Measuring Masking Fault-Tolerance in Stochastic Systems

Pablo Castro, Pedro D'Argenio, Luciano Putruele, Ramiro Demasi

Motivation

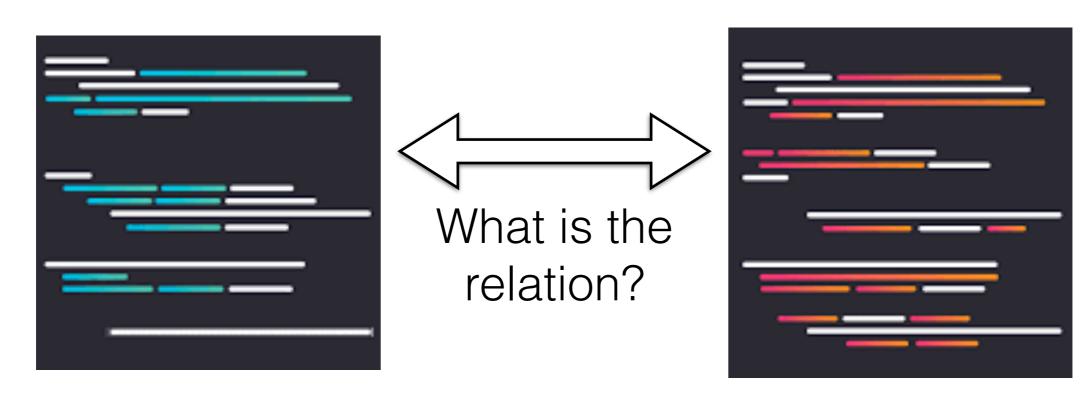
Fault-Tolerance can be defined as the capability of systems to continue operating in a correct way even under the

occurrence of faults Avionics software Mobile phones Satellites Cryptocurrencies

Nominal Models and Fault Model

Nominal Model

Implementation



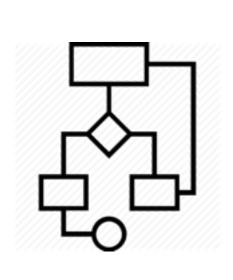
A description of the system
In which faults are not taken into
accounts

Nominal System

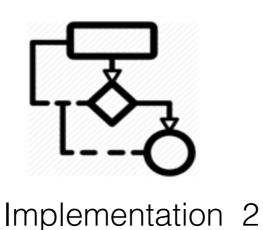
+Faults

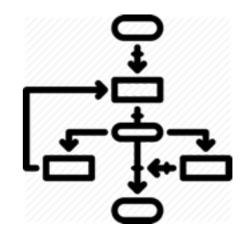
+Fault-tolerant mechanisms

Many Possible Fault-Tolerant Implementations



Implementation 1





Implementation 3

Which implementation provides more fault-tolerance?

Hard to say in practice

Classifying Fault-Tolerance

We can classify fault-tolerance taking into account the kind of properties preserved by the system after the occurrence of faults:

- Liveness properties: Something good eventually happens.
- Safety properties: nothing bad happens.

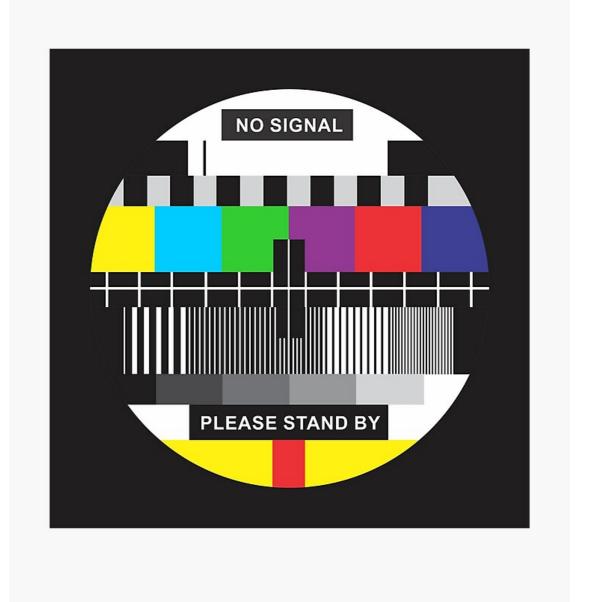
Lineal Temporal
Properties can be
described as a
combination of both

Failsafe Fault-Tolerance

- The system is taken to a safe state after the occurrence of faults.
- Important in systems in which preserving safety properties is more relevant than progress
- Simple example: Any elevator system.

Non-masking Fault-Tolerance

- The system may show an incorrect behavior after a fault, but eventually it recovers the correct behavior.
- Liveness properties are preserved
- Simple example: streaming platforms.



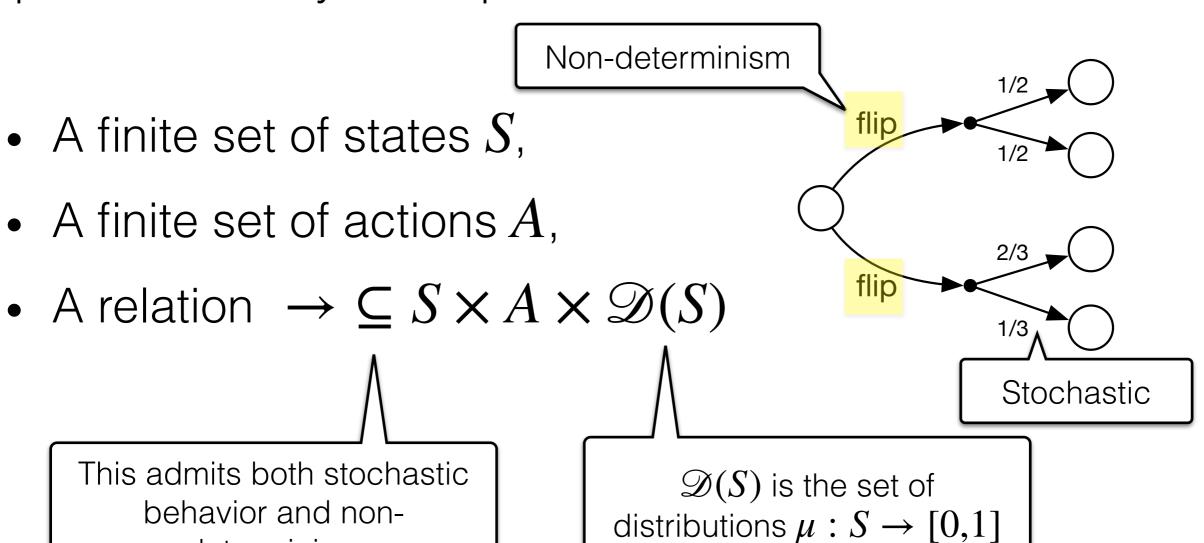
Masking Fault-Tolerance

- The occurrence of faults are not visible for the users.
- Safety+Liveness properties preserved
- Examples of masking faulttolerance are systems that use some kind of redundancy.

We only will focus on this kind of fault-tolerance

Probabilistic Models

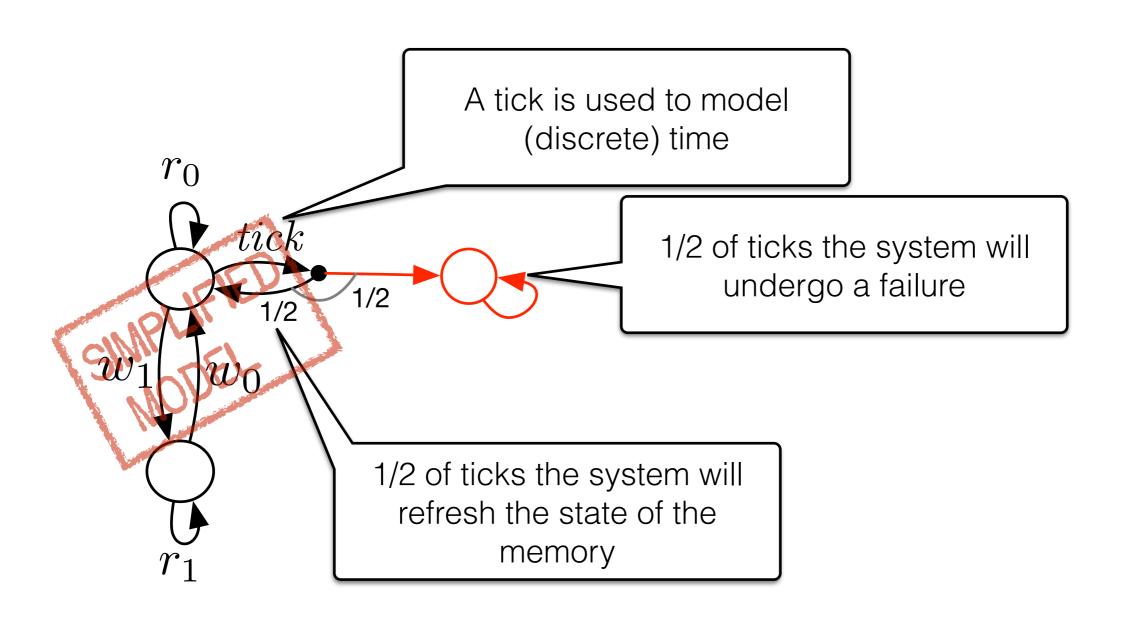
We use Probabilistic Transition Systems (PTSs) to model probabilistic systems/protocols/software.



determinism

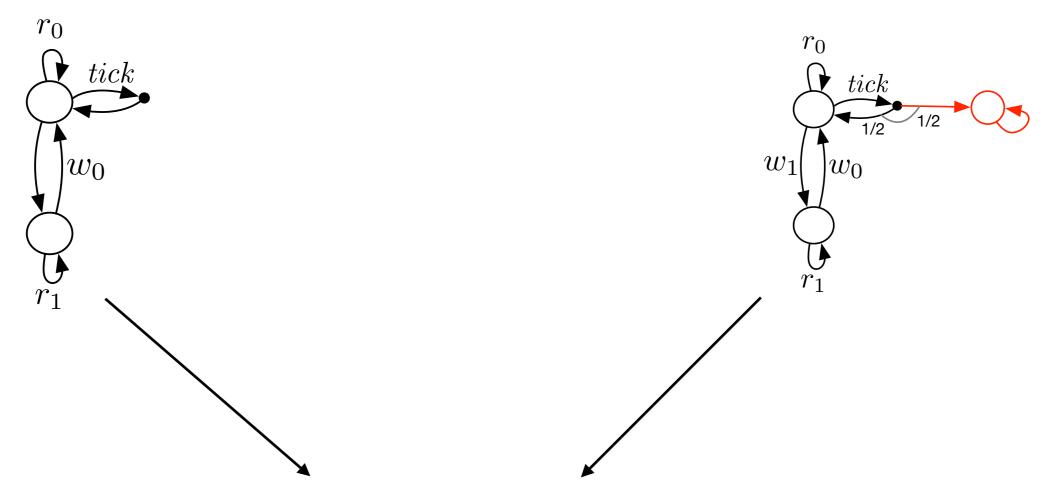
Modeling Faults

We use probabilities to introduce the possibility of the occurrence of faults



Idea

Two models:



We play a game between Verifier and Refuter

Verifier: tries to prove the system is fault -tolerant

Refuter: tries to disprove this

Couplings

To be able of modeling simulation relations we need couplings.

Given
$$\mu: S \to [0,1]$$
 and $\mu': S' \to [0,1]$ $w: S \times S' \to [0,1]$ is a **coupling** if: $w(S,-)=\mu'$ and $w(-,S')=\mu$

Couplings can be defined as the solutions of some linear (in)equalities:

$$\begin{split} &\sum_{s_j \in supp(\mu')} x_{s_k, s_j} = \mu(s_k), \text{ for } s_k \in supp(\mu) \\ &\sum_{s_k \in supp(\mu)} x_{s_k, s_j} = \mu'(s_j), \text{ for } s_j \in supp(\mu') \\ &x_{s_j, s_k} \geq 0, \text{ for } s_k \in supp(\mu) \text{ and } s_j \in supp(\mu') \end{split}$$

A Masking Probabilistic Game

We define a stochastic two-player game:

Two players:

- The Refuter
- The Verifier

These games allow one to capture probabilistic bisimulation relation as well as devise quantitative extensions of it.

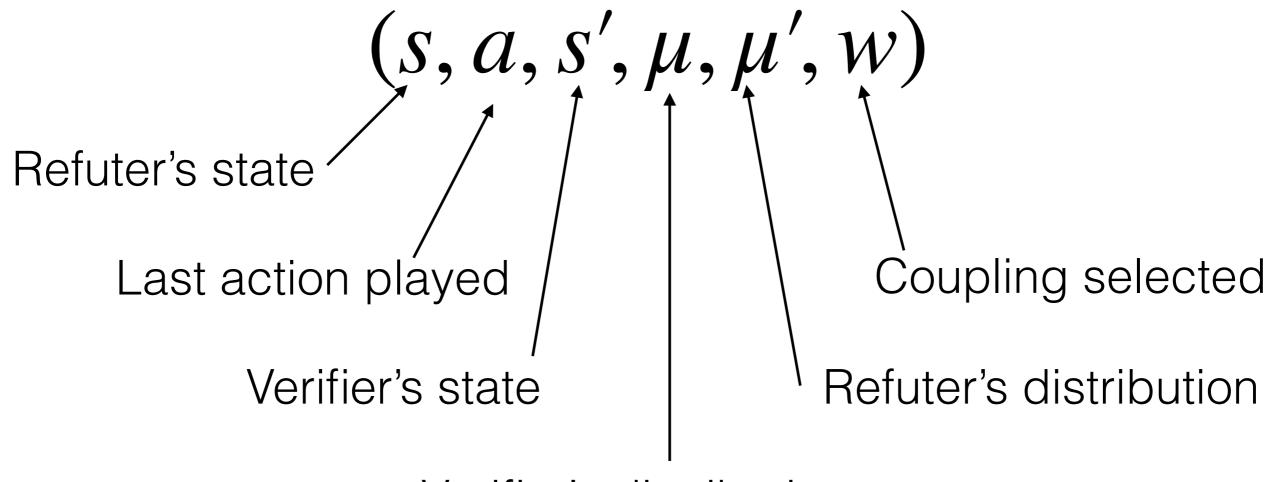
The Game

Given two PTSs A and A' we define a game $G_{A,A'}$

- The **Refuter** starts selecting some $s \xrightarrow{a} \mu$ or $s' \xrightarrow{a} \mu'$,
- The **Verifier** tries to mimic the action, selects $s' \xrightarrow{a} \mu'$ and a coupling $w: S \times S' \to [0,1]$ for μ and μ'
- If the **Refuter** chose a fault ($s \xrightarrow{f} \mu'$) the **Verifier** must chose Δ_s (Dirac distribution)
- Then, the game moves in a randomized way following the coupling.

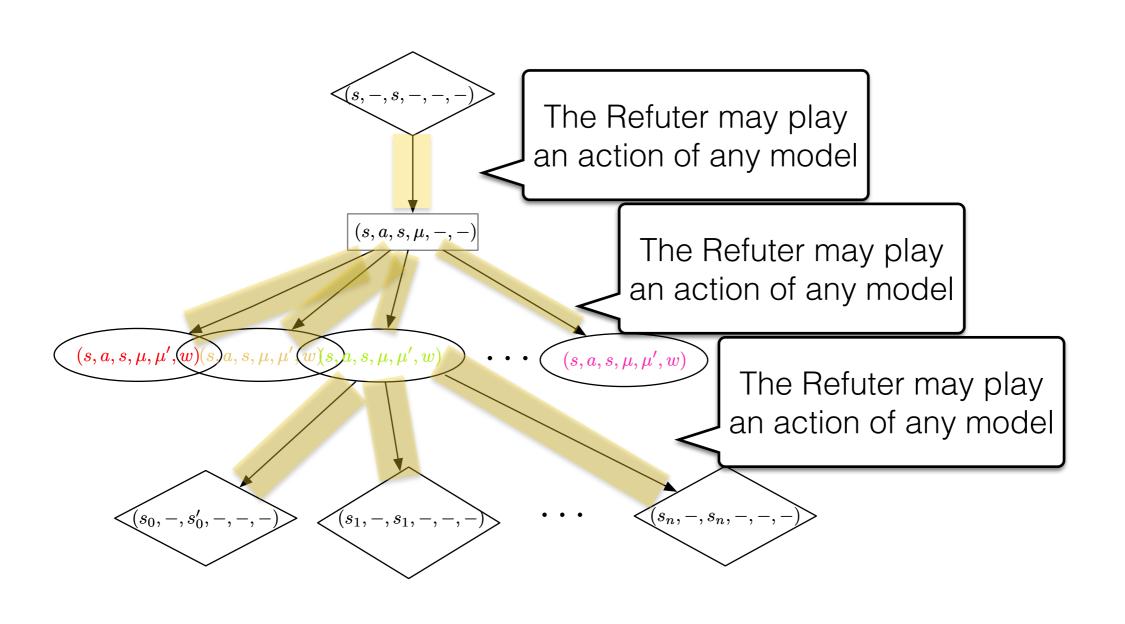
Formal Definition

States are nodes of the type:



Verifier's distribution

Formal definitions of plays



Boolean Game Objective and Results

When there are no faults, this captures probabilistic bisimulation

- The Refuter wins if the error state is reached,
- The Verifier wins if the error state is never reached

Both players has optimal memoryless strategies

The value can be computed in polynomial time

Symbolic Games

Recall: couplings can be described by means of equations:

$$\sum_{\substack{s_j \in supp(\mu') \\ \sum \\ s_k \in supp(\mu)}} x_{s_k, s_j} = \mu(s_k), \text{ for } s_k \in supp(\mu)$$

$$\sum_{\substack{s_k \in supp(\mu) \\ s_k \in supp(\mu)}} x_{s_k, s_j} = \mu'(s_j), \text{ for } s_j \in supp(\mu')$$
Describes all the couplings between μ and μ'

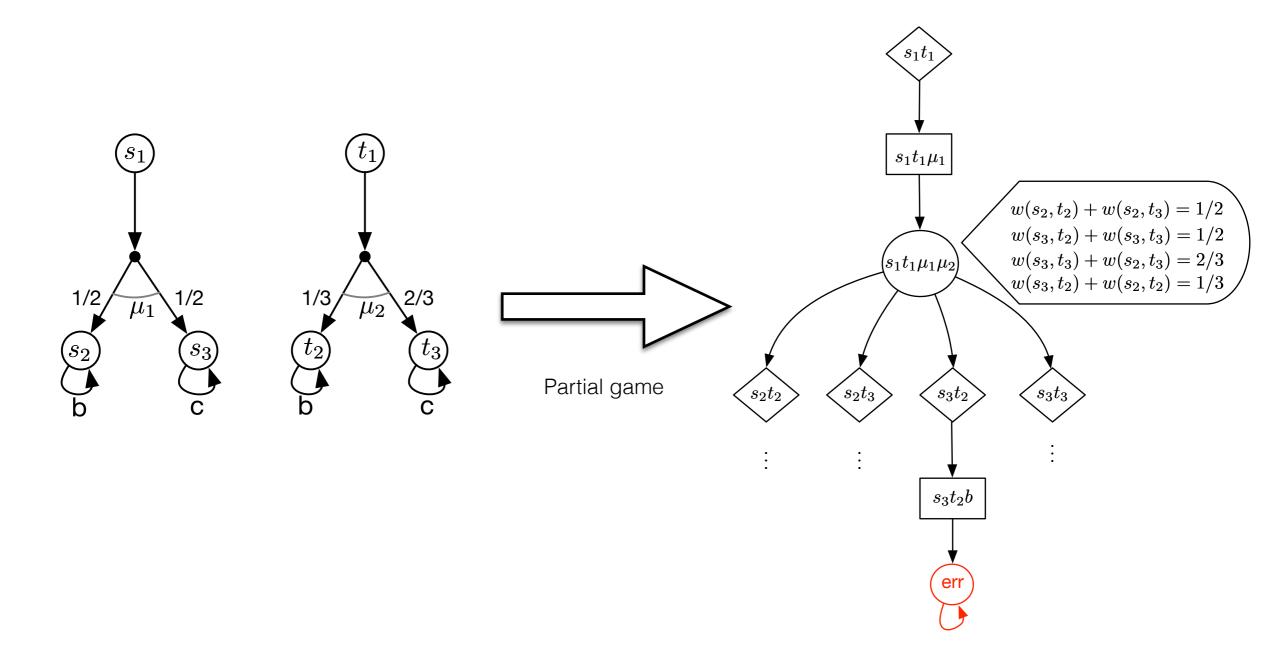
 $x_{s_j,s_k} \ge 0$, for $s_k \in supp(\mu)$ and $s_j \in supp(\mu')$

Instead of explicitly adding couplings, we decorate games with equations:

Example

Two (non-bisimilar) PTSs

Corresponding symbolic game



Using the Symbolic Game

We can use the symbolic game to solve the game

$$U^{0} = \{v_{err}\},$$
 Refuter has
$$U^{i+1} = \{v' \mid v' \in V_{\mathsf{R}}^{\mathcal{SG}} \land Post(v') \cap U^{i} \neq \emptyset\} \cup \{v' \mid v' \in V_{\mathsf{P}}^{\mathcal{SG}} \land Post(v') \subseteq \bigcup_{j \leq i} U^{j} \land Post(v') \cap U^{i} \neq \emptyset\} \cup \{v' \mid v' \in V_{\mathsf{P}}^{\mathcal{SG}} \land Post(v') \cap U^{i} \neq \emptyset \land Eq(v', Post(v') \cap U^{i}) \text{ has no solution}\}$$

These sets capture vertices from which the Refuter has winning plays

No coupling with probability 0 of going to U^i

$$\sum_{\substack{s_j \in supp(\mu') \\ \sum_{s_k \in supp(\mu)} x_{s_k,s_j} = \mu'(s_j), \text{ for } s_k \in supp(\mu) \\ \sum_{s_k \in supp(\mu)} x_{s_k,s_j} = \mu'(s_j), \text{ for } s_j \in supp(\mu') \\ x_{s_j,s_k} \geq 0, \text{ for } s_k \in supp(\mu) \text{ and } s_j \in supp(\mu') \\ \sum_{(s,-,s',-,-) \in Post(v') \cap U^i} x_{s,s'} = 0 \\ \text{For } v = (s,-,s',\mu,\mu')$$

Quantitative Games

Instead of saying if there is a masking (bi)simulation or not, we can consider a quantitative objetive

- We consider some actions $M \subseteq Act$ as being milestone to count,
- A reward is defined as: $r(v) = v[1] \in M?1:0$

well-defined in reals when the game stops

Then we define a function: $f_m(v_0v_1v_2...) = \sum_{i=0}^{\infty} r(v_i)$

The Verifier tries to maximize the expected value of f_m , and the Refuter tries to minimizes it.

Stopping Conditions

The objective of the game is to maximize/minimize:

$$\mathbb{E}_{\mathcal{G}, v_0^{\mathcal{G}}}^{\pi_{\mathsf{V}}, \pi_{\mathsf{R}}}[f_m] = \lim_{n \to \infty} \mathbb{E}_{\mathcal{G}, v_0^{\mathcal{G}}}^{\pi_{\mathsf{V}}, \pi_{\mathsf{R}}}[\lambda \rho \cdot \sum_{i=0}^{n} r_{\mathsf{m}}^{\mathcal{G}}(\rho_i)]$$

Where:

 π_{V} is the strategy played by the Verifier

 π_R is the strategy played by the Refuter

For every pair of memoryless strategies

Standard stopping condition: $Prob_{\mathcal{G},v}^{\pi_V,\pi_R}(\lozenge v_{error}) = 1$

That is: a terminal state will be reached with probability 1

A More General Condition

Consider the following:

```
module NOMINAL
 b : [0..1] init 0;
      [0..1] init 0; // 0 = normal,
                     // 1 = refreshing
                      -> (b'= 0);
 [WO]
     (m=0)
     (m=0)
                      -> (b'= 1);
 [w1]
 [r0]
     (m=0) \& (b=0) \rightarrow true;
 [r1]
     (m=0) & (b=1) -> true;
                      -> p: (m'=1) +
 [tick] (m=0)
                       (1-p): true;
                      -> (m' = 0);
 [rfsh] (m=1)
endmodule
```

```
module FAULTY
 v : [0..3] init 0;
 s : [0..2] init 0; // 0 = normal, 1 = faulty,
                      // 2 = refreshing
 [w0] (s!=2)
                           -> (v'= 0) & (s'= 0);
 [w1] (s!=2)
                          -> (v'= 3) & (s'= 0);
 [r0] (s!=2) & (v<=1) -> true;
[r1] (s!=2) & (v>=2) -> true;
                          -> p: (s'= 2) + q: (s'= 1)
 [tick] (s!=2)
                              + (1-p-q): true;
 [rfsh]
         (s=2)
                          -> (s'=0)
                              & (v' = (v \le 1) ? 0 : 3);
 [fault] (s=1)
                          -> (v' = (v<3) ? (v+1) : 2)
                              \& (s'=0);
 [fault] (s=1)
                          -> (v' = (v>0) ? (v-1) : 1)
                              \& (s' = 0) :
endmodule
```

Reading

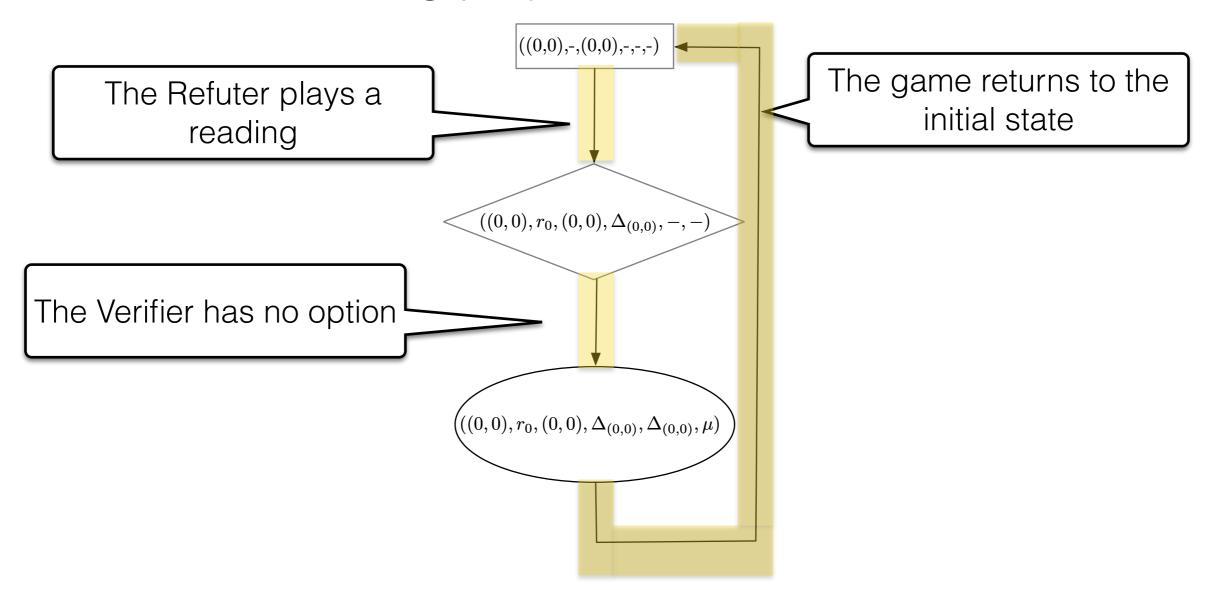
Writing

Fault

Two versions of the memory model

Let's play the game

Consider the following play:



The error state is never reached, the Refuter plays in such a way that it keeps the system away from failing!

Fair Plays

For avoiding this kind of behavior from the Refuter, we assume that she behaves in a fair way:

The set of fair play is defined as:

$$RFP = \{ \rho \in \Omega \mid v \in inf(\rho) \cap V_R \Rightarrow Post(v) \subseteq inf(\rho) \}$$

A strategy π_R for the refuter is said to be a.s. fair if:

$$\mathbb{P}^{\pi_V,\pi_R}_{\mathcal{G},\nu}(RFP)=1$$
 For all π_V

We are interested in games that stop under fairness:

For
$$\pi_R$$
 fair:

$$\mathbb{P}^{\pi_V,\pi_R}_{\mathscr{C}_V}(\lozenge v_{err}) = 1$$
 The game ends with probability one

Some questions

- Q1 Are the value of these games well-defined in \mathbb{R} ? Furthermore, Are they determined?
- **Q2** How can we compute the values of these infinite games?
- Q3 Can we use the symbolic games to compute the value?

Defining a subgame

For answering that questions we consider a subgame:

Given two distributions: μ, μ'

 $s_k \in supp(\mu)$

$$\sum_{s_j \in supp(\mu')} x_{s_k, s_j} = \mu(s_k), \text{ for } s_k \in supp(\mu)$$

$$\sum_{s_k, s_j} x_{s_k, s_j} = \mu'(s_j), \text{ for } s_j \in supp(\mu')$$
 Defines a polytope

 $x_{s_i,s_k} \ge 0$, for $s_k \in supp(\mu)$ and $s_j \in supp(\mu')$

Finite, but an exponential number of vertices

The game $\mathcal{H}_{A,A'}$ has the same maximizer and minimizer vertices as $\mathcal{G}_{A,A'}$ but their probabilistic vertices are the vertices of the polytope

Results

We can prove that the infinite game is determined using de restricted game:

If $\mathcal{H}_{A,A'}$ is stopping under fairness then:

Follows from property of finite games: CAV 22

$$\inf_{\pi_{\mathsf{R}} \in \Pi_{\mathsf{R},\mathcal{G}}^{f}} \sup_{\pi_{\mathsf{V}} \in \Pi_{\mathsf{V},\mathcal{G}}} \mathbb{E}_{\mathcal{G},v}^{\pi_{\mathsf{V}},\pi_{\mathsf{R}}}[f_{\mathsf{m}}] = \inf_{\pi_{\mathsf{R}} \in \Pi_{\mathsf{R},\mathcal{H}}^{MDf}} \sup_{\pi_{\mathsf{V}} \in \Pi_{\mathsf{V},\mathcal{H}}^{MD}} \mathbb{E}_{\mathcal{H},v}^{\pi_{\mathsf{V}},\pi_{\mathsf{R}}}[f_{\mathsf{m}}]$$

$$= \sup_{\pi_{\mathsf{V}} \in \Pi_{\mathsf{V},\mathcal{H}}^{MD}} \inf_{\pi_{\mathsf{R}} \in \Pi_{\mathsf{R},\mathcal{H}}^{MDf}} \mathbb{E}_{\mathcal{H},v}^{\pi_{\mathsf{V}},\pi_{\mathsf{R}}}[f_{\mathsf{m}}] = \sup_{\pi_{\mathsf{V}} \in \Pi_{\mathsf{V},\mathcal{G}}} \inf_{\pi_{\mathsf{R}} \in \Pi_{\mathsf{R},\mathcal{G}}^{f}} \mathbb{E}_{\mathcal{G},v}^{\pi_{\mathsf{V}},\pi_{\mathsf{R}}}[f_{\mathsf{m}}].$$

The next problem is: how can we compute the game value?

Solving the Game

We can solve the game using Bellman equations over the symbolic game.

If $\mathcal{H}_{A,A'}$ is stopping under fairness then,

the value of the game is gfp of:

Vertices of the polytope

$$\Gamma(f)(v) = \begin{cases} \min\left(\mathbf{U}, \max_{w \in \mathbb{V}(\mathbb{C}(v[3], v[4]))} \sum_{v' \in Post(v)} w(v'[0], v'[2]) f(v')\right) & \text{if } v \in V_{\mathsf{P}}^{\mathcal{SG}} \\ \min\left(\mathbf{U}, r_{\mathsf{m}}^{\mathcal{SG}}(v) + \max\left\{f(v') \mid v' \in Post(v)\right\}\right) & \text{if } v \in V_{\mathsf{V}}^{\mathcal{SG}} \\ \min\left(\mathbf{U}, \min\left\{f(v') \mid v' \in Post(v)\right)\right\} & \text{if } v \in V_{\mathsf{R}}^{\mathcal{SG}} \setminus \{v_{err}\} \\ 0 & \text{if } v = v_{err} \end{cases}$$

Open Questions

We can prove that the game is determined, but:

- If the restricted game stops under fairness with prob. 1, then the infinite game stops with probability one?
- When one add negative numbers, there could not be optimal memoryless strategies, or the game may have not a value. What conditions are needed for guaranteeing this?