
Quán Sūn David N. Jansen Xīnxīn Liǔ Wēi Zhāng .

Nanjing University of Aeronautics and Astronautics, China

Institute of Software, Chinese Academy of Sciences, Beijing, China

Southwest University, Chongqing, China

Quan Sun David N. Jansen Xinxin Liu Wei Zhang .

Nanjing University of Aeronautics and Astronautics, China

Institute of Software, Chinese Academy of Sciences, Beijing, China

Southwest University, Chongqing, China

Dies diem docet

Rooted Divergence-Preserving Root  
Branching Bisimilarity 

is a Congruence 
for Weakly Guarded CCS

1

CCS
calculus of communicating systems

• Process algebra to describe behaviour of a computer system 
(behaviour := what actions can the system do? in which order? 
(behaviour := what choices can it make? 
(behaviour := what communication/synchronisation is possible?)

• Action names A = {a, b, c, ...} and co-names Ā = {ā, b̄, c̄, ...}. 
Labels L := A ∪ Ā. 𝓁 ∈ L. 

Actions Act = L ∪ {τ}. (τ is the internal or invisible action.) α, β, ... ∈ Act.

• Variables V = {X, Y, ...}.

2

CCS Processes
calculus of communicating systems

• Inaction: 0 ⟶

• Action Prefix: α.E ⟶ E

• Choice: E + F 
If E ⟶ E′, then E + F ⟶ E′ 
If F ⟶ F′, then E + F ⟶ F′

• Variable: X 
Recursion: μX.E 
If E[μX.E/X] ⟶ E′, 
then μX.E ⟶ E′

α

/

α

α

α

α

α

3

Normally we will assume that
recursions are (weakly) guarded,

i.e. every occurrence of X in E
is within some expression

of the form α.F.
α

CCS Processes
calculus of communicating systems

• Inaction: 0 ⟶

• Action Prefix: α.E ⟶ E

• Choice: E + F 
If E ⟶ E′, then E + F ⟶ E′ 
If F ⟶ F′, then E + F ⟶ F′

• Variable: X 
Recursion: μX.E 
If E[μX.E/X] ⟶ E′, 
then μX.E ⟶ E′

• Parallelism: E | F 
If E ⟶ E′, then E | F ⟶ E′ | F 
If F ⟶ F′, then E | F ⟶ E | F′ 
If E ⟶ E′ and F ⟶ F′, then E | F ⟶ E′ | F′

• Relabelling: E[f] (f : L → L with f(ā) = f(a)) 
If E ⟶ E′, then E[f] ⟶ E′[f]

• Restriction: E\L (L ⊆ L) 
If E ⟶ E′ and α, ᾱ ∉ L, 
then E\L ⟶ E′\L

α

/

α

α

α

α

α

α

α

α

𝓁 𝓁 τ

α f(α)

α

α
α

α

4

Example: CCS counter
• Goal: model a counter for nonnegative numbers. 

Possible actions: inc, dec

• Idea: if the counter has value n, it has n processes that can do dec.

• C = dec.inc.C + inc.(C | C) Z = inc.C

• C = μX.(dec.inc.X + inc.(X | X)) Z = inc.μX.(dec.inc.X + inc.(X | X))

5

Expressions and Processes
• Using CCS grammar, one can define (arbitrary) expressions  

that may contain free variables (variable X outside subexpression μX.E)

• Process := expression without free variables

• E = set of all CCS expressions 
P = set of all CCS processes

• For now, restrict attention to processes

6

Compare processes
• specification and implementation process: 

the implementation process satisfies the specification 
if the two processes are equivalent

• depending on property: several notions of equivalence

X

Bisimulations
• defined through operators on relations. 

Let R ⊆ P × P be a symmetric relation.

• If R ⊆ S(R), then R is a strong bisimulation. 
P S(R) Q iff P ⟶ P′ implies Q ⟶ Q′ and P′ R Q′.

• If R ⊆ B(R), then R is a branching bisimulation. 
P B(R) Q iff P ⟶ P′ implies Q ⟹ Q′ ⟶ Q″ and P R Q′ and P′ R Q″.

• If R ⊆ D(R), then R is divergence-preserving. 
P D(R) Q iff P ≡ P0 ⟶ P1 ⟶ P2 ⟶ ... implies Q ⟶ Q′ and Pi R Q′ for some i.

α α

α (α)

τ τ τ τ

7

Bisimilarity
• Strong bisimilarity, ~ 

is the union of all strong bisimulations. 
(It is a strong bisimulation itself.)

• Divergence-preserving branching bisimilarity, ≈b
Δ 

is the union of all d.-p. branching bisimulations. 
(It is a d.-p. branching bisimulation itself.)

8

Compare processes in context
• Compositional reasoning: 

check simple processes separately and combine them later

• Requires that equivalence relation is a congruence, 
i.e. if E ≍ F then C[E] ≍ C[F] in all contexts C[].

• (Divergence-preserving) branching bisimilarity is not a congruence: 
a.0 ≈b

Δ τ.a.0, 
but in context C[] := [] + b.0 we have C[a.0] ≉b

Δ C[τ.a.0]

9

Rooted (d.-p.) branching bisimularity
• Root condition: 

first action of a process must be matched as in strong bisimilarity, 
later actions as in (d.-p.) branching bisimilarity

• Root condition works for weak bisimilarity and branching bisimilarity.

• Does it work for divergence-preserving branching bisimilarity?

• van Glabbeek/Luttik/Spanink 2020: Yes, for finite-state CCS

• This presentation: Yes, for weakly guarded CCS

• Our future collaboration: for full CCS?

10

Rooted (d.-p.) branching bisimularity
• Root condition: 

first action of a process must be matched as in strong bisimilarity, 
later actions as in (d.-p.) branching bisimilarity

• Rooted d.-p. branching bisimilarity is =b
Δ := S(≈b

Δ) ∩ S(≈b
Δ)–1

• Proof goal: =b
Δ is a congruence

• For processes without recursion μX.E: the proof is simple

11

Bisimulation up to ≈b
Δ

• If R ⊆ P × P is symmetric, R ⊆ B(R≈b
Δ) and R ⊆ D(≈b

ΔR), 
then R is a divergence-preserving bisimulation up to ≈b

Δ.

• Theorem: If R is a d.-p. bisimulation up to ≈b
Δ, then R ⊆ ≈b

Δ.

12

Bisimulations of expressions ∈ E
• Expressions are bisimilar if all processes derived from them are bisimilar.

• If fv(E) ∪ fv(F) = { X1, X2, ..., Xn }, then 
E ~ F iff E[P1/X1, ..., Pn/Xn] ~ F[P1/X1, ..., Pn/Xn] for all P1, ..., Pn ∈ P  

E ≈b
Δ F iff E[P1/X1, ..., Pn/Xn] ≈b

Δ F[P1/X1, ..., Pn/Xn] for all P1, ..., Pn ∈ P 

E =b
Δ F iff E[P1/X1, ..., Pn/Xn] =b

Δ F[P1/X1, ..., Pn/Xn] for all P1, ..., Pn ∈ P

13

Key lemma for μX.E
Lemma. Let E, F ∈ E be expressions that contain (at most) X as free variable,
Lemma. and X be weakly guarded in E, F. If E =b

Δ F, then μX.E =b
Δ μX.F.

Proof. We define the relation: 
 R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } 
Proof. This relation satisfies: 
 

 (1) R ⊆ S(R≈b
Δ) (2) R–1 ⊆ S(R–1≈b

Δ) 
 

 (3) R ⊆ S(≈b
ΔR) (4) R–1 ⊆ S(≈b

ΔR–1) 
 

 (5) R ∪ R–1 is a d.-p. branching bisimulation up to ≈b
Δ, so R ⊆ ≈b

Δ.

14

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } (1) R ⊆ S(R≈b

Δ)

We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ R≈b

Δ Q′.

Proof by transition induction 
(i.e. induction over the derivation of the transition G[μX.E/X] ⟶ P′): 
Assume that it holds for all G̃[μX.E/X] ⟶ P̃′ with a shorter derivation, 
then we prove the statement for G[μX.E/X] ⟶ P′.

Within the transition induction: case distinction on the form of G.

15

α

α̃

α

α

α

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } (1) R ⊆ S(R≈b

Δ)

We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ R≈b

Δ Q′.

Assume that G ≡ X, i.e. G[μX.E/X] ≡ μX.E. 
If μX.E ⟶ P′, this is the case because E[μX.E/X] ⟶ P′ by a shorter inference. 
So, by induction hypothesis, there is Q″ s.t. E[μX.F/X] ⟶ Q″ and P′ R≈b

Δ Q″. 
But E =b

Δ F, so E[μX.F/X] =b
Δ F[μX.F/X], so there is Q′ s.t. F[μX.F/X] ⟶ Q′ and

Q″ ≈b
Δ Q′. 

So P′ R≈b
Δ≈b

Δ Q′. As ≈b
Δ is transitive, we have P′ R≈b

Δ Q′.

16

α

α

α α

α

α

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } (2) R–1 ⊆ S(R–1≈b

Δ)

Proof exactly analogous to (1).

17

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } (3) R ⊆ S(≈b

ΔR)

We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ ≈b

ΔR Q′.

Proof by transition induction 
(i.e. induction over the derivation of the transition G[μX.E/X] ⟶ P′): 
Assume that it holds for all G̃[μX.E/X] ⟶ P̃′ with a shorter derivation, 
then we prove the statement for G[μX.E/X] ⟶ P′.

Within the transition induction: case distinction on the form of G.

18

α

α

α

α̃

α

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } (3) R ⊆ S(≈b

ΔR)

We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ ≈b

ΔR Q′.

Assume that G ≡ X, i.e. G[μX.E/X] ≡ μX.E. 
If μX.E ⟶ P′, this is the case because E[μX.E/X] ⟶ P′. 
As E =b

Δ F, so E[μX.E/X] =b
Δ F[μX.E/X], so there is P″ s.t. F[μX.E/X] ⟶ P″ and

P′ ≈b
Δ P″. 

Now, as X is weakly guarded in F, there is F′ s.t. F ⟶ F′ and P″ ≡ F′[μX.E/X]. 
Also, F[μX.F/X] ⟶ F′[μX.F/X], so μX.F ⟶ F′[μX.F/X] ≡: Q′. Then P′ ≈b

ΔR Q′.

19

α

α

αα

α

α

αα

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } (4) R–1 ⊆ S(≈b

ΔR–1)

Proof exactly analogous to (3).

20

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } 
(5) R ∪ R–1 is a d.-p. branching bisimulation up to ≈b

Δ, so R ⊆ ≈b
Δ.

X

(1) and (2) S⊆B monotoni- 
city of B

.R .⊆. S(R≈b
Δ) A⊆AB(R≈b

Δ) A⊆A B((R ∪ R–1)≈b
Δ)

.R–1 .⊆. S(R–1≈b
Δ)A⊆AB(R–1≈b

Δ) A⊆A B((R ∪ R–1)≈b
Δ)

(3) and (4) S⊆D monotoni-
city of D

.R .⊆. S(≈b
ΔR) A⊆AD(≈b

ΔR) A⊆A D(≈b
Δ(R ∪ R–1))

.R–1 .⊆. S(≈b
ΔR–1)A⊆AD(≈b

ΔR–1) A⊆A D(≈b
Δ(R ∪ R–1))

Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } 
(5) R ∪ R–1 is a d.-p. branching bisimulation up to ≈b

Δ, so R ⊆ ≈b
Δ.

Consequence of (5): R≈b
Δ ⊆ ≈b

Δ≈b
Δ ⊆ ≈b

Δ. 
So, R ⊆ S(R≈b

Δ) ⊆ S(≈b
Δ). Similarly, R–1 ⊆ S(R–1≈b

Δ) ⊆ S(≈b
Δ), so R ⊆ S(≈b

Δ)–1. 
So, R ⊆ S(≈b

Δ) ∩ S(≈b
Δ)–1 ⊆ =b

Δ. 
Finally μX.E ≡ X[μX.E/X] R X[μX.F/X] ≡ μX.F, so μX.E =b

Δ μX.F.

Lemma. Let E, F ∈ E be expressions that contain (at most) X as free variable. 
Lemma. and X be weakly guarded in E, F. If E =b

Δ F, then μX.E =b
Δ μX.F.

X

Congruence for all expressions
Theorem. Let E, F ∈ E be expressions with E =b

Δ F. 
Theorem. Then α.E =b

Δ α.F, 
Theorem. Then|E + D =b

Δ F + D,|| D + E =b
Δ D + F, 

Theorem. Then+E | D =b
Δ F | D,++ D | E =b

Δ D | F, 
Theorem. Then E\L =b

Δ F\L, 
Theorem. Then E[f] =b

Δ F[f], and 
Theorem. Then μX.E =b

Δ μX.F if X is weakly guarded in E and F.

Proof: substitutions are transparent, e.g. α.(E[P/X, ...]) ≡ (α.E)[P/X, ...].

21

Consequences

• Weak guardedness is the only restriction of the result. 
In practice, it does not make sense to have unguarded variables, 
as they do not lead to any behaviours. 
➥ Rooted divergence-preserving branching bisimilarity 
➥ is a congruence for all practically relevant CCS processes.

• Simple general components (e.g. counters) may require infinite state space 
➥ Component library can be filled with usable components; 
➥ they can be combined without changing the specified behaviour.

22

Still Open...

• Still, the proof requires that recursions be weakly guarded.

• While unguarded variables do not add any behaviours, 
there may be situations where eliminating them is complex. 
 
May also need to restrict contexts to those avoiding unguarded variables.

• Problem: In step (3) of the key lemma, 
Problem: we cannot use the full power of transition induction.

23

