound k for the capability of

anticipating outputs, we get termination

Decidability of Subtyping for
Single-Out and Single-In Types
 Algorithm that terminates if types are restricted

to be single-out only or single-in only
 Single-out session types are types where output

selections are always singleton
 common in web-services where a server accepts alternative

clients requests but then it reacts deterministically

 Single-in session types are types where input
branches are always singleton
 common in web-services where client code internally choses

outputs and the corresponding inputs are always singletons

 Our algorithm is thus usable in typing systems for
client and server code.

[BCZ TCS18]

Orphan-message-free Subtyping

Effect of Additional Requirement

 It does not hold:

That is, types must be related without
"orphan" messages
 messages sent by a communicating partner

that remain forever in the queue

Orphan-message-free Subtyping

Our alternative equivalent formulation :

Dual type and Dual closeness

 Dual closeness:

Conclusion: Impact of undecidability
(not only session types)

 Consequences of our results:
 Orphan-message-free asynchronous Session

subtyping is also undecidable
 Asynchronous Session subtyping for standard session

types (with communication with carried types
besides branching/selection) is undecidable

 Asynchronous Multiparty Session subtyping is
undecidable

 Refinement over Communicating
Automata/Behavioural Contracts is undecidable
[BZ SOSYM21]

The Hunt for Decidable Variants
Continues…
 Investigation of other forms of restriction that

allow us to obtain decidability, while retaining:
 general branching for both inputs and outputs
 queue unboundedness

 Sound algorithmic approximations based on
characterizing looping accumulation patterns,
e.g. [BCLYZ LMCS21] and [BLZ FOSSACS21] for
fair asynchronous subtyping

 Decidability for specific forms of asynchronous
communication used in practice?

