Rooted Divergence-Preserving Branching Bisimilarity is a Congruence for Weakly Guarded CCS

Quán Sūn David N. Jansen ${ }^{\text {SCAS }}$ Xïnxïn Liǔ ${ }^{\text {IECAS (C) Wēi Zhāng }}$
Nanjing University of Aeronautics and Astronautics, China
LSeAs Institute of Software, Chinese Academy of Sciences, Beijing, China
(1ii) Southwest University, Chongqing, China
Dies diem docet

008

calculus of communicating systems

- Process algebra to describe behaviour of a computer system (behaviour := what actions can the system do? in which order? what choices can it make?
what communication/synchronisation is possible?)
- Action names $\mathcal{A}=\{a, b, c, \ldots\}$ and co-names $\overline{\mathcal{A}}=\{\bar{a}, \bar{b}, \bar{c}, \ldots\}$.

Labels $\mathcal{L}:=\mathcal{A} \cup \overline{\mathcal{A}}$.

$$
\ell \in \mathcal{L} .
$$

Actions Act $=\mathcal{L} \cup\{\tau\}$. (τ is the internal or invisible action.) $a, \beta, \ldots \in$ Act.

- Variables $\mathcal{V}=\{X, Y, \ldots\}$.

CCS Processes

- Inaction: $0 \rightarrow$
- Action Prefix: $a . E \xrightarrow{a} E$
- Choice: $E+F$ If $E \xrightarrow{a} E^{\prime}$, then $E+F \xrightarrow{a} E^{\prime}$ If $F \xrightarrow{a} F^{\prime}$, then $E+F \xrightarrow{a} F^{\prime}$
- Variable: X Recursion: $\mu X . E$ If $E[\mu X . E / X] \xrightarrow{a} E^{\prime}$, then $\mu X . E \xrightarrow{a} E^{\prime}$

Normally we will assume that recursions are (weakly) guarded, i.e. every occurrence of X in E is within some expression of the form $a . F$.

CCS Processes

- Inaction: 0 ↔
- Action Prefix: $a . E \xrightarrow{a} E$
- Choice: $E+F$

If $E \xrightarrow{a} E^{\prime}$, then $E+F \xrightarrow{a} E^{\prime}$ If $F \underset{\rightarrow}{a} F^{\prime}$, then $E+F \xrightarrow{a} F^{\prime}$

- Variable: X Recursion: $\mu X . E$ If $E[\mu X . E / X] \xrightarrow{a} E^{\prime}$, then $\mu X . E \xrightarrow{a} E^{\prime}$
- Parallelism: $E \mid F$ If $E \xrightarrow{a} E^{\prime}$, then $E\left|F \xrightarrow{a} E^{\prime}\right| F$ If $F \xrightarrow{a} F^{\prime}$, then $E|F \xrightarrow{a} E| F^{\prime}$ If $E \xrightarrow[\longrightarrow]{\ell} E^{\prime}$ and $F \xrightarrow{\bar{\ell}} F^{\prime}$, then $E\left|F \xrightarrow{\tau} E^{\prime}\right| F^{\prime}$
- Relabelling: $E[f] \quad(f: \mathcal{L} \rightarrow \mathcal{L}$ with $f(\bar{a})=\overline{f(a)})$ If $E \xrightarrow{a} E^{\prime}$, then $E[f] \stackrel{f(a)}{ } E^{\prime}[f]$
- Restriction: EK ($L \subseteq \mathscr{L}$)

If $E \xrightarrow{a} E^{\prime}$ and $a, \bar{a} \notin L$, then $E K \xrightarrow{a} E^{\prime} \backslash$

Example: CCS counter

- Goal: model a counter for nonnegative numbers. Possible actions: inc, dec
- Idea: if the counter has value n, it has n processes that can do dec.
- $C=$ dec.inc. $C+i n c .(C \mid C)$

$$
Z=\text { inc. } C
$$

- $C=\mu X .(d e c . i n c . X+i n c .(X \mid X))$

$$
Z=\text { inc. } \mu X .(\text { dec.inc. } X+\text { inc. }(X \mid X))
$$

Expressions and Processes

- Using CCS grammar, one can define (arbitrary) expressions that may contain free variables (variable X outside subexpression $\mu X . E$)
- Process := expression without free variables
- $\mathcal{E}=$ set of all CCS expressions $\mathcal{P}=$ set of all CCS processes
- For now, restrict attention to processes

Compare processes

- specification and implementation process: the implementation process satisfies the specification if the two processes are equivalent
- depending on property: several notions of equivalence

Bisimulations

－defined through operators on relations． Let $R \subseteq \mathcal{P} \times \mathcal{P}$ be a symmetric relation．
－If $R \subseteq S(R)$ ，then R is a strong bisimulation．
$P S(R) Q$ iff $P \xrightarrow{a} P^{\prime}$ implies $Q \xrightarrow{a} Q^{\prime}$ and $P^{\prime} R Q^{\prime}$ ．
－If $R \subseteq \mathcal{B}(R)$ ，then R is a branching bisimulation． $P \mathcal{B}(R) Q$ iff $P \xrightarrow{a}, P^{\prime}$ implies $Q \Rightarrow Q^{\prime} \xrightarrow{(a)} Q^{\prime \prime}$ and $P R Q^{\prime}$ and $P^{\prime} R Q^{\prime \prime}$ ．
－If $R \subseteq \mathcal{D}(R)$ ，then R is divergence－preserving．
$P \mathcal{D}(R) Q$ iff $P \equiv P_{0} 工 P_{1} 工 P_{2} 工 \ldots$ implies $Q 工 Q^{\prime}$ and $P_{i} R Q^{\prime}$ for some i ．

Bisimilarity

- Strong bisimilarity, ~ is the union of all strong bisimulations. (lt is a strong bisimulation itself.)
- Divergence-preserving branching bisimilarity, $\approx_{\mathrm{b}}^{\Delta}$ is the union of all d.-p. branching bisimulations. (It is a d.-p. branching bisimulation itself.)

Compare processes in context

- Compositional reasoning: check simple processes separately and combine them later
- Requires that equivalence relation is a congruence, i.e. if $E \approx F$ then $C[E]=C[F]$ in all contexts $C[]$.
- (Divergence-preserving) branching bisimilarity is not a congruence: a. $0 \approx_{\mathrm{b}}^{\Delta}$ t.a. 0 , but in context $C[]:=[]+b .0$ we have $C[a .0] \not \approx_{b}^{\Delta} C[\tau . a .0]$

Rooted (d.-p.) branching bisimularity

- Root condition: first action of a process must be matched as in strong bisimilarity, later actions as in (d.-p.) branching bisimilarity
- Root condition works for weak bisimilarity and branching bisimilarity.
- Does it work for divergence-preserving branching bisimilarity?
- van Glabbeek/Luttik/Spanink 2020: Yes, for finite-state CCS
- This presentation: Yes, for weakly guarded CCS
- Our future collaboration: for full CCS?

Rooted (d.-p.) branching bisimularity

- Root condition: first action of a process must be matched as in strong bisimilarity, later actions as in (d.-p.) branching bisimilarity
- Rooted d.-p. branching bisimilarity is $=_{\mathrm{b}}^{\Delta}:=S\left(\approx_{\mathrm{b}}^{\Delta}\right) \cap S\left(\approx_{\mathrm{b}}^{\Delta}\right)^{-1}$
- Proof goal: $==_{\mathrm{b}}^{\Delta}$ is a congruence
- For processes without recursion $\mu X . E$: the proof is simple

Bisimulation up to $\approx_{\mathrm{b}}^{\Delta}$

- If $R \subseteq \mathcal{P} \times \mathcal{P}$ is symmetric, $R \subseteq \mathcal{B}(R \approx \Delta)$ and $R \subseteq \mathcal{D}\left(\approx_{\mathrm{b}}^{\Delta} R\right)$, then R is a divergence-preserving bisimulation up to \approx_{b}.
- Theorem: If R is a d.-p. bisimulation up to $\approx_{\mathrm{b}}^{\Delta}$, then $R \subseteq \approx_{\mathrm{b}}^{\Delta}$.

Bisimulations of expressions $\in \mathcal{E}$

- Expressions are bisimilar if all processes derived from them are bisimilar.
- If $f v(E) \cup f v(F)=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, then
$E \sim F$ iff $E\left[P_{1} / X_{1}, \ldots, P_{n} / X_{n}\right] \sim F\left[P_{1} / X_{1}, \ldots, P_{n} / X_{n}\right]$ for all $P_{1}, \ldots, P_{n} \in \mathcal{P}$
$E \approx_{\mathrm{b}}^{\Delta} F$ iff $E\left[P_{1} / X_{1}, \ldots, P_{n} / X_{n}\right] \approx_{\mathrm{b}}^{\Delta} F\left[P_{1} / X_{1}, \ldots, P_{n} / X_{n}\right]$ for all $P_{1}, \ldots, P_{n} \in \mathcal{P}$
$E={ }_{\mathrm{b}}^{\Delta} F$ iff $E\left[P_{1} / X_{1}, \ldots, P_{n} / X_{n}\right]={ }_{\mathrm{b}}^{\Delta} F\left[P_{1} / X_{1}, \ldots, P_{n} / X_{n}\right]$ for all $P_{1}, \ldots, P_{n} \in \mathcal{P}$

Key lemma for $\mu X . E$

Lemma. Let $E, F \in \mathcal{E}$ be expressions that contain (at most) X as free variable, and X be weakly guarded in E, F. If $E={ }_{\mathrm{b}}^{\Delta} F$, then $\mu X . E={ }_{\mathrm{b}}^{\Delta} \mu X . F$.

Proof. We define the relation:

$$
R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\}
$$

This relation satisfies:
(1) $R \subseteq S\left(R \approx{ }_{\mathrm{b}}^{\Delta}\right)$
(2) $R^{-1} \subseteq S\left(R^{-1} \approx_{\mathrm{b}}^{\Delta}\right)$
(3) $R \subseteq S\left(\approx_{\mathrm{b}}^{\Delta} R\right)$
(4) $R^{-1} \subseteq S\left(\approx_{\mathrm{b}}^{\Delta} R^{-1}\right)$
(5) $R \cup R^{-1}$ is a d.-p. branching bisimulation up to $\approx_{\mathrm{b}}^{\Delta}$, so $R \subseteq \approx_{\mathrm{b}}^{\Delta}$.

Key lemma for $\mu X . E$

$$
R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\} \quad \text { (1) } R \subseteq S\left(R \approx \approx_{\mathrm{b}}^{\Delta}\right)
$$

We prove: If $G[\mu X . E / X] \xrightarrow{a}, P^{\prime}$, then there exists Q^{\prime} such that $G[\mu X . F / X] \xrightarrow{a} Q^{\prime}$ and $P^{\prime} R \approx_{\mathrm{b}}^{\Delta} Q^{\prime}$.

Proof by transition induction
(i.e. induction over the derivation of the transition $\left.G[\mu X . E / X] \stackrel{a}{a}, P^{\prime}\right):$ Assume that it holds for all $\tilde{G}[\mu X . E / X] \stackrel{\tilde{a}}{a} \tilde{P}^{\prime}$ with a shorter derivation, then we prove the statement for $G[\mu X . E / X] \stackrel{a}{a} P^{\prime}$.

Within the transition induction: case distinction on the form of G.

Key lemma for $\mu X . E$

$$
R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\} \quad \text { (1) } R \subseteq S\left(R \approx_{\mathrm{b}}^{\Delta}\right)
$$

We prove: If $G[\mu X . E / X] \xrightarrow{a}, P^{\prime}$, then there exists Q^{\prime} such that $G[\mu X . F / X] \xrightarrow{a} Q^{\prime}$ and $P^{\prime} R \approx_{\mathrm{b}}^{\Delta} Q^{\prime}$.

Assume that $G=X$, i.e. $G[\mu X . E / X]=\mu X . E$.
If $\mu X . E \stackrel{a}{a} P^{\prime}$, this is the case because $E[\mu X . E / X] \stackrel{a}{a} P^{\prime}$ by a shorter inference. So, by induction hypothesis, there is $Q^{\prime \prime}$ s.t. $E[\mu X . F / X] \stackrel{a}{a} Q^{\prime \prime}$ and $P^{\prime} R \approx_{\mathrm{b}}^{\Delta} Q^{\prime \prime}$. But $E=\Delta{ }_{\mathrm{b}} F$, so $E[\mu X . F / X]={ }_{\mathrm{b}}^{\Delta} F[\mu X . F / X]$, so there is Q^{\prime} s.t. $F[\mu X . F / X] \stackrel{a}{a} Q^{\prime}$ and $Q^{\prime \prime} \approx_{\mathrm{b}}^{\Delta} Q^{\prime}$.
So $P^{\prime} R \approx_{\mathrm{b}}^{\Delta} \approx_{\mathrm{b}}^{\Delta} Q^{\prime}$. As $\approx_{\mathrm{b}}^{\Delta}$ is transitive, we have $P^{\prime} R \approx_{\mathrm{b}}^{\Delta} Q^{\prime}$.

Key lemma for $\mu X . E$

$R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\}$
(2) $R^{-1} \subseteq S\left(R^{-1} \approx_{\mathrm{b}}^{\Delta}\right)$

Proof exactly analogous to (1).

Key lemma for $\mu X . E$

$$
R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\} \quad \text { (3) } R \subseteq S\left(\approx_{\mathrm{b}}^{\Delta} R\right)
$$

We prove: If $G[\mu X . E / X] \stackrel{a}{a} P^{\prime}$, then there exists Q^{\prime} such that $G[\mu X . F / X] \xrightarrow{a} Q^{\prime}$ and $P^{\prime} \approx_{b}^{\Delta} R Q^{\prime}$.

Proof by transition induction
(i.e. induction over the derivation of the transition $\left.G[\mu X . E / X] ~ @, P^{\prime}\right):$ Assume that it holds for all $\tilde{G}[\mu X . E / X] \stackrel{\tilde{a}}{\tilde{P}} \tilde{P}^{\prime}$ with a shorter derivation, then we prove the statement for $G[\mu X . E / X] \stackrel{a}{\longrightarrow} P^{\prime}$.

Within the transition induction: case distinction on the form of G.

Key lemma for $\mu X . E$

$$
R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\} \quad \text { (3) } R \subseteq S\left(\approx_{\mathrm{b}}^{\Delta} R\right)
$$

We prove: If $G[\mu X . E / X] \xrightarrow{a}, P^{\prime}$, then there exists Q^{\prime} such that $G[\mu X . F / X] \xrightarrow{a} Q^{\prime}$ and $P^{\prime} \approx_{b}^{\Delta} R Q^{\prime}$.

Assume that $G \equiv X$, i.e. $G[\mu X . E / X] \equiv \mu X . E$.
If $\mu X . E \xrightarrow{a}, P^{\prime}$, this is the case because $E[\mu X . E / X] \xrightarrow{a}, P^{\prime}$.
As $E=\Delta \stackrel{\Delta}{\mathrm{b}} F$, so $E[\mu X . E / X]={ }_{\mathrm{b}}^{\Delta} F[\mu X . E / X]$, so there is $P^{\prime \prime}$ s.t. $F[\mu X . E / X] \stackrel{a}{ } P^{\prime \prime}$ and $P^{\prime} \approx_{b}^{\Delta} P^{\prime \prime}$.
Now, as X is weakly guarded in F, there is F^{\prime} s.t. $F \underset{a}{a} F^{\prime}$ and $P^{\prime \prime} \equiv F^{\prime}[\mu X . E / X]$. Also, $F[\mu X . F / X] \xrightarrow{a}, F^{\prime}[\mu X . F / X]$, so $\mu X . F \xrightarrow{a}, F^{\prime}[\mu X . F / X] \equiv: Q^{\prime}$. Then $P^{\prime} \approx_{b}^{\Delta} R Q^{\prime}$.

Key lemma for $\mu X . E$

$R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\}$ (4) $R^{-1} \subseteq S\left(\approx_{\mathrm{b}}^{\Delta} R^{-1}\right)$

Proof exactly analogous to (3).

Key lemma for $\mu X . E$

$$
R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\}
$$

(5) $R \cup R^{-1}$ is a d.-p. branching bisimulation up to $\approx_{\mathrm{b}}^{\Delta}$, so $R \subseteq \approx_{\mathrm{b}}^{\Delta}$.

\[

\]

(3) and (4)

$$
\begin{array}{lllll}
R & \subseteq & S\left(\approx_{\mathrm{b}}^{\Delta} R\right) & \subseteq \mathcal{D}\left(\approx_{\mathrm{b}}^{\Delta} R\right) & \subseteq \\
R^{-1} \subseteq & \subseteq & \mathcal{D}\left(\approx_{\mathrm{b}}^{\Delta}\left(R \cup R^{-1}\right)\right) \\
\left.\mathrm{A}_{\mathrm{b}}^{\Delta} R^{-1}\right) & \subseteq \mathcal{D}\left(\approx_{\mathrm{b}}^{\Delta} R^{-1}\right) & \subseteq & \mathcal{D}\left(\approx_{\mathrm{b}}^{\Delta}\left(R \cup R^{-1}\right)\right)
\end{array}
$$

Key lemma for $\mu X . E$

$R=\{(G[\mu X . E / X], G[\mu X . F / X]) \mid G \in \mathcal{E}, f v(G) \subseteq\{X\}\}$
(5) $R \cup R^{-1}$ is a d.-p. branching bisimulation up to $\approx_{\mathrm{b}}^{\Delta}$, so $R \subseteq \approx_{\mathrm{b}}^{\Delta}$.

Consequence of (5): $R \approx_{\mathrm{b}}^{\Delta} \subseteq \approx_{\mathrm{b}}^{\Delta} \approx_{\mathrm{b}}^{\Delta} \subseteq \approx_{\mathrm{b}}^{\Delta}$.
So, $R \subseteq S\left(R \approx_{\mathrm{b}}^{\Delta}\right) \subseteq S\left(\approx_{\mathrm{b}}^{\Delta}\right)$. Similarly, $R^{-1} \subseteq S\left(R^{-1} \approx_{\mathrm{b}}^{\Delta}\right) \subseteq S\left(\approx_{\mathrm{b}}^{\Delta}\right)$, so $R \subseteq S\left(\approx_{\mathrm{b}}^{\Delta}\right)^{-1}$.
So, $R \subseteq S\left(\approx_{\mathrm{b}}^{\Delta}\right) \cap S\left(\approx_{\mathrm{b}}^{\Delta}\right)^{-1} \subseteq=_{\mathrm{b}}^{\Delta}$.
Finally $\mu X . E=X[\mu X . E / X] R X[\mu X . F / X] \equiv \mu X . F$, so $\mu X . E={ }_{b}^{\Delta} \mu X . F$.
Lemma. Let $E, F \in \mathcal{E}$ be expressions that contain (at most) X as free variable. and X be weakly guarded in E, F. If $E=\Delta b$, then $\mu X . E={ }_{b}^{\Delta} \mu X . F$.

Congruence for all expressions

Theorem. Let $E, F \in \mathcal{E}$ be expressions with $E==_{\mathrm{b}}^{\Delta} F$.
Then $a \cdot E={ }_{b}^{\Delta} a \cdot F$,

$$
\begin{aligned}
E+D & ={ }_{\mathrm{b}}^{\Delta} F+D, \quad D+E={ }_{\mathrm{b}}^{\Delta} D+F, \\
E \mid D & =\Delta \mathrm{b} F|D, \quad D| E={ }_{\mathrm{b}}^{\Delta} D \mid F, \\
E \mathbb{\mathrm { b }} & ={ }_{\mathrm{b}}^{\Delta} F V, \\
E[f] & ={ }_{\mathrm{b}}^{\Delta} F[f], \text { and } \\
\mu X . E & ={ }_{\mathrm{b}}^{\Delta} \mu X . F \text { if } X \text { is weakly guarded in } E \text { and } F .
\end{aligned}
$$

Proof: substitutions are transparent, e.g. $a .(E[P / X, \ldots]) \equiv(a . E)[P / X, \ldots]$.

Consequences

- Weak guardedness is the only restriction of the result. In practice, it does not make sense to have unguarded variables, as they do not lead to any behaviours.
\rightarrow Rooted divergence-preserving branching bisimilarity is a congruence for all practically relevant CCS processes.
- Simple general components (e.g. counters) may require infinite state space \Rightarrow Component library can be filled with usable components; they can be combined without changing the specified behaviour.

Still Open...

- Still, the proof requires that recursions be weakly guarded.
- While unguarded variables do not add any behaviours, there may be situations where eliminating them is complex.

May also need to restrict contexts to those avoiding unguarded variables.

- Problem: In step (3) of the key lemma, we cannot use the full power of transition induction.

