
Uncertainties,

adaptabiLiTy, and

veRificatiON

Uncertainties,

adaptabiLiTy, and

veRificatiON

aka Project

Valentina Castiglioni,

Michele Loreti, and

Simone Tini

OPCT, Bertinoro, 26 June 2023

Uncertainties,

adaptabiLiTy, and

veRificatiON

Uncertainties,

adaptabiLiTy, and

veRificatiON

aka Project

Valentina Castiglioni,

Michele Loreti, and

Simone Tini

OPCT, Bertinoro, 26 June 2023

The name of the game

1 / 10

System: agent + environment

• must adapt to changes

in the environment

• subject to

▶ randomisation

▶ measurement errors

▶ attacks

• partially modified by the

agent

• unpredictable behaviour

▶ physical phenomena

▶ heterogeneous devices

▶ failures, conflicts, . . .

Problem: uncertainty

The name of the game

1 / 10

System: agent + environment

• must adapt to changes

in the environment

• subject to

▶ randomisation

▶ measurement errors

▶ attacks

• partially modified by the

agent

• unpredictable behaviour

▶ physical phenomena

▶ heterogeneous devices

▶ failures, conflicts, . . .

Problem: uncertainty

The name of the game

1 / 10

System: agent + environment

• must adapt to changes

in the environment

• subject to

▶ randomisation

▶ measurement errors

▶ attacks

• partially modified by the

agent

• unpredictable behaviour

▶ physical phenomena

▶ heterogeneous devices

▶ failures, conflicts, . . .

Problem: uncertainty

The name of the game

1 / 10

System: agent + environment

• must adapt to changes

in the environment

• subject to

▶ randomisation

▶ measurement errors

▶ attacks

• partially modified by the

agent

• unpredictable behaviour

▶ physical phenomena

▶ heterogeneous devices

▶ failures, conflicts, . . .

Problem: uncertainty

The name of the game

1 / 10

System: agent + environment

• must adapt to changes

in the environment

• subject to

▶ randomisation

▶ measurement errors

▶ attacks

• partially modified by the

agent

• unpredictable behaviour

▶ physical phenomena

▶ heterogeneous devices

▶ failures, conflicts, . . .

Problem: uncertainty

The name of the game

1 / 10

System: agent + environment

• must adapt to changes

in the environment

• subject to

▶ randomisation

▶ measurement errors

▶ attacks

• partially modified by the

agent

• unpredictable behaviour

▶ physical phenomena

▶ heterogeneous devices

▶ failures, conflicts, . . .

Problem: uncertainty

The name of the game

1 / 10

System: agent + environment

• must adapt to changes

in the environment

• subject to

▶ randomisation

▶ measurement errors

▶ attacks

• partially modified by the

agent

• unpredictable behaviour

▶ physical phenomena

▶ heterogeneous devices

▶ failures, conflicts, . . .

Problem: uncertainty

The main challenge: robustness

2 / 10

An agent is robust against uncertainties if it can fulfill

its tasks in spite of their presence

Our aim is to provide the tools to
model and verify the robustness of
cyber-physical systems against
uncertainties

The main challenge: robustness

2 / 10

An agent is robust against uncertainties if it can fulfill

its tasks in spite of their presence

Our aim is to provide the tools to
model and verify the robustness of
cyber-physical systems against
uncertainties

The main challenge: robustness

2 / 10

An agent is robust against uncertainties if it can fulfill

its tasks in spite of their presence

Our aim is to provide the tools to
model and verify the robustness of
cyber-physical systems against
uncertainties

The model

(intuition)

• We model agent and environment separately.

• We model their interaction in terms of the changes they induce

on a set of application-relevant data.

• Setting: discrete time, continuous space

▶ System behaviour: how data evolve in time.

3 / 10

Data space: D closed subset of Rn

Data state: d ∈ D identifying the current configuration of data

Agent: specified by processes in the generative probabilistic model

P ::= (e → x).P′ | if [e] P1 else P2 |
∑

i∈I ri · Pi | P1 ∥ P2 | A
e ::= value | x | opk(e1, . . . , ek)

Environment: function E : D → Π(D) that maps a data state into a

probability measure over data states

Configuration: a particular state of the system c = ⟨P, d⟩E

The model

(intuition)

• We model agent and environment separately.

• We model their interaction in terms of the changes they induce

on a set of application-relevant data.

• Setting: discrete time, continuous space

▶ System behaviour: how data evolve in time.

3 / 10

Data space: D closed subset of Rn

Data state: d ∈ D identifying the current configuration of data

Agent: specified by processes in the generative probabilistic model

P ::= (e → x).P′ | if [e] P1 else P2 |
∑

i∈I ri · Pi | P1 ∥ P2 | A
e ::= value | x | opk(e1, . . . , ek)

Environment: function E : D → Π(D) that maps a data state into a

probability measure over data states

Configuration: a particular state of the system c = ⟨P, d⟩E

The model (intuition)

• We model agent and environment separately.

• We model their interaction in terms of the changes they induce

on a set of application-relevant data.

• Setting: discrete time, continuous space

▶ System behaviour: how data evolve in time.

3 / 10

Data space: D closed subset of Rn

Data state: d ∈ D identifying the current configuration of data

Agent: specified by processes in the generative probabilistic model

P ::= (e → x).P′ | if [e] P1 else P2 |
∑

i∈I ri · Pi | P1 ∥ P2 | A
e ::= value | x | opk(e1, . . . , ek)

Environment: function E : D → Π(D) that maps a data state into a

probability measure over data states

Configuration: a particular state of the system c = ⟨P, d⟩E

The model (intuition)

• We model agent and environment separately.

• We model their interaction in terms of the changes they induce

on a set of application-relevant data.

• Setting: discrete time, continuous space

▶ System behaviour: how data evolve in time.

3 / 10

Data space: D closed subset of Rn

Data state: d ∈ D identifying the current configuration of data

Agent: specified by processes in the generative probabilistic model

P ::= (e → x).P′ | if [e] P1 else P2 |
∑

i∈I ri · Pi | P1 ∥ P2 | A
e ::= value | x | opk(e1, . . . , ek)

Environment: function E : D → Π(D) that maps a data state into a

probability measure over data states

Configuration: a particular state of the system c = ⟨P, d⟩E

The model (intuition)

• We model agent and environment separately.

• We model their interaction in terms of the changes they induce

on a set of application-relevant data.

• Setting: discrete time, continuous space

▶ System behaviour: how data evolve in time.

3 / 10

Data space: D closed subset of Rn

Data state: d ∈ D identifying the current configuration of data

Agent: specified by processes in the generative probabilistic model

P ::= (e → x).P′ | if [e] P1 else P2 |
∑

i∈I ri · Pi | P1 ∥ P2 | A
e ::= value | x | opk(e1, . . . , ek)

Environment: function E : D → Π(D) that maps a data state into a

probability measure over data states

Configuration: a particular state of the system c = ⟨P, d⟩E

The model (intuition)

• We model agent and environment separately.

• We model their interaction in terms of the changes they induce

on a set of application-relevant data.

• Setting: discrete time, continuous space

▶ System behaviour: how data evolve in time.

3 / 10

Data space: D closed subset of Rn

Data state: d ∈ D identifying the current configuration of data

Agent: specified by processes in the generative probabilistic model

P ::= (e → x).P′ | if [e] P1 else P2 |
∑

i∈I ri · Pi | P1 ∥ P2 | A
e ::= value | x | opk(e1, . . . , ek)

Environment: function E : D → Π(D) that maps a data state into a

probability measure over data states

Configuration: a particular state of the system c = ⟨P, d⟩E

The model (intuition)

• We model agent and environment separately.

• We model their interaction in terms of the changes they induce

on a set of application-relevant data.

• Setting: discrete time, continuous space

▶ System behaviour: how data evolve in time.

3 / 10

Data space: D closed subset of Rn

Data state: d ∈ D identifying the current configuration of data

Agent: specified by processes in the generative probabilistic model

P ::= (e → x).P′ | if [e] P1 else P2 |
∑

i∈I ri · Pi | P1 ∥ P2 | A
e ::= value | x | opk(e1, . . . , ek)

Environment: function E : D → Π(D) that maps a data state into a

probability measure over data states

Configuration: a particular state of the system c = ⟨P, d⟩E

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on ddiscrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on d

discrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on ddiscrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on d

discrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on ddiscrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on ddiscrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on ddiscrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

System behaviour
Agent semantics: Pstep(P, d) =

∑
i∈I

qi · δ(Pi, di)

One-step configuration semantics:

Cstep(⟨P, d⟩E)(C) =
∑
(P′,d′)

Pstep(P, d)(P′, d′) · ⟨δ(P′), E(d′)⟩E(C)

Multi-step configuration semantics:

Mstepc,i+1(C) =
∫
C

Cstep(b)(C) d(Mstepc,i(b))

System behaviour: the Evolution Sequence

Sc,τ (D) = Mstepc,τ (⟨P ,D⟩E)

4 / 10

probability weights

Dirac’s delta

process at next step

effects on ddiscrete distribution
induced by P

continuous distribution
induced by E

Markov kernel: Cstep(c)(C)

Markov process generated by Cstep(c)(C): Mstepc,τ (C)

sequence of
probability
measures over
data states

Formalisation of robustness

Robustness: being able to function correctly even in the presence of

uncertainties

Expressed by measuring the capability of an agent to

tolerate perturbations in the environmental conditions

and still fulfill its tasks

▶ We need to measure the differences between the behaviour of the

system and its behaviour under the effect of perturbations, possibly at

different moments in time

5 / 10

Robustness is a temporal
property of distances between

system behaviours

Formalisation of robustness

Robustness: being able to function correctly even in the presence of

uncertainties

Expressed by measuring the capability of an agent to

tolerate perturbations in the environmental conditions

and still fulfill its tasks

▶ We need to measure the differences between the behaviour of the

system and its behaviour under the effect of perturbations, possibly at

different moments in time

5 / 10

Robustness is a temporal
property of distances between

system behaviours

Formalisation of robustness

Robustness: being able to function correctly even in the presence of

uncertainties

Expressed by measuring the capability of an agent to

tolerate perturbations in the environmental conditions

and still fulfill its tasks

▶ We need to measure the differences between the behaviour of the

system and its behaviour under the effect of perturbations, possibly at

different moments in time

5 / 10

Robustness is a temporal
property of distances between

system behaviours

Formalisation of robustness

Robustness: being able to function correctly even in the presence of

uncertainties

Expressed by measuring the capability of an agent to

tolerate perturbations in the environmental conditions

and still fulfill its tasks

▶ We need to measure the differences between the behaviour of the

system and its behaviour under the effect of perturbations, possibly at

different moments in time

5 / 10

Robustness is a temporal
property of distances between

system behaviours

Formalisation of robustness

Robustness: being able to function correctly even in the presence of

uncertainties

Expressed by measuring the capability of an agent to

tolerate perturbations in the environmental conditions

and still fulfill its tasks

▶ We need to measure the differences between the behaviour of the

system and its behaviour under the effect of perturbations, possibly at

different moments in time

5 / 10

Robustness is a temporal
property of distances between

system behaviours

Robustness Temporal Logic

RobTL: a temporal logic for the specification of requirements on the

evolution of distances between systems behaviours

It allows us to:

• Specify different distances:

▶ capturing different tasks of the system

▶ having different formalisations

RobTL expressions

• Compare distances and verify temporal requirements on them

RobTL formulae

6 / 10

Robustness Temporal Logic

RobTL: a temporal logic for the specification of requirements on the

evolution of distances between systems behaviours

It allows us to:

• Specify different distances:

▶ capturing different tasks of the system

▶ having different formalisations

RobTL expressions

• Compare distances and verify temporal requirements on them

RobTL formulae

6 / 10

Robustness Temporal Logic

RobTL: a temporal logic for the specification of requirements on the

evolution of distances between systems behaviours

It allows us to:

• Specify different distances:

▶ capturing different tasks of the system

▶ having different formalisations

RobTL expressions

• Compare distances and verify temporal requirements on them

RobTL formulae

6 / 10

Robustness Temporal Logic

RobTL: a temporal logic for the specification of requirements on the

evolution of distances between systems behaviours

It allows us to:

• Specify different distances:

▶ capturing different tasks of the system

▶ having different formalisations

RobTL expressions

• Compare distances and verify temporal requirements on them

RobTL formulae

6 / 10

Robustness Temporal Logic

RobTL: a temporal logic for the specification of requirements on the

evolution of distances between systems behaviours

It allows us to:

• Specify different distances:

▶ capturing different tasks of the system

▶ having different formalisations

RobTL expressions

• Compare distances and verify temporal requirements on them

RobTL formulae

6 / 10

RobTL expressions

7 / 10

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk·expk |

σ(exp, ▷◁ ζ)

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

atomic expressions
Evaluate the distance between

two distributions at a given time

temporal expressions
Evaluate distance over time

(idea ∃ = min, ∀ = max)

mathematical expressions
No surprises

(

∑
k wk = 1)

conditional expression
if exp ▷◁ ζ , then 0

else 1

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

Penalty function ρ : D → [0, 1] to quantify flaws in behaviour

Distance over data states mρ : D ×D → [0, 1]:

mρ(d1, d2) = max{ρ(d2)− ρ(d1), 0}

hemimetric expressing how much d2 is worse than d1 (wrt ρ)

Wasserstein lifting to distributions W(mρ) : Π(D)× Π(D) → [0, 1]

W(mρ)(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mρ(d1, d2) dw(d1, d2)

the inf of the expected values of the distance over the couplings

RobTL expressions

7 / 10

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk·expk |

σ(exp, ▷◁ ζ)

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

atomic expressions
Evaluate the distance between

two distributions at a given time

temporal expressions
Evaluate distance over time

(idea ∃ = min, ∀ = max)

mathematical expressions
No surprises

(

∑
k wk = 1)

conditional expression
if exp ▷◁ ζ , then 0

else 1

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

Penalty function ρ : D → [0, 1] to quantify flaws in behaviour

Distance over data states mρ : D ×D → [0, 1]:

mρ(d1, d2) = max{ρ(d2)− ρ(d1), 0}

hemimetric expressing how much d2 is worse than d1 (wrt ρ)

Wasserstein lifting to distributions W(mρ) : Π(D)× Π(D) → [0, 1]

W(mρ)(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mρ(d1, d2) dw(d1, d2)

the inf of the expected values of the distance over the couplings

RobTL expressions

7 / 10

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk·expk |

σ(exp, ▷◁ ζ)

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

atomic expressions
Evaluate the distance between

two distributions at a given time

temporal expressions
Evaluate distance over time

(idea ∃ = min, ∀ = max)

mathematical expressions
No surprises

(

∑
k wk = 1)

conditional expression
if exp ▷◁ ζ , then 0

else 1

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

Penalty function ρ : D → [0, 1] to quantify flaws in behaviour

Distance over data states mρ : D ×D → [0, 1]:

mρ(d1, d2) = max{ρ(d2)− ρ(d1), 0}

hemimetric expressing how much d2 is worse than d1 (wrt ρ)

Wasserstein lifting to distributions W(mρ) : Π(D)× Π(D) → [0, 1]

W(mρ)(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mρ(d1, d2) dw(d1, d2)

the inf of the expected values of the distance over the couplings

RobTL expressions

7 / 10

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk·expk |

σ(exp, ▷◁ ζ)

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

atomic expressions
Evaluate the distance between

two distributions at a given time

temporal expressions
Evaluate distance over time

(idea ∃ = min, ∀ = max)

mathematical expressions
No surprises

(

∑
k wk = 1)

conditional expression
if exp ▷◁ ζ , then 0

else 1

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

Penalty function ρ : D → [0, 1] to quantify flaws in behaviour

Distance over data states mρ : D ×D → [0, 1]:

mρ(d1, d2) = max{ρ(d2)− ρ(d1), 0}

hemimetric expressing how much d2 is worse than d1 (wrt ρ)

Wasserstein lifting to distributions W(mρ) : Π(D)× Π(D) → [0, 1]

W(mρ)(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mρ(d1, d2) dw(d1, d2)

the inf of the expected values of the distance over the couplings

RobTL expressions

7 / 10

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk·expk |

σ(exp, ▷◁ ζ)

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

atomic expressions
Evaluate the distance between

two distributions at a given time

temporal expressions
Evaluate distance over time

(idea ∃ = min, ∀ = max)

mathematical expressions
No surprises

(

∑
k wk = 1)

conditional expression
if exp ▷◁ ζ , then 0

else 1

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

Penalty function ρ : D → [0, 1] to quantify flaws in behaviour

Distance over data states mρ : D ×D → [0, 1]:

mρ(d1, d2) = max{ρ(d2)− ρ(d1), 0}

hemimetric expressing how much d2 is worse than d1 (wrt ρ)

Wasserstein lifting to distributions W(mρ) : Π(D)× Π(D) → [0, 1]

W(mρ)(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mρ(d1, d2) dw(d1, d2)

the inf of the expected values of the distance over the couplings

RobTL expressions

7 / 10

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk·expk |

σ(exp, ▷◁ ζ)

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

atomic expressions
Evaluate the distance between

two distributions at a given time

temporal expressions
Evaluate distance over time

(idea ∃ = min, ∀ = max)

mathematical expressions
No surprises

(

∑
k wk = 1)

conditional expression
if exp ▷◁ ζ , then 0

else 1

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

Penalty function ρ : D → [0, 1] to quantify flaws in behaviour

Distance over data states mρ : D ×D → [0, 1]:

mρ(d1, d2) = max{ρ(d2)− ρ(d1), 0}

hemimetric expressing how much d2 is worse than d1 (wrt ρ)

Wasserstein lifting to distributions W(mρ) : Π(D)× Π(D) → [0, 1]

W(mρ)(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mρ(d1, d2) dw(d1, d2)

the inf of the expected values of the distance over the couplings

RobTL expressions

7 / 10

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk·expk |

σ(exp, ▷◁ ζ)

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

atomic expressions
Evaluate the distance between

two distributions at a given time

temporal expressions
Evaluate distance over time

(idea ∃ = min, ∀ = max)

mathematical expressions
No surprises

(

∑
k wk = 1)

conditional expression
if exp ▷◁ ζ , then 0

else 1

exp ::= <ρ | >ρ |

FI exp | GI exp | exp UI exp |

min (exp, exp) | max (exp, exp) |
∑
k∈K

wk · expk |

σ(exp, ▷◁ ζ)

Penalty function ρ : D → [0, 1] to quantify flaws in behaviour

Distance over data states mρ : D ×D → [0, 1]:

mρ(d1, d2) = max{ρ(d2)− ρ(d1), 0}

hemimetric expressing how much d2 is worse than d1 (wrt ρ)

Wasserstein lifting to distributions W(mρ) : Π(D)× Π(D) → [0, 1]

W(mρ)(µ, ν) = inf
w∈W(µ,ν)

∫
D×D

mρ(d1, d2) dw(d1, d2)

the inf of the expected values of the distance over the couplings

RobTL formulae

8 / 10

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

Evaluated over an evolution sequence S and a time instant τ0

Atomic formulae

• exp: RobTL expression defining the distance we want to analyse

• p: perturbation function applied to S at time τ0

• the threshold η ∈ [0, 1] (▷◁∈ {<,≤,≥, >})

p ::= f@τ | p ; p | pn

RobTL formulae

8 / 10

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

Evaluated over an evolution sequence S and a time instant τ0

Atomic formulae

• exp: RobTL expression defining the distance we want to analyse

• p: perturbation function applied to S at time τ0

• the threshold η ∈ [0, 1] (▷◁∈ {<,≤,≥, >})

p ::= f@τ | p ; p | pn

RobTL formulae

8 / 10

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

Evaluated over an evolution sequence S and a time instant τ0

Atomic formulae
• exp: RobTL expression defining the distance we want to analyse

• p: perturbation function applied to S at time τ0

• the threshold η ∈ [0, 1] (▷◁∈ {<,≤,≥, >})

p ::= f@τ | p ; p | pn

RobTL formulae

8 / 10

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

Evaluated over an evolution sequence S and a time instant τ0

Atomic formulae
• exp: RobTL expression defining the distance we want to analyse

• p: perturbation function applied to S at time τ0

• the threshold η ∈ [0, 1] (▷◁∈ {<,≤,≥, >})

p ::= f@τ | p ; p | pn

RobTL formulae

8 / 10

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

φ ::= ⊤ | ∆(exp, p) ▷◁ η | ¬φ | φ ∧ φ | φ U I φ

Evaluated over an evolution sequence S and a time instant τ0

Atomic formulae
• exp: RobTL expression defining the distance we want to analyse

• p: perturbation function applied to S at time τ0

• the threshold η ∈ [0, 1] (▷◁∈ {<,≤,≥, >})

p ::= f@τ | p ; p | pn

The tool

: Stark

9 / 10

Software Tool for the Analysis of Robustness in the
unKnown environment

Software Tool for the Analysis of Robustness in the
unKnown environment

Source available at https://github.com/quasylab/jspear

Demo available at http://quasylab.unicam.it/stark/

• Specification language

▶ agents

▶ environment

▶ RobTL expressions

▶ perturbations

▶ RobTL formulae

• Module for the simulation of evolution sequences and their

perturbed versions

• Module for the evaluation of RobTL expressions

(including

the evaluation of confidence intervals)

• Model checker for RobTL formulae

(three-valued semantics)

https://github.com/quasylab/jspear
http://quasylab.unicam.it/stark/

The tool

: Stark

9 / 10

Software Tool for the Analysis of Robustness in the
unKnown environment

Software Tool for the Analysis of Robustness in the
unKnown environment

Source available at https://github.com/quasylab/jspear

Demo available at http://quasylab.unicam.it/stark/

• Specification language

▶ agents

▶ environment

▶ RobTL expressions

▶ perturbations

▶ RobTL formulae

• Module for the simulation of evolution sequences and their

perturbed versions

• Module for the evaluation of RobTL expressions

(including

the evaluation of confidence intervals)

• Model checker for RobTL formulae

(three-valued semantics)

https://github.com/quasylab/jspear
http://quasylab.unicam.it/stark/

The tool: Stark

9 / 10

Software Tool for the Analysis of Robustness in the
unKnown environment

Software Tool for the Analysis of Robustness in the
unKnown environment

Source available at https://github.com/quasylab/jspear

Demo available at http://quasylab.unicam.it/stark/

• Specification language

▶ agents

▶ environment

▶ RobTL expressions

▶ perturbations

▶ RobTL formulae

• Module for the simulation of evolution sequences and their

perturbed versions

• Module for the evaluation of RobTL expressions

(including

the evaluation of confidence intervals)

• Model checker for RobTL formulae

(three-valued semantics)

https://github.com/quasylab/jspear
http://quasylab.unicam.it/stark/

The tool: Stark

9 / 10

Software Tool for the Analysis of Robustness in the
unKnown environment

Software Tool for the Analysis of Robustness in the
unKnown environment

Source available at https://github.com/quasylab/jspear

Demo available at http://quasylab.unicam.it/stark/

• Specification language

▶ agents

▶ environment

▶ RobTL expressions

▶ perturbations

▶ RobTL formulae

• Module for the simulation of evolution sequences and their

perturbed versions

• Module for the evaluation of RobTL expressions (including

the evaluation of confidence intervals)

• Model checker for RobTL formulae (three-valued semantics)

https://github.com/quasylab/jspear
http://quasylab.unicam.it/stark/

Ongoing/future work

• TempOral aNalYsis (TONY) module of STARK
• Application to biological systems and chemical networks

• Application to runtime monitoring

▶ Synthesis of monitors from RobTL formulae

• Application to multi-agents systems

• Predictive monitoring?

• Formal framework for AI?

• Analysis of system performance?

10 / 10

Ongoing/future work

• TempOral aNalYsis (TONY) module of STARK
• Application to biological systems and chemical networks

• Application to runtime monitoring

▶ Synthesis of monitors from RobTL formulae

• Application to multi-agents systems

• Predictive monitoring?

• Formal framework for AI?

• Analysis of system performance?

10 / 10

Ongoing/future work

• TempOral aNalYsis (TONY) module of STARK
• Application to biological systems and chemical networks

• Application to runtime monitoring

▶ Synthesis of monitors from RobTL formulae

• Application to multi-agents systems

• Predictive monitoring?

• Formal framework for AI?

• Analysis of system performance?

10 / 10

Ongoing/future work

• TempOral aNalYsis (TONY) module of STARK
• Application to biological systems and chemical networks

• Application to runtime monitoring

▶ Synthesis of monitors from RobTL formulae

• Application to multi-agents systems

• Predictive monitoring?

• Formal framework for AI?

• Analysis of system performance?

10 / 10

TH
AN
KS

FOR YOUR

TIM
E

QUESTIONS
?

