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Vliotivation

Fault-Tolerance can be defined as the capability of systems
to continue operating In a correct way even under the
occurrence of faults
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Many Possible Fault-
lTolerant Implementations
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Hard to say in
practice




Classitying Fault-Tolerance

We can classify fault-tolerance taking into account the kind
of properties preserved by the system after the occurrence
of faults:

* Liveness properties: Something good eventually
happens.

« Safety properties: nothing bad happens.
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Properties can be
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Fallsafe Fault-Tolerance

* The system is taken to a safe
state after the occurrence of
faults.

* Important in systems in which
preserving safety properties is
more relevant than progress

e Simple example: Any elevator
system.




Non-masking Fault-
Tolerance

* [he system may show an
incorrect behavior after a fault,
but eventually it recovers the
correct behavior.

* Liveness properties are
preserved

e Simple example: streaming
platforms.




Masking rFault- lolerance

e The occurrence of faults are
not visible for the users.

e Safety+Liveness properties
preserved

 Examples of masking fault-
tolerance are systems that use
some kind of redundancy.

We only will focus on this kind of tfault-tolerance



Probapilistic Models

We use Probabilistic Transition Systems (PTSs) to model
probabilistic systems/protocols/software.

Non-determinism

« A finite set of states S,

70

« A finite set of actions A,

| 23 ()
e Arelation =» C S XA X D(S) P <Q

1/3 A
/\ /\ Stochastic

This admits both stochastic D(S) is the set of
behavior and non- distributions i : S — [0,1]
determinism




Modeling Faults

We use probabilities to introduce the possibility of the
occurrence of faults

A tick Is used to model
(discrete) time

1/2 of ticks the system will
Cb< undergo a failure

1/2 of ticks the system will
refresh the state of the
1 memory
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We play a game between Verifier and Retuter

Verifier: tries to prove the system is fault -tolerant
Refuter: tries to disprove this



Couplings

To be able of modeling simulation relations we need couplings.

Given u:S—-1[0,11 and p':S" = [0,1] w:8%XS§8 — [0,1]
is acoupling if: w(S,—)=u" and w(—,S)=u

Couplings can be defined as the solutions of some linear
(in)equalities:

Z xsk,sj — :M(Sk)a for Sk < Supp(,u)
s, €supp(p’)

2 Ksos; — /4/(5]'), fors; € supp(p’)
skEsupp(p)
x, 5 = 0, for s, € supp(u) and s; € supp(u’)

Sj,Sk



A Masking Probabillistic
Game

We detfine a stochastic two-player game:

Two players:

These games allow one to capture probabilistic bisimulation
relation as well as devise quantitative extensions of it.



The Game

Given two PTSs A and A" we define a game Gy 4

o [he Refuter starts selecting some s 5 uors’ 5 u'

. The Verifier tries to mimic the action, selects s’ — u’
and a couplingw : § X 8" — [0,1] for y and u’

o |f the Refuter chose a fault (s L 1) the Verifier must
chose A, (Dirac distribution)

* [hen, the game moves In a randomized way
following the coupling.



Formal Definition

States are nodes of the type:

(s,a,s’, u, u’, w)
Refuter’'s state / / \

Last action played Coupling selected

Verifier's state Refuter’s distribution

Veritier’s distribution



Formal definitions of plays

0 The Refuter may play
an action of any model
’(s,a,s,,u,—,—J
= The Refuter may play
f an action of any model
e (50,800, w)
The Refuter may play
an action of any model




Boolean Game Objective

ana Resq\ts

When there are no faults, this
captures probabilistic

bisimulation

e The Refuter wins if the error state Is reached,

e The Verifier wins If the error state is never reached

\

A

Both players has optimal
memoryless strategies

The value can be computed in
polynomial time




Symbolic Games

Recall: couplings can be described by means of
eqguations;

X. . = u(s,), fors, € su
Z e p(sy) k PP(#) Describes all the
si€supp(u) <_ couplings between y

2 Ases; = 'u,(SJ')’ for s; € supp(p’) and y
skEsupp(u)

Xy 5 2 0, for s, € supp(u) and s; € supp(p’)

Instead of explicitly adding couplings, we decorate games
with equations:



Example

Two (non-bisimilar) PTSs Corresponding symbolic game




Using the Symbolic Game

We can use the symbolic game to solve the game

v' € VE9 A Post(v') NU' # 0} U

v € VZY9 A Post(v') C Uj<; U7 A Post(v")NU" # 0} U

UO — {Uerfr’}a
Ui—l—l — {’Ul
{v'
{v'

These sets capture
vertices from which the
Refuter has winning

plays

v' € VE9 A Post(v') NU? # O A Bq(v', Post(v') NU?) has no solution}

Z X5, = H(Sp), for s, € supp(p)

No coupling with sﬁsg“ o »
p X5 = u'(s;), for s. € supp(u’
probability O of > et
going to U’ Xy 50 2 0, for s, € supp(u) and s; € supp(u’)
Z Xo,s' = 0
(s,—,8",—,—)EPost(v)NU"

Forv =(s,— s, u,u’)



Quantitative Games

Instead of saying if there is a masking (bi)simulation or
not, we can consider a quantitative objetive

« We consider some actions M C Act as being milestone to

count,
| | well-defined in
« Arewardis definedas: r(v) =v[l] e M?1 : 0 reals when the
game stops

T
d

x [

Then we define a function: f, (Vgv V;...) = Z r(v;)

1=0

ne Verifier tries to maximize the expected value of f, ,

nd the Refuter tries to minimizes it.



Stopping Conditions

The objective of the game is to maximize/minimize:

R fl = lim ERT(Ap 2 ra(p)]

n—oo

Where:
my 1S the strategy played by the Verifier

For every pair of
memoryless strategies

TR Is the strategy played by the ijm

Standard stopping condition: Prob”V”R(Qv ]

EVFOF)

That Is: a terminal state will be reached with probabillity 1



A More General Condition

Consider the following:

module NOMINAL
b : [0..1] init O;

m : [0..1] init O; // O = normal,

// 1 = refreshing
[wO] (m=0) -> (b’= 0);
[wi] (m=0) -> (b’= 1);

[rO] (m=0) & (b=0) -> true;
[r1] (m=0) & (b=1) -> true;

[tick] (m=0) -> p: (m’= 1) +
(1-p): true;
[rfsh] (m=1) -> (m’= 0);
endmodule
Reading
Writing

module FAULTY

v : [O..
s : [O..

[wO]
[wi]
[r0]
[r1]
[tick]
[rfsh]
[fault]

[fault]

endmodule

3] init O;

2] init 0; // O
// 2

(s!1=2) ->

(s!1=2) ->

(s1=2) & (v<=1) —>

(s!'=2) & (v>=2) ->
(s!1=2) ->

(s=2) ->
(s=1) ->

(s=1) ->

normal, 1 = faulty,
refreshing

(v'=0) & (s'= 0);
(v!=3) & (s'= 0);
true;

true;

p: (s'=2) +q: (s'=1)
+ (1-p-q): true;

(s'=0)

& (v'= (v<=1) ? 0 : 3);
(v'= (v<3) 7 (v+1) : 2)
& (s'= 0);

(v'= (v>0) 7 (v-1) : 1)
& (s'= 0) ;

Cault Two versions of the memory model



| et’s play the game

Consider the following play:

((070)7"(07())7'7'7') -

The Refuter plays a % The game rleturns to the
reading - — INitial state
((0,0),70,(0,0), V
The Verifier has no option e
-
((07 0)7 To, (07 0)7 A(0,0)7 A(0,0)7 /~L)

The error state is never reached, the Refuter plays in such
a way that it keeps the system away from failing!



Falr Plays

For avoiding this kind of behavior from the Retuter, we assume
that she behaves in a tair way:

he set of tfair play is defined as:

RFP = {p € Q| v € inf(p) NV, = Post(v) C inf(p)}

A strategy 7p for the refuter is said to be a.s. fair if:
IP”V ”R(RFP) =1 For all 7y,

We are interested in games that stop under fairness:

The game ends with

For 7Ty tair: P ﬂR(OVerr) = 1% probability one




Some questions

« Q1 Are the value of these games well-defined in R?
Furthermore, Are they determined?

Q2 How can we compute the values of these infinite
games?

Q3 Can we use the symbolic games to compute the
value”



Defining a subgame

For answering that questions we consider a subgame:

Given two distributions: u, u’

Z xsk,sj = ﬂ(Sk), for s, € Supp(ﬂ)

s;€supp(p’) |
Defines a polytope
Z X5, = H(s;), for s; € supp(p’)

skEsupp(u)

Xg s, > 0, for s, € supp(u) and S; € supp(u’) Finite, but an exponential

S-S :
J number of vertices

The game #Z 4 4 has the same maximizzf and minimizer
vertices as &4 4 but their probabilistic vertices are the
vertices of the polytope




Results

We can prove that the infinite game is determined using de
restricted game:

If # 4 4 is stopping under fairness then: | Follows from property of
’ finite games: CAV 22

inf sup EG"%[fm] = inf sup E3) %[ fm]
mREIIE g my€llv,g mRellg 3 mvelly,
= sup inf By % [fm] = sup inf  EgR|fim].
WvéHMD T('REH]%{Q_IZ my €11y G WREHf

The next problem is: how can we compute the game value?



Solving

the Game

We can solve the game using Bellman equations over the

symbolic game.

It # 4 4 is stopping under

fairness then,

{

Vertices of the polytope

v

i

0

\

ne value of the game is gfp of:

min (U, max,ev(c(o(s] vi4) 2ure postey W' 0L 0 2D F (W) if v € Vi5F
min (U, ro9 (v) + max {f(v') | v € Post(v)}) if v e VoY
min (U, min {f(v") | v" € Post(v))} if v € VEI\{verr}

’l:fU — Verr



Open Questions

We can prove that the game is determined, but:

* |f the restricted game stops under fairness with prob. 1,
then the infinite game stops with probability one”

* When one add negative numbers, there could not be
optimal memoryless strategies, or the game may have not a
value. What conditions are needed for guaranteeing this”



