
Luís Caires

Shared state Session-based programs
that can prove themselves

Open Problems in Concurrency Theory Bertinoro, June 2023

Thanks F Pfenning, B Toninho, P Rocha, J A Perez

Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation.

• Programs are proofs in a logic, according to a Curry-Howard correspondence

• program as a typed semantically well-behaved object (a function or a process)

• proof simplification as computation ➡

• preservation, progress, confluence

• computation as cut-elimination ➡

• logical relations semantics, termination

• equational reasoning about observational equivalence

Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation.

• Programs are proofs in a logic, according to a Curry-Howard correspondence

• modular extensions (logically inspired connectives “automatically” socialize)

• polymorphism (generics)

• dependent types (assertions, certificates, …)

• …

• shared state concurrency and non-determinism (inspired in DILL [Erhard])

Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation.

• Programs are proofs in a logic, according to a Curry-Howard correspondence

• connecting session types to the trunk "classical" of computation and PL theory

• typed λ calculus: sequential ho computation with pure values

• typed session calculus: concurrent ho computation with linear resources

• former subsumes latter, via exponentials and sharing constructs

• typed process-based infrastructure for safe concurrent programming

Going back

Hilbert
Consistency

Program

“decidable”
Proof Procedures

(programs) Church-Turing
Thesis

Constructive Logics
(Brouwer-Heyting)

Computability Theory
Kleene-Church-Turing

Functional
Interpretations

(Godel - Kreisel - Kleene)

Curry-Howard
(proofs=λ-programs)

PL Semantics
(Scott - Plotkin - Milner)

Full Abstraction

Linear Logic
(Girard)

System F
(Girard)

Game Semantics
(Abramsky)

Process
Interpretations

(Abramsky-Belin-Scott)

Caires-Pfenning
(linear proofs

= session processes)

λ-calculus
(Church)

Turing Machine

Sequential HO
Computation
(Berry - Kahn)

Session Types
(Honda-Vasconcelos -

Yoshida)

Coherence
Spaces
(Girard)

Process Algebras
(Hoare-Milner-

Bergstra)

Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation.

• Programs are proofs in a logic, according to a Curry-Howard correspondence

• connecting session types to the trunk "classical" of computation and PL theory

• typed λ calculus: sequential ho computation with pure values

• typed session calculus: concurrent ho computation with linear resources

• former subsumes latter, via exponentials and sharing constructs

• typed process-based infrastructure for safe concurrent programming

A Session Programming Language from Linear Logic

Process expressions (basic)

Logical
Type

PL
type

PL
construct

Process expressions (basic)

Logical
Type

PL
type

PL
construct

Process expressions (basic)

Logical
Type

PL
type

PL
construct

Process expressions (basic)

Logical
Type

PL
type

PL
construct

Process expressions (replication, affinity, state)

Process expressions (replication, affinity, state)

Process expressions (replication, affinity, state)

Process expressions (replication, affinity, state)

Standard affinity monad

Process expressions (replication, affinity, state)

Process expressions (replication, affinity, state)

Inspired by Differential LL

Process expressions (recursion, corecursion)

CLogical Composition Forms

… ……

…

Linear Cut

…

… …

Mix

Contraction Co-Contraction

CLogical Composition Forms

… ……

…

Linear Cut

…

… …

Mix

Contraction Co-Contraction

par { P || Q }

CLogical Composition Forms

… ……

…

Linear Cut

…

… …

Mix

Contraction Co-Contraction

cut { P |x:A| Q }

CLogical Composition Forms

… ……

…

Linear Cut

…

… …

Mix

Contraction Co-Contraction
?x; { Q || R }

CLogical Composition Forms

… ……

…

Linear Cut

…

… …

Mix

Contraction Co-Contraction
?x; { Q |x:A| R }

CLogical Composition Forms

… ……

…

Linear Cut

…

… …

Mix

Contraction Co-Contraction
share x { P || Q }

CLogical Composition Forms

… ……

…

Linear Cut

…

… …

Mix

Contraction Co-Contraction

par { P || Q }
 cut { P |x:A| Q }

share x { P || Q }
?x; { Q |x:A| R }

• Computational Interpretation of Linear Logic: congruence , reduction

• Type Preservation:

• Deadlock-Freedom:

• Confluence (with sums):

• Normalisation:

• Strong Normalisation: If then is strongly normalising.

≡ → .

If P ⊢ Δ; Γ and P → Q, then Q ⊢ Δ; Γ .

Let P ⊢ ∅; ∅ be a live process. Then, P reduces.

If R * P * Q, then exists S s.t. R ≡ * S * ≡ Q .

If P ⊢ Δ; Γ, then exists a normal form Q s.t. P ≈ Q .

A Session Programming Language from Linear Logic

CLASS

• A session-typed language with shared state.

• The linear logical (lightweight) typing ensures:

1. fidelity (resources are used according to safe protocols)

2. deadlock absence (in the present of state sharing and locking)

3. termination (all programs terminate)

4. no null deferences

5. no memory leaks

• Algorithmic type checking, (some) type and process reconstruction, basic data types

Examples
• Basic session based programming

• Higher-order polymorphic functional programmimg

• Shared state “hello world”

• Sharing linear behaviour

• Thread safe data structures (buffered channel with shared linked list)

• Dining Philosophers

• Barrier Abstraction

• Hoare monitors with conditions

CLASS Source code in the distribution
include "examples/pure/arithmetic-server.clls";;

include "examples/pure/recursion-for-free.clls";;

include "examples/state/toy.clls";;

include "examples/state/toggle.clls";;

include "examples/state/toggle-shared.nt.clls";;

include "examples/state/dining-philosophers.clls";;

include "examples/state/buffered-channel/tests.clls";;

include "examples/state/barrier.clls";;

include "examples/state/hoare-monitor2.clls";;

30

Buffered Channel

sharing

c2 a2 c1 a1 c0
c3 a3

h t

linked list

head and tail pointers to message query
type rec List(A) {

 state Node(A)

}

and Node(A) {

 choice of {

 |#Null: close

 |#Next: send A; send List(A);

 close

 }

};;

Dining Philosophers

P0

P1

P2

P3

f1

f2f3

f0

Dijkstra’s Solution: f0 < f1 < f2 < f3

encode resource
acquisition order using
linked data structures

f1f0

P0

f2 f3

P1 P2

P3

eat with consecutive forks

symmetry
breaker:
eats with

 and f0 f3

symmetry
breaker

31

Barrier

type Wait {
 affine wait
};;

type Repr{
 send !lint;
 affine List(Wait)
};;

type SState {
 state Repr
};;

Wait

Wait

!lint List(Wait)

Representation Types

Hoare-style Monitor

type rec Rep {
send !lint; WaitQ

} and WaitQ {
affine
choice of {
| #Next: NodeQ
| #Null: close
}

} and ContDecW {
affine recv ~affine Rep; send affine Rep;

recv ~DecI; wait
} and NodeQ {

state send ContDecW; WaitQ
};;

type corec IncI {
offer of {
| #Inc: IncI
| #End: wait
}

} and corec DecI {
coaffine
offer of {
| #Dec: coaffine recv ContDec; wait
| #End: wait
}

} and ContDec {
coaffine send DecI; close

} and CounterI {
 recv DecI; IncI
};

!lint WaitQ

ContDecW

ContDecWInterface Types Representation Types

CLASS Source code in the distribution
include "examples/pure/arithmetic-server.clls";;

include "examples/pure/recursion-for-free.clls";;

include "examples/state/toy.clls";;

include "examples/state/toggle.clls";;

include "examples/state/toggle-shared.nt.clls";;

include "examples/state/dining-philosophers.clls";;

include "examples/state/buffered-channel/tests.clls";;

include "examples/state/barrier.clls";;

include "examples/state/hoare-monitor2.clls";;

Some Remarks
• the session calculus as a fundamental language for concurrent computation with

linear resources and shared state.

• programs are proofs (in linear logic) that themselves satisfy thread safety,
memory safety, deadlock freedom, and termination (via CH and logical relations)

• session calculus considered adequate for mainstream concurrent programming

• we are developing CLASS, a PoC high-level language based on the model,
implementation available in open source and bundled with lots of examples

• many challenges ahead THANKS!

