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Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation. 


• Programs are proofs in a logic, according to a Curry-Howard correspondence


• program as a typed semantically well-behaved object (a function or a process)


• proof simplification as computation ➡ 


• preservation, progress, confluence


• computation as cut-elimination ➡


• logical relations semantics, termination


• equational reasoning about observational equivalence



Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation. 


• Programs are proofs in a logic, according to a Curry-Howard correspondence


• modular extensions (logically inspired connectives “automatically” socialize) 


• polymorphism (generics)


• dependent types (assertions, certificates, …)


• …


• shared state concurrency and non-determinism (inspired in DILL [Erhard])



Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation. 


• Programs are proofs in a logic, according to a Curry-Howard correspondence


• connecting session types to the trunk "classical" of computation and PL theory


• typed λ calculus: sequential ho computation with pure values


• typed session calculus: concurrent ho computation with linear resources


• former subsumes latter, via exponentials and sharing constructs


• typed process-based infrastructure for safe concurrent programming
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Propositions-as-Types for Concurrency
• Bridge between Logic, Programming Languages, and Computation. 


• Programs are proofs in a logic, according to a Curry-Howard correspondence


• connecting session types to the trunk "classical" of computation and PL theory


• typed λ calculus: sequential ho computation with pure values


• typed session calculus: concurrent ho computation with linear resources


• former subsumes latter, via exponentials and sharing constructs


• typed process-based infrastructure for safe concurrent programming



A Session Programming Language from Linear Logic
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Process expressions (replication, affinity, state)

Standard affinity monad 



Process expressions (replication, affinity, state)



Process expressions (replication, affinity, state)

Inspired by Differential LL 



Process expressions (recursion, corecursion)
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CLogical Composition Forms
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Contraction Co-Contraction

par { P  ||  Q }
 cut { P  |x:A|  Q }
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• Computational Interpretation of Linear Logic:  congruence , reduction  


• Type Preservation: 


• Deadlock-Freedom: 


• Confluence (with sums): 


• Normalisation: 


• Strong Normalisation: If                    then     is strongly normalising.

≡ → .

If P ⊢ Δ; Γ and P → Q, then Q ⊢ Δ; Γ .

Let P ⊢ ∅; ∅ be a live process. Then, P reduces.

If R * P * Q, then exists S s.t. R ≡ * S * ≡ Q .

If P ⊢ Δ; Γ, then exists a normal form Q s.t. P ≈ Q .

A Session Programming Language from Linear Logic



CLASS

• A session-typed language with shared state.


• The linear logical (lightweight) typing ensures:


1. fidelity (resources are used according to safe protocols)


2. deadlock absence (in the present of state sharing and locking )


3. termination (all programs terminate)


4. no null deferences


5. no memory leaks


• Algorithmic type checking, (some) type and process reconstruction, basic data types



Examples
• Basic session based programming


• Higher-order polymorphic functional programmimg  


• Shared state “hello world”


• Sharing linear behaviour  


• Thread safe data structures (buffered channel with shared linked list)


• Dining Philosophers


• Barrier Abstraction


• Hoare monitors with conditions 



CLASS Source code in the distribution
include "examples/pure/arithmetic-server.clls";;


include "examples/pure/recursion-for-free.clls";;


include "examples/state/toy.clls";;


include "examples/state/toggle.clls";;


include "examples/state/toggle-shared.nt.clls";;


include "examples/state/dining-philosophers.clls";;


include "examples/state/buffered-channel/tests.clls";;


include "examples/state/barrier.clls";;


include "examples/state/hoare-monitor2.clls";;
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Buffered Channel 

sharing

c2 a2 c1 a1 c0
c3 a3

h t

linked list

head and tail pointers to message query
type rec List(A) { 

    state Node(A)

} 

and Node(A) {


 choice of {

     |#Null: close


         |#Next: send A; send List(A); 

 close 


      }

};;



Dining Philosophers 

P0

P1

P2

P3

f1

f2f3

f0

Dijkstra’s Solution:  f0 < f1 < f2 < f3

encode resource 
acquisition order using 
linked data structures 

f1f0

P0

f2 f3

P1 P2
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eat with consecutive forks 

symmetry 
breaker: 
eats with 

 and f0 f3

symmetry 
breaker
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Barrier 

type Wait { 
     affine wait 
};; 

type Repr{ 
    send !lint; 
    affine List(Wait) 
};; 

type SState { 
     state Repr 
};;

Wait

Wait

!lint List(Wait)

Representation Types



Hoare-style Monitor 

type rec Rep { 
send !lint; WaitQ 

} and WaitQ { 
affine 
choice of { 
| #Next: NodeQ 
| #Null: close 
} 

} and ContDecW { 
affine recv ~affine Rep; send affine Rep; 

recv ~DecI; wait 
} and NodeQ { 

state send ContDecW; WaitQ  
};;

type corec IncI { 
offer of { 
| #Inc: IncI 
| #End: wait 
} 

} and corec DecI { 
coaffine 
offer of { 
| #Dec: coaffine recv ContDec; wait 
| #End: wait 
} 

} and ContDec { 
coaffine send DecI; close 

} and CounterI { 
   recv DecI; IncI 
};

!lint WaitQ

ContDecW

ContDecWInterface Types Representation Types



CLASS Source code in the distribution
include "examples/pure/arithmetic-server.clls";;


include "examples/pure/recursion-for-free.clls";;


include "examples/state/toy.clls";;


include "examples/state/toggle.clls";;


include "examples/state/toggle-shared.nt.clls";;


include "examples/state/dining-philosophers.clls";;


include "examples/state/buffered-channel/tests.clls";;


include "examples/state/barrier.clls";;


include "examples/state/hoare-monitor2.clls";;



Some Remarks
• the session calculus as a fundamental language for concurrent computation with 

linear resources and shared state.


• programs are proofs (in linear logic) that themselves satisfy thread safety, 
memory safety, deadlock freedom, and termination (via CH and logical relations)


• session calculus considered adequate for mainstream concurrent programming


• we are developing CLASS, a PoC high-level language based on the model, 
implementation available in open source and bundled with lots of examples


• many challenges ahead                                                                     THANKS!


