
 Just
 Distributability

 Bertinoro, June 2023Bertinoro, June 2023

L

Rob van Glabbeek, Ursula Goltz
and Jens-Wolfhard Schicke-Uffmann

2 / 22

Which system specifications can be implemented as distributed systems?

Our Question

Which system specifications can be implemented as distributed systems?

3 / 22

Which system specifications can be implemented as distributed systems?

Our Question

Which system specifications can be implemented as distributed systems?

Distributed systems:
● Components on different locations
● Signals between components take time to travel.

So, communication is asynchronous.
●

Specifications allow synchronous communication.

How to simulate synchronous by asynchronous communication?

4 / 22

Which system specifications can be implemented as distributed systems?

Our Question

Which system specifications can be implemented as distributed systems?

Distributed systems:
● Components on different locations
● Signals between components take time to travel.

So, communication is asynchronous.
●

Specifications allow synchronous communication.

How to simulate synchronous by asynchronous communication?

Trivial solution: Locate the entire system in one spot.

5 / 22

Which system specifications can be implemented as distributed systems?

Our Question

Which system specifications can be implemented as distributed systems?

Distributed systems:
● Components on different locations
● Signals between components take time to travel.

So, communication is asynchronous.
● Components only allow sequential behaviour.

Specifications allow synchronous communication.

How to simulate synchronous by asynchronous communication?

6 / 22

System model

We need to model concurrency.

We pick Petri nets as our system model.

7 / 22

Quick or slow movement of tokens

8 / 22

Outline

- A net is distributed iff it is possible to assign a location to all places and transitions such
that a transition is co-located with each of its preplaces and two co-located transitions
can never fire in one step.

- A net is distributable iff it may be implemented as a distributed net in the above sense
(i.e. consisting of sequential components).

Which nets can be distributed?
Up to which equivalence?

.

9 / 22

Outline

- A net is distributed iff it is possible to assign a location to all places and transitions such
that a transition is co-located with each of its preplaces and two co-located transitions
can never fire in one step.

- A net is distributable iff it may be implemented as a distributed net in the above sense
(i.e. consisting of sequential components).

Which nets can be distributed?
Up to which equivalence?

[GGS 2008]: There are nets (with Ms) that can not be distributed up to an equivalence that
takes concurrency, divergence and branching time into account to a small extent.

10 / 22

Outline

- A net is distributed iff it is possible to assign a location to all places and transitions such
that a transition is co-located with each of its preplaces and two co-located transitions
can never fire in one step.

- A net is distributable iff it may be implemented as a distributed net in the above sense
(i.e. consisting of sequential components).

Which nets can be distributed?
Up to which equivalence?

Main result [Schicke 2008]: An intuitively satisfactory construction that gives a distributed
implementation of every net, preserving completed ST-trace equivalence.

But: [Badouel,Caillaud,Darondeau 2002] provides a straightforward, yet unsatisfactory
construction with the same properties.

11 / 22

New Requirement

This talk proposes a new requirement on distributed implementations.

If an action is inevitable in the specification,
it must be inevitable in the distributed implementation.

12 / 22

Inevitability

An action is inevitable iff it occurs in each complete run of a net.

A run is complete iff no transition remains continuously enabled.

13 / 22

Open Problem

Does each finite Petri net admit a finite distributed implementation that
preserves inevitability as well as interleaving trace equivalence – or even
some finer equivalence?

14 / 22

Open Problem

Does each finite Petri net admit a finite distributed implementation that
preserves inevitability as well as interleaving trace equivalence – or even
some finer equivalence?

So far, we have no idea.

15 / 22

Open Problem

Does each finite Petri net admit a finite distributed implementation that
preserves inevitability as well as interleaving trace equivalence – or even
some finer equivalence?

So far, we have no idea.

Walter Vogler [2002] has shown: Petri nets enriched with read arcs are more
expressive than standard nets.

We now revisit the above question allowing read arcs in distributed
implementations.

16 / 22

Read Arcs and Distributability

y n

Are reads instantaneous?

y n

Can read arcs cross locations?

Do we allow asymmetric
concurrency at a location?

y n

Read arcs
do not help.

Unphysical!

y n

Unphysical?
We propose
listen arcs.

Every net can be distributed!
(Preserving inevitability and a linear time equivalence.)

17 / 22

Asymmetric Concurrency Relation

(a) a and b inevitable
(b) neither inevitable
(c) a inevitable, but b not

18 / 22

Listen Arcs

A (labelled) Petri net with listen arcs is a tuple (S, T, F, L, M0, l) where:
● S and T are disjoint sets (of places and transitions),
● F  SxT  TxS (the flow relation),
● L  SxT (the listen relation),
● M0  S  L (the initial marking), and
● l: T  Act (the labelling function) for some alphabet Act.

A state of a net is given by a marking M  S  L.
The firing rule allows three kinds of state changes:

- A listen arc (s,t) can be activated, M M →  {(s,t)}, if s  M.
- A listen arc (s,t) can be deactivated, M  {(s,t)} M→ , if s  M.
- A transition can fire as usual if all its incoming listen arcs are in M.

such that if s  M0 and (s, t)  L then (s, t)
 M0.

19 / 22

Complete Runs with Listen Arcs

A run of a net with listen arcs is complete iff
● no transition remains continuously enabled,
● no listen arc (s,t) remains inactive even though s remains marked, and
● no listen arc (s,t) remains active even though s remains unmarked.

20 / 22

Conclusions

● New requirement for distributed implementations of concurrent systems
● Rules out proposed implementations that were intuitively unsatisfactory
● Distributed implementation of general Petri nets, preserving inevitability

as well as completed ST-trace equivalence, extending Petri Nets with
listen arcs

● Construction also works with read arcs, but not with a strict definition of
what is allowed in a distributed implementation

21 / 22

Conclusions

● New requirement for distributed implementations of concurrent systems
● Rules out proposed implementations that were intuitively unsatisfactory
● Distributed implementation of general Petri nets, preserving inevitability

as well as completed ST-trace equivalence, extending Petri Nets with
listen arcs

● Construction also works with read arcs, but not with a strict definition of
what is allowed in a distributed implementation

Further research
● Is such a result possible without read or listen arcs?
● Extend with probabilities
● Proof (im)possibility results for branching time equivalences

22 / 22

References

[Badouel,Caillaud,Darondeau 2002]: É. Badouel, B. Caillaud, P. Darondeau, 2002,
Distributing Finite Automata Through Petri Net Synthesis. Formal Ascpects of Computing
13(6), pp. 447ff, doi:10.1007/s001650200022

[GGS 2008]: R.J. van Glabbeek, U. Goltz, J.-W. Schicke, 2008, On Synchronous and
Asynchronous Interaction in Distributed Systems. In E. Ochmański & J. Tyszkiewicz,
editors: MFCS 2008, LNCS 5162, Springer, pp. 16ff, doi:10.1007/978-3-540-85238-4_2.

[Schicke 2008]: J.-W. Schicke, 2009, Diplomarbeit, Synchrony and Asynchrony in Petri nets.
TU Braunschweig

[Vogler 2002]: W. Vogler, Efficiency of asynchronous systems, read arcs, and the MUTEX-
problem. Theoretical Computer Science 275(1-2), pp. 589ff, doi:10.1016/S0304-
3975(01)00300-0

Acknowledgments

to Jens and Christiane Goltz for technical help in preparing slides

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

