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Which system specifications can be implemented as distributed systems?

Our Question

Which system specifications can be implemented as distributed systems?

Distributed systems:
● Components on different locations
● Signals between components take time to travel.

So, communication is asynchronous.
●

Specifications allow synchronous communication.

How to simulate synchronous by asynchronous communication?

Trivial solution: Locate the entire system in one spot.
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Which system specifications can be implemented as distributed systems?

Our Question

Which system specifications can be implemented as distributed systems?

Distributed systems:
● Components on different locations
● Signals between components take time to travel.

So, communication is asynchronous.
● Components only allow sequential behaviour.

Specifications allow synchronous communication.

How to simulate synchronous by asynchronous communication?
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System model

We need to model concurrency.

We pick Petri nets as our system model.
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Quick or slow movement of tokens
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Outline

- A net is distributed iff it is possible to assign a location to all places and transitions such 
that a transition is co-located with each of its preplaces and two co-located transitions 
can never fire in one step.

- A net is distributable iff it may be implemented as a distributed net in the above sense 
(i.e. consisting of sequential components).

Which nets can be distributed?
Up to which equivalence?
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Outline

- A net is distributed iff it is possible to assign a location to all places and transitions such 
that a transition is co-located with each of its preplaces and two co-located transitions 
can never fire in one step.

- A net is distributable iff it may be implemented as a distributed net in the above sense 
(i.e. consisting of sequential components).

Which nets can be distributed?
Up to which equivalence?

[GGS 2008]: There are nets (with Ms) that can not be distributed up to an equivalence that 
takes concurrency, divergence and branching time into account to a small extent.
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Outline

- A net is distributed iff it is possible to assign a location to all places and transitions such 
that a transition is co-located with each of its preplaces and two co-located transitions 
can never fire in one step.

- A net is distributable iff it may be implemented as a distributed net in the above sense 
(i.e. consisting of sequential components).

Which nets can be distributed?
Up to which equivalence?

Main result [Schicke 2008]: An intuitively satisfactory construction that gives a distributed 
implementation of every net, preserving completed ST-trace equivalence.

But: [Badouel,Caillaud,Darondeau 2002] provides a straightforward, yet unsatisfactory 
construction with the same properties. 
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New Requirement

This talk proposes a new requirement on distributed implementations.

If an action is inevitable in the specification,
it must be inevitable in the distributed implementation.
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Inevitability

An action is inevitable iff it occurs in each complete run of a net.

A run is complete iff no transition remains continuously enabled.
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Open Problem

Does each finite Petri net admit a finite distributed implementation that 
preserves inevitability as well as interleaving trace equivalence – or even 
some finer equivalence?
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Open Problem

Does each finite Petri net admit a finite distributed implementation that 
preserves inevitability as well as interleaving trace equivalence – or even 
some finer equivalence?

So far, we have no idea.

Walter Vogler [2002] has shown: Petri nets enriched with read arcs are more 
expressive than standard nets.

We now revisit the above question allowing read arcs in distributed 
implementations.
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Read Arcs and Distributability

y n

Are reads instantaneous?

y n

Can read arcs cross locations?

Do we allow asymmetric 
concurrency at a location?

y n

Read arcs
do not help.

Unphysical!

y n

Unphysical?
We propose 
listen arcs.

Every net can be distributed!
(Preserving inevitability and a linear time equivalence.)
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Asymmetric Concurrency Relation

(a) a and b inevitable
(b) neither inevitable
(c) a inevitable, but b not
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Listen Arcs

A (labelled) Petri net with listen arcs is a tuple (S, T, F, L, M0, l) where:
● S and T are disjoint sets (of places and transitions),
● F  SxT  TxS (the flow relation),
● L  SxT (the listen relation),
● M0  S  L (the initial marking), and
● l: T  Act (the labelling function) for some alphabet Act.

A state of a net is given by a marking M  S  L.
The firing rule allows three kinds of state changes:

- A listen arc (s,t) can be activated, M  M →  {(s,t)}, if s  M.
- A listen arc (s,t) can be deactivated, M  {(s,t)}  M→ , if s  M.
- A transition can fire as usual if all its incoming listen arcs are in M.

such that if s  M0 and (s, t)  L then (s, t) 
 M0.
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Complete Runs with Listen Arcs

A run of a net with listen arcs is complete iff
● no transition remains continuously enabled,
● no listen arc (s,t) remains inactive even though  s  remains marked, and
● no listen arc (s,t) remains active even though  s  remains unmarked.



20 / 22

Conclusions

● New requirement for distributed implementations of  concurrent systems
● Rules out proposed implementations that were intuitively unsatisfactory
● Distributed implementation of general Petri nets, preserving inevitability 

as well as completed ST-trace equivalence, extending Petri Nets with 
listen arcs

● Construction also works with read arcs, but not with a strict definition of 
what is allowed in a distributed implementation
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Conclusions

● New requirement for distributed implementations of  concurrent systems
● Rules out proposed implementations that were intuitively unsatisfactory
● Distributed implementation of general Petri nets, preserving inevitability 

as well as completed ST-trace equivalence, extending Petri Nets with 
listen arcs

● Construction also works with read arcs, but not with a strict definition of 
what is allowed in a distributed implementation

Further research
● Is such a result possible without read or listen arcs?
● Extend with probabilities 
● Proof (im)possibility results for branching time equivalences
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