
MODELING FLOCKS AND THEIR EMERGENT
BEHAVIORS
Rocco De Nicola

Scuola IMT Alti Studi, Lucca, Italy

Joint work with Luca Di Stefano (Univ. Gothenburg), Omar
Inverso (GSSI, L’Aquila), Serenella Valiani (Scuola IMT Lucca)

OPCT – Bertinoro June 26 – 30, 2023

Flocking behaviour

•Decentralized system of
autonomous components
• Emergent patterns of
collective behaviour
• Coherent movements
• Cohesion

(video:
https://www.quantamagazine.org/smarter-
parts-make-collective-systems-too-stubborn-
20190226/?mc_cid=1e132cc211&mc_eid=93
07f60615)

• https://www.youtube.com/watch?v=3w90X92p
DSs

2

https://www.quantamagazine.org/smarter-parts-make-collective-systems-too-stubborn-20190226/?mc_cid=1e132cc211&mc_eid=9307f60615
https://www.quantamagazine.org/smarter-parts-make-collective-systems-too-stubborn-20190226/?mc_cid=1e132cc211&mc_eid=9307f60615
https://www.quantamagazine.org/smarter-parts-make-collective-systems-too-stubborn-20190226/?mc_cid=1e132cc211&mc_eid=9307f60615
https://www.quantamagazine.org/smarter-parts-make-collective-systems-too-stubborn-20190226/?mc_cid=1e132cc211&mc_eid=9307f60615
https://www.youtube.com/watch?v=3w90X92pDSs
https://www.youtube.com/watch?v=3w90X92pDSs

Language-based methodology

Languages play a key role in the engineering of systems
• Systems must be specified as naturally as possible
• Distinctive aspects of the domain need to be first-class citizens
• Intuitive/concise specifications can avoid encodings

Models need to be strictly related to languages for effective analysis
• high-level abstract models guarantee feasible investigations
• scrutiny of results (e.g., counterexample) based on system

features, rather than on their low-level representation, guarantees
better feedback

3

Systems Modelling and Analysis

Big challenge: devise appropriate abstractions and linguistic primitives to
deal with the specificities of the systems under consideration while
relying on an appropriate semantic model.

A possible approach: Combined use of formal methods with model-
driven software engineering.

Key ingredients:
1. A specification language equipped with a formal semantics
2. A programming framework with associated runtime environment
3. A number of verification techniques and associated tools

4

Service-oriented computing
• services composition
• heterogeneous components
• code reuse, interoperability

Our Contributions: A timeline

Collective adaptive systems progr.
• large number of components
• decentralised control
• unpredictable environment
• emergent behaviour

Network-aware programming
• awareness of the network infrastructure
• asynchronous interactions
• open-ended non-determ. environment
• computation mobility

Autonomic computing
• reduced maintenance cost
• no human intervention
• continuous monitoring
• adaptation Agent based models

• high-level primitives
• indirect/stigmergic

interaction

1998 Klaim

2006-2009 SCC, COWS,
CASPIS

2014 SCEL

2016
AbC

2020
LAbS

5

Languages and tools for different
classes of distributed systems

In this talk

Here, we shall consider:
• AbC: A calculus for Attribute based Programming
• Modelling Collective Adaptive Systems

• LAbS: A Language with Attribute-based Stigmergies
• Engineering Agent Based Systems

6

AbC: A calculus distilled from SCEL

• Components are equipped with attributes whose values can be modified by
internal actions and are exposed in their interface .
• Communication actions (send and receive) are decorated with predicates over

attributes that partners have to satisfy to make the interaction possible.
• Communication takes place in an implicit multicast fashion: partners are

selected via predicates over the attributes exposed in the interfaces.
• Components can offer different views of themselves and can communicate

with different partners according to different criteria.
• Semantics for output actions is non-blocking while input actions are blocking

and can take place through synchronization with an available sent message.

7

AbC: Primitives

• Attribute updates 𝑎 ≔ 𝑒,…
• (Optionally) change values of own attributes
• Atomically happen after an input/output interaction

• Attribute-based output 𝑒 @Π[𝑎 ≔ 𝑒,…]
• Evaluate expressions 𝑒
• Send values to all components matching Π

• Attribute-based input Π �⃗� 𝑎 ≔ 𝑒,…
• Receive values from any component matching Π
• Bind values to variables �⃗�

8

LAbS in few lines

• AbC does not rely on explicit peers identifiers
• Can we also do without explicit send actions?
• In LAbS, agents use stigmergic interaction, i.e. they “drop” bits of

information that can be retrieved by others.
• Inspired by biological systems where this form of communication is

commonplace
• How?
• Distributed data structures (virtual stigmergies)
• Shared variables (environment)
• Local information (attributes)

9

LAbS: Syntax overview

• 𝑃, 𝑄 ∷= 𝛼 ∣ 𝐵 ∣ 𝑃; 𝑄 ∣ 𝑃 + 𝑄 ∣ 𝑔 → 𝑃 ∣ 𝐾 (Process - Componens)
• 𝛼 ∷= 𝑣 ← 𝑞 ∣ 𝑣 ↜ 𝑞 | 𝑣 ⇐ 𝑞 (Statement)
• 𝛽 ∷= 𝛼 ∣ 𝑡 ≔ 𝑞 ∣ 𝑝 ≔ 𝐩𝐢𝐜𝐤 𝑛 𝑡𝑦𝑝𝑒 𝐰𝐡𝐞𝐫𝐞 𝜑 (Block Statement)
• 𝐵 ∷= 𝛽 ∣ 𝛽 ; 𝐵 (Block)
• 𝑒 ∷= 𝜅 ∣ 𝑣! ∣ 𝑒 ⋄ 𝑒 ∣ ¬𝑒 ∣ 𝑒 ∧ 𝑒 ∣ 𝑒 𝐢𝐟 𝑒 𝐞𝐥𝐬𝐞 𝑒 (Expression)
• 𝑞 ∷= 𝑒 ∣ 𝐟𝐨𝐫𝐚𝐥𝐥 𝑡𝑦𝑝𝑒 𝑥, 𝑞 𝑥 ∣ 𝐞𝐱𝐢𝐬𝐭𝐬 𝑡𝑦𝑝𝑒 𝑥, 𝑞 𝑥 (Quant. Expression)

• This is the basic syntax of LAbS agents
• Additional rules are needed to describe systems, declare variables, …
• ←,↜,⇐ are used to update information about attributes, stigmergy, and

environment, respectively.

10

Virtual stigmergy

• A virtual stigmergy is a store of variables
• At assignment time, a stigmergy variable receives a timestamp
• Agents exchange messages about local values and timestamps
after write and read actions; newer values replace older ones
•Messages’ exchange is constrained by predicates

𝑣!, 𝑡!

𝑣", 𝑡"

(𝑣!, 𝑡!)

𝑡! < 𝑡"

(𝑣", 𝑡")

11

Modelling flocks our way

•High-level language to specify individual
behaviours
•Bottom-up, incremental modelling
•Automated encoding into sequential imperative
programs
• For properties verification to exploit existing tools
offering different techniques
• For simulation

12

Baseline model of a flock of birds

13

• Attributes of a Bird:
position (x,y) heading vector (dirx, diry)

• … = notation for an atomic block

Every agent goes its own way

• 𝐴. . 𝐵 = nondeterministic initialization from
[𝐴, 𝐵[

• 𝐺, 𝐷 = external parameters

Alignment: taking the same direction

• Look at another agent and follow its direction

14

pick 𝐾 returns 𝐾 agent’s identifiers excluding the one of the acting agent
𝑣! = value of 𝑣 for agent 𝑝

Cohesion: getting as close as possible

Estimate 𝑝’s position 𝜔 steps in the future and aim there; average with
current heading for inertia

15

• 𝑎 𝐢𝐟 𝑐 𝐞𝐥𝐬𝐞 𝑏 is the ternary conditional operator
• 𝑥 ∶ 𝑦 is real division plus rounding
• 𝑑 𝑎, 𝑏 is the Manhattan distance (𝑥# − 𝑥$ + |𝑦# − 𝑦$|)

Additional constraints

• Ignore 𝑝 if it is isolated
• Do not move if destination is already occupied by another bird

16

Decision are taken by evaluating predicates over agents’ state

Avoiding predators

• A predator P moving in a straight line is added
• If P is closer than 𝜆, agents move away from it

17

This time pick is typed

Concerns about global information

• Formally, pick, forall, exists, 𝑣- rely on a global knowledge
of the system

• However, they can be evaluated “locally” by a given agent
• ”pick 1 agent randomly” -à a form of neighbor
discovery
• “check that no agent is at position (𝑥, 𝑦)” -à look at
(𝑥, 𝑦)
• 𝑑𝑖𝑟𝑥- -à look at agent 𝑝
• ”check that agent 𝑝 is isolated” -à look around agent 𝑝

18

Additional details

• For this model we assumed round-robin scheduling,
allowing the execution of an instruction (or an atomic
block) by each agent at each round
•We can set up initial constraints in an assume { … } section,
e.g., to state that:
• Birds start at the center of the arena
• Birds have different initial positions
• Birds have non-null initial directions

• For simulation, some nondeterminism is resolved upfront
by fixing initial states and outcomes of pick statements

19

SLiVER: Verification/Simulation of LAbS models

Front end Encoder Encoder Instrumenter Backend Translator

Backend wrapper

Outcome

(Pass or

Fail+Cex)
Input file

params

fair

backend

simulate, steps

'

S T P P0 output

• 𝕊 Syntax tree of model
• 𝕋 Intermediate representation (a set of triples: activation condition,

statement, program counter update)
• ℙ Emulation program (here a C program; we also support LNT)

The back end currently used is CBMC (SAT-based bounded model checking)

20

Verifying cohesion

In the model without the predator, we want to check that the
distance between all birds gets smaller than 𝑘 after 𝐵 steps:

𝐚𝐟𝐭𝐞𝐫 𝐵 𝐟𝐨𝐫𝐚𝐥𝐥 Bird 𝑎, 𝐟𝐨𝐫𝐚𝐥𝐥 Bird 𝑏, 𝑑 𝑎, 𝑏 < 𝑘

Indeed: If initially all birds are “close” they keep close.
But: With two groups at distance 𝑘1 > 𝑘, the property may
not hold.

21

• pick might always select bird from the same group.
• To avoid this, we assign Birds a 𝑔𝑟𝑜𝑢𝑝𝐼𝑑 and force them to look at a

different group after each step (pick … where … adds further
constraints when choosing agents)

𝑝 ≔ pick 1 where 𝑐ℎ𝑒𝑐𝑘 = 0 or 𝑔𝑟𝑜𝑢𝑝𝐼𝑑! ≠ 𝑔𝑟𝑜𝑢𝑝𝐼𝑑 ;
𝑐ℎ𝑒𝑐𝑘 = 𝑐ℎ𝑒𝑐𝑘 + 1 mod 2;

• With this fix the property holds for several values of 𝑘, 𝐵

22

Conclusion

• Bottom-up modelling with LAbS
• Compact specifications of individual behaviours
• No explicit communication primitives
• Possibility of gradual improvements

• Simulations
• Some assurance that the desired collective behaviour will emerge
• Feedback to refine specifications

• Verification
• Catch subtle bugs
• Can definitely prove the emergence of desired collective features

23

Next steps

•Modelling flocks in 3D
• Statistical model checking
• Runtime verification
• Use other verification back ends
• Extend the range of supported properties
• Consider different approaches and compare
• Discrete-time dynamics (e.g., Boids)
• Equational modelling (
• Decentralized control laws

24

References

• L. Di Stefano, R. De Nicola, O. Inverso: Verification of Distributed Systems via Sequential Emulation. ACM
Trans. Softw. Eng. Methodol. 31(3): 37:1-37:41 (2022)

• R. De Nicola, T. Duong, M. Loreti: Provably correct implementation of the AbC calculus. Sci. Comput.
Program. 202: 102567, Elsevier 2021.

• R. De Nicola, G.L. Ferrari, R. Pugliese, F. Tiezzi: A formal approach to the engineering of domain- specific
distributed systems. J. Log. Algebraic Methods Program. 111: 100511, Elsevier 2020.

• Y. Abd Alrahman, R. De Nicola, M. Loreti: Programming interactions in collective adaptive systems by relying
on attribute-based communication. Sci. Comput. Program. 192: 102428, Elsevier 2020.

• R. De Nicola, L. Di Stefano, O. Inverso: Multi-agent systems with virtual stigmergy. Sci. Comput. Program.,
187, Elsevier 2020.

• R. De Nicola, L. Di Stefano, O. Inverso, S. Valiani: Modelling Flocks of Birds from the Bottom Up, in ISoLA,
LNCS 13703, Springer 2022

• R. De Nicola, L. Di Stefano, O. Inverso, S. Valiani: Process algebras and flocks of birds, in A journey from
process algebra via timed automata to model learning, LNCS 13560, Springer 2022.

• Di Stefano's Thesis: https://hdl.handle.net/20.500.12571/10181
• LAbS code: https://github.com/labs-lang

25

https://hdl.handle.net/20.500.12571/10181
https://github.com/labs-lang

QUESTIONS?

26

https://www.youtube.com/watch?v=3w90X92pDSs

https://www.youtube.com/watch?v=3w90X92pDSs

