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Flocking behaviour

•Decentralized system of 
autonomous components
• Emergent patterns of 
collective behaviour
• Coherent movements
• Cohesion

(video: 
https://www.quantamagazine.org/smarter-
parts-make-collective-systems-too-stubborn-
20190226/?mc_cid=1e132cc211&mc_eid=93
07f60615)

• https://www.youtube.com/watch?v=3w90X92p
DSs
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Language-based methodology 

Languages play a key role in the engineering of systems
• Systems must be specified as naturally as possible
• Distinctive aspects of the domain need to be first-class citizens
• Intuitive/concise specifications can avoid encodings

Models need to be strictly related to languages for effective analysis
• high-level abstract models guarantee feasible investigations
• scrutiny of results (e.g., counterexample) based on system 

features, rather than on their low-level representation, guarantees 
better feedback
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Systems Modelling and Analysis

Big challenge: devise appropriate abstractions and linguistic primitives to 
deal with the specificities of the systems under consideration while 
relying on an appropriate semantic model. 

A possible approach: Combined use of formal methods with model-
driven software engineering. 

Key ingredients:
1. A specification language equipped with a formal semantics
2. A programming framework with associated runtime environment 
3. A number of verification techniques and associated tools
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Service-oriented computing
• services composition
• heterogeneous components
• code reuse, interoperability

Our Contributions: A timeline

Collective adaptive systems progr.
• large number of components
• decentralised control
• unpredictable environment
• emergent behaviour

Network-aware programming
• awareness of the network infrastructure
• asynchronous interactions
• open-ended non-determ. environment
• computation mobility

Autonomic computing
• reduced maintenance cost
• no human intervention
• continuous monitoring
• adaptation Agent based models

• high-level primitives
• indirect/stigmergic

interaction

1998 Klaim

2006-2009 SCC, COWS, 
CASPIS

2014 SCEL

2016 
AbC

2020 
LAbS
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Languages and tools for different 
classes of distributed systems 



In this talk

Here, we shall consider:
•  AbC: A calculus for Attribute based Programming
•  Modelling Collective Adaptive Systems

•  LAbS:  A Language with Attribute-based Stigmergies
•  Engineering Agent Based Systems
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AbC: A calculus distilled from SCEL

• Components are equipped with attributes whose values can be modified by 
internal actions and are exposed in their interface . 
• Communication actions (send and receive) are decorated with predicates over 

attributes that partners have to satisfy to make the interaction possible. 
• Communication takes place in an implicit multicast fashion: partners are 

selected via predicates over the attributes exposed in the interfaces. 
• Components can offer different views of themselves and can communicate 

with different partners according to different criteria. 
• Semantics for output actions is non-blocking while input actions are blocking 

and can take place through synchronization with an available sent message.
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AbC: Primitives

• Attribute updates 𝑎 ≔ 𝑒,…
• (Optionally) change values of own attributes
• Atomically happen after an input/output interaction

• Attribute-based output 𝑒 @Π[𝑎 ≔ 𝑒,… ]
• Evaluate expressions 𝑒
• Send values to all components matching Π

• Attribute-based input Π �⃗� 𝑎 ≔ 𝑒,…
• Receive values from any component matching Π
• Bind values to variables �⃗�
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LAbS in few lines

• AbC does not rely on explicit peers identifiers
• Can we also do without explicit send actions?
• In LAbS, agents use stigmergic interaction, i.e. they “drop” bits of 

information that can be retrieved by others.
• Inspired by biological systems where this form of communication is 

commonplace
• How?
• Distributed data structures (virtual stigmergies)
• Shared variables (environment)
• Local information (attributes)
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LAbS: Syntax overview

• 𝑃, 𝑄 ∷= 𝛼 ∣ 𝐵 ∣ 𝑃; 𝑄 ∣ 𝑃 + 𝑄 ∣ 𝑔 → 𝑃 ∣ 𝐾 (Process - Componens)
• 𝛼 ∷= 𝑣 ← 𝑞 ∣ 𝑣 ↜ 𝑞 | 𝑣 ⇐ 𝑞 (Statement)
• 𝛽 ∷= 𝛼 ∣ 𝑡 ≔ 𝑞 ∣ 𝑝 ≔ 𝐩𝐢𝐜𝐤 𝑛 𝑡𝑦𝑝𝑒 𝐰𝐡𝐞𝐫𝐞 𝜑 (Block Statement)
• 𝐵 ∷= 𝛽 ∣ 𝛽 ; 𝐵 (Block)
• 𝑒 ∷= 𝜅 ∣ 𝑣! ∣ 𝑒 ⋄ 𝑒 ∣ ¬𝑒 ∣ 𝑒 ∧ 𝑒 ∣ 𝑒 𝐢𝐟 𝑒 𝐞𝐥𝐬𝐞 𝑒 (Expression)
• 𝑞 ∷= 𝑒 ∣ 𝐟𝐨𝐫𝐚𝐥𝐥 𝑡𝑦𝑝𝑒 𝑥, 𝑞 𝑥 ∣ 𝐞𝐱𝐢𝐬𝐭𝐬 𝑡𝑦𝑝𝑒 𝑥, 𝑞 𝑥 (Quant. Expression)

• This is the basic syntax of LAbS agents
• Additional rules are needed to describe systems, declare variables, …
• ←,↜,⇐ are used to update information about attributes, stigmergy, and 

environment, respectively.
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Virtual stigmergy

• A virtual stigmergy is a store of variables
• At assignment time, a stigmergy variable receives a timestamp
• Agents exchange messages about local values and timestamps 
after write and read actions; newer values replace older ones
•Messages’ exchange is constrained by predicates

𝑣!, 𝑡!

𝑣", 𝑡"

(𝑣!, 𝑡!)

𝑡! < 𝑡"

(𝑣", 𝑡")
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Modelling flocks our way

•High-level language to specify individual 
behaviours
•Bottom-up, incremental modelling 
•Automated encoding into sequential imperative 
programs 
• For properties verification to exploit existing tools 
offering different techniques
• For simulation
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Baseline model of a flock of birds
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• Attributes of a Bird: 
position (x,y)  heading vector (dirx, diry)

• … = notation for an atomic block

Every agent goes its own way

• 𝐴. . 𝐵 = nondeterministic initialization from 
[𝐴, 𝐵[

• 𝐺, 𝐷 = external parameters



Alignment: taking the same direction

• Look at another agent and follow its direction
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pick 𝐾 returns 𝐾 agent’s identifiers excluding the one of the acting agent 
𝑣! = value of 𝑣 for agent 𝑝



Cohesion: getting as close as possible

Estimate 𝑝’s position 𝜔 steps in the future and aim there; average with 
current heading for inertia

15

• 𝑎 𝐢𝐟 𝑐 𝐞𝐥𝐬𝐞 𝑏 is the ternary conditional operator
• 𝑥 ∶ 𝑦 is real division plus rounding
• 𝑑 𝑎, 𝑏 is the Manhattan distance ( 𝑥# − 𝑥$ + |𝑦# − 𝑦$|)



Additional constraints

• Ignore 𝑝 if it is isolated
• Do not move if destination is already occupied by another bird
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Decision are taken by evaluating predicates over agents’ state



Avoiding predators

• A predator P moving in a straight line is added
• If P is closer than 𝜆, agents move away from it
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This time pick is  typed



Concerns about global information

• Formally, pick, forall, exists, 𝑣- rely on a global knowledge
of the system

• However, they can be evaluated “locally” by a given agent
• ”pick 1 agent randomly” -à a form of neighbor 
discovery
• “check that no agent is at position (𝑥, 𝑦)” -à look at 
(𝑥, 𝑦)
• 𝑑𝑖𝑟𝑥- -à look at agent 𝑝
• ”check that agent 𝑝 is isolated” -à look around agent 𝑝
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Additional details

• For this model we assumed round-robin scheduling, 
allowing the execution of an instruction (or an atomic 
block) by each agent at each round
•We can set up initial constraints in an assume { … } section, 
e.g., to state that:
• Birds start at the center of the arena
• Birds have different initial positions
• Birds have non-null initial directions

• For simulation, some nondeterminism is resolved upfront 
by fixing initial states and outcomes of pick statements
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SLiVER: Verification/Simulation of LAbS models

Front end Encoder Encoder Instrumenter Backend Translator

Backend wrapper

Outcome

(Pass or

Fail+Cex)
Input file

params

fair

backend

simulate, steps

'

S T P P0 output

• 𝕊 Syntax tree of model
• 𝕋 Intermediate representation (a set of triples: activation condition, 

statement, program counter update)
• ℙ Emulation program (here a C program; we also support LNT)

The back end currently used is CBMC (SAT-based bounded model checking)
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Verifying cohesion

In the model without the predator, we want to check that the 
distance between all birds gets smaller than 𝑘 after 𝐵 steps:

𝐚𝐟𝐭𝐞𝐫 𝐵 𝐟𝐨𝐫𝐚𝐥𝐥 Bird 𝑎, 𝐟𝐨𝐫𝐚𝐥𝐥 Bird 𝑏, 𝑑 𝑎, 𝑏 < 𝑘

Indeed: If initially all birds are “close” they keep close.
But: With two groups at distance 𝑘1 > 𝑘, the property may 
not hold.
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• pick might always select bird from the same group. 
• To avoid this, we assign Birds a 𝑔𝑟𝑜𝑢𝑝𝐼𝑑 and force them to look at a 

different group after each step (pick … where … adds further 
constraints when choosing agents)

𝑝 ≔ pick 1 where 𝑐ℎ𝑒𝑐𝑘 = 0 or 𝑔𝑟𝑜𝑢𝑝𝐼𝑑! ≠ 𝑔𝑟𝑜𝑢𝑝𝐼𝑑 ;
𝑐ℎ𝑒𝑐𝑘 = 𝑐ℎ𝑒𝑐𝑘 + 1 mod 2;

• With this fix the property holds for several values of 𝑘, 𝐵
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Conclusion

• Bottom-up modelling with LAbS
• Compact specifications of individual behaviours
• No explicit communication primitives
• Possibility of gradual improvements

• Simulations
• Some assurance that the desired collective behaviour will emerge
• Feedback to refine specifications

• Verification
• Catch subtle bugs
• Can definitely prove the emergence of desired collective features
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Next steps

•Modelling flocks in 3D
• Statistical model checking 
• Runtime verification
• Use other verification back ends
• Extend the range of supported properties
• Consider different approaches and compare
• Discrete-time dynamics (e.g., Boids)
• Equational modelling (
• Decentralized control laws 
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QUESTIONS?
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