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Dies diem docet

Rooted Divergence-Preserving Root  
Branching Bisimilarity 

is a Congruence 
for Weakly Guarded CCS
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CCS 
calculus of communicating systems

• Process algebra to describe behaviour of a computer system 
(behaviour := what actions can the system do? in which order? 
(behaviour := what choices can it make? 
(behaviour := what communication/synchronisation is possible?)


• Action names A = {a, b, c, ...} and co-names Ā = {ā, b̄, c̄, ...}. 
Labels L := A ∪ Ā.                                                                 𝓁 ∈ L. 

Actions Act = L ∪ {τ}. (τ is the internal or invisible action.)   α, β, ... ∈ Act.


• Variables V = {X, Y, ...}.
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CCS Processes 
calculus of communicating systems

• Inaction:            0 ⟶


• Action Prefix:    α.E ⟶ E


• Choice: E + F 
If E ⟶ E′, then E + F ⟶ E′ 
If F ⟶ F′, then E + F ⟶ F′


• Variable: X 
Recursion: μX.E 
If E[μX.E/X] ⟶ E′, 
then μX.E ⟶ E′
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Normally we will assume that 
recursions are (weakly) guarded, 

i.e. every occurrence of X in E 
is within some expression 

of the form α.F.
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CCS Processes 
calculus of communicating systems

• Inaction:            0 ⟶


• Action Prefix:    α.E ⟶ E


• Choice: E + F 
If E ⟶ E′, then E + F ⟶ E′ 
If F ⟶ F′, then E + F ⟶ F′


• Variable: X 
Recursion: μX.E 
If E[μX.E/X] ⟶ E′, 
then μX.E ⟶ E′ 


• Parallelism: E | F 
If E ⟶ E′, then E | F ⟶ E′ | F 
If F ⟶ F′, then E | F ⟶ E | F′ 
If E ⟶ E′ and F ⟶ F′, then E | F ⟶ E′ | F′


• Relabelling: E[f]     (f : L → L with f(ā) = f(a)) 
If E ⟶ E′, then E[f] ⟶ E′[f]


• Restriction: E\L     (L ⊆ L) 
If E ⟶ E′ and α, ᾱ ∉ L, 
then E\L ⟶ E′\L

α

/

α

α

α

α

α

α

α

α

𝓁 𝓁 τ

α f(α)

α

α
α

α

4



Example: CCS counter
• Goal: model a counter for nonnegative numbers. 

Possible actions: inc, dec


• Idea: if the counter has value n, it has n processes that can do dec.


• C = dec.inc.C + inc.(C | C)               Z = inc.C 

• C = μX.(dec.inc.X + inc.(X | X))         Z = inc.μX.(dec.inc.X + inc.(X | X))
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Expressions and Processes
• Using CCS grammar, one can define (arbitrary) expressions  

that may contain free variables (variable X outside subexpression μX.E)


• Process := expression without free variables


• E = set of all CCS expressions 
P = set of all CCS processes


• For now, restrict attention to processes
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Compare processes
• specification and implementation process: 

the implementation process satisfies the specification 
if the two processes are equivalent


• depending on property: several notions of equivalence

X



Bisimulations
• defined through operators on relations. 

Let R ⊆ P × P be a symmetric relation.


• If R ⊆ S(R), then R is a strong bisimulation. 
P S(R) Q iff P ⟶ P′ implies Q ⟶ Q′ and P′ R Q′.


• If R ⊆ B(R), then R is a branching bisimulation. 
P B(R) Q iff P ⟶ P′ implies Q ⟹ Q′ ⟶ Q″ and P R Q′ and P′ R Q″.


• If R ⊆ D(R), then R is divergence-preserving. 
P D(R) Q iff P ≡ P0 ⟶ P1 ⟶ P2 ⟶ ... implies Q ⟶ Q′ and Pi R Q′ for some i.

α α

α (α)

τ τ τ τ
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Bisimilarity
• Strong bisimilarity, ~ 

is the union of all strong bisimulations. 
(It is a strong bisimulation itself.)


• Divergence-preserving branching bisimilarity, ≈b
Δ 

is the union of all d.-p. branching bisimulations. 
(It is a d.-p. branching bisimulation itself.)
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Compare processes in context
• Compositional reasoning: 

check simple processes separately and combine them later


• Requires that equivalence relation is a congruence, 
i.e. if E ≍ F then C[E] ≍ C[F] in all contexts C[  ].


• (Divergence-preserving) branching bisimilarity is not a congruence: 
a.0 ≈b

Δ τ.a.0, 
but in context C[  ] := [  ] + b.0 we have C[a.0] ≉b

Δ C[τ.a.0]

9



Rooted (d.-p.) branching bisimularity
• Root condition: 

first action of a process must be matched as in strong bisimilarity, 
later actions as in (d.-p.) branching bisimilarity


• Root condition works for weak bisimilarity and branching bisimilarity.


• Does it work for divergence-preserving branching bisimilarity?

• van Glabbeek/Luttik/Spanink 2020: Yes, for finite-state CCS

• This presentation: Yes, for weakly guarded CCS

• Our future collaboration: for full CCS?
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Rooted (d.-p.) branching bisimularity
• Root condition: 

first action of a process must be matched as in strong bisimilarity, 
later actions as in (d.-p.) branching bisimilarity


• Rooted d.-p. branching bisimilarity is =b
Δ := S(≈b

Δ) ∩ S(≈b
Δ)–1


• Proof goal: =b
Δ is a congruence


• For processes without recursion μX.E: the proof is simple
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Bisimulation up to ≈b
Δ

• If R ⊆ P × P is symmetric, R ⊆ B(R≈b
Δ) and R ⊆ D(≈b

ΔR), 
then R is a divergence-preserving bisimulation up to ≈b

Δ.


• Theorem: If R is a d.-p. bisimulation up to ≈b
Δ, then R ⊆ ≈b

Δ.
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Bisimulations of expressions ∈ E 
• Expressions are bisimilar if all processes derived from them are bisimilar.


• If fv(E) ∪ fv(F) = { X1, X2, ..., Xn }, then 
E  ~  F iff E[P1/X1, ..., Pn/Xn]  ~  F[P1/X1, ..., Pn/Xn] for all P1, ..., Pn ∈ P  

E ≈b
Δ F iff E[P1/X1, ..., Pn/Xn] ≈b

Δ F[P1/X1, ..., Pn/Xn] for all P1, ..., Pn ∈ P 

E =b
Δ F iff E[P1/X1, ..., Pn/Xn] =b

Δ F[P1/X1, ..., Pn/Xn] for all P1, ..., Pn ∈ P 
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Key lemma for μX.E
Lemma. Let E, F ∈ E be expressions that contain (at most) X as free variable, 
Lemma. and X be weakly guarded in E, F. If E =b

Δ F, then μX.E =b
Δ μX.F.


Proof.    We define the relation: 
                    R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } 
Proof.    This relation satisfies: 
 

               (1) R ⊆ S(R≈b
Δ)                         (2) R–1 ⊆ S(R–1≈b

Δ) 
 

               (3) R ⊆ S(≈b
ΔR)                         (4) R–1 ⊆ S(≈b

ΔR–1) 
 

               (5) R ∪ R–1 is a d.-p. branching bisimulation up to ≈b
Δ, so R ⊆ ≈b

Δ.
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Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} }                    (1) R ⊆ S(R≈b

Δ)


We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ R≈b

Δ Q′.


Proof by transition induction 
(i.e. induction over the derivation of the transition G[μX.E/X] ⟶ P′): 
Assume that it holds for all G̃[μX.E/X] ⟶ P̃′ with a shorter derivation, 
then we prove the statement for G[μX.E/X] ⟶ P′.


Within the transition induction: case distinction on the form of G.
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Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} }                    (1) R ⊆ S(R≈b

Δ)


We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ R≈b

Δ Q′.


Assume that G ≡ X, i.e. G[μX.E/X] ≡ μX.E. 
If μX.E ⟶ P′, this is the case because E[μX.E/X] ⟶ P′ by a shorter inference. 
So, by induction hypothesis, there is Q″ s.t. E[μX.F/X] ⟶ Q″ and P′ R≈b

Δ Q″. 
But E =b

Δ F, so E[μX.F/X] =b
Δ F[μX.F/X], so there is Q′ s.t. F[μX.F/X] ⟶ Q′ and 

Q″ ≈b
Δ Q′. 

So P′ R≈b
Δ≈b

Δ Q′. As ≈b
Δ is transitive, we have P′ R≈b

Δ Q′.
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Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} }                    (2) R–1 ⊆ S(R–1≈b

Δ)


Proof exactly analogous to (1).
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Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} }                    (3) R ⊆ S(≈b

ΔR)


We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ ≈b

ΔR Q′.


Proof by transition induction 
(i.e. induction over the derivation of the transition G[μX.E/X] ⟶ P′): 
Assume that it holds for all G̃[μX.E/X] ⟶ P̃′ with a shorter derivation, 
then we prove the statement for G[μX.E/X] ⟶ P′.


Within the transition induction: case distinction on the form of G.
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Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} }                    (3) R ⊆ S(≈b

ΔR)


We prove: If G[μX.E/X] ⟶ P′, 
We prove: then there exists Q′ such that G[μX.F/X] ⟶ Q′ and P′ ≈b

ΔR Q′.


Assume that G ≡ X, i.e. G[μX.E/X] ≡ μX.E. 
If μX.E ⟶ P′, this is the case because E[μX.E/X] ⟶ P′. 
As E =b

Δ F, so E[μX.E/X] =b
Δ F[μX.E/X], so there is P″ s.t. F[μX.E/X] ⟶ P″ and 

P′ ≈b
Δ P″. 

Now, as X is weakly guarded in F, there is F′ s.t. F ⟶ F′ and P″ ≡ F′[μX.E/X]. 
Also, F[μX.F/X] ⟶ F′[μX.F/X], so μX.F ⟶ F′[μX.F/X] ≡: Q′. Then P′ ≈b

ΔR Q′.
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Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} }                    (4) R–1 ⊆ S(≈b

ΔR–1)


Proof exactly analogous to (3).
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Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } 
(5) R ∪ R–1 is a d.-p. branching bisimulation up to ≈b

Δ, so R ⊆ ≈b
Δ.

X

(1) and (2) S⊆B monotoni- 
city of B

.R .⊆. S(R≈b
Δ) A⊆AB(R≈b

Δ) A⊆A B((R ∪ R–1)≈b
Δ)

.R–1 .⊆. S(R–1≈b
Δ)A⊆AB(R–1≈b

Δ) A⊆A B((R ∪ R–1)≈b
Δ)

(3) and (4) S⊆D monotoni-
city of D

.R .⊆. S(≈b
ΔR) A⊆AD(≈b

ΔR) A⊆A D(≈b
Δ(R ∪ R–1))

.R–1 .⊆. S(≈b
ΔR–1)A⊆AD(≈b

ΔR–1) A⊆A D(≈b
Δ(R ∪ R–1))



Key lemma for μX.E
R = { (G[μX.E/X], G[μX.F/X]) | G ∈ E, fv(G) ⊆ {X} } 
(5) R ∪ R–1 is a d.-p. branching bisimulation up to ≈b

Δ, so R ⊆ ≈b
Δ.


Consequence of (5): R≈b
Δ ⊆ ≈b

Δ≈b
Δ ⊆ ≈b

Δ. 
So, R ⊆ S(R≈b

Δ) ⊆ S(≈b
Δ). Similarly, R–1 ⊆ S(R–1≈b

Δ) ⊆ S(≈b
Δ), so R ⊆ S(≈b

Δ)–1. 
So, R ⊆ S(≈b

Δ) ∩ S(≈b
Δ)–1 ⊆ =b

Δ. 
Finally μX.E ≡ X[μX.E/X] R X[μX.F/X] ≡ μX.F, so μX.E =b

Δ μX.F.


Lemma. Let E, F ∈ E be expressions that contain (at most) X as free variable. 
Lemma. and X be weakly guarded in E, F. If E =b

Δ F, then μX.E =b
Δ μX.F.

X



Congruence for all expressions
Theorem. Let E, F ∈ E be expressions with E =b

Δ F. 
Theorem. Then     α.E =b

Δ α.F, 
Theorem. Then|E + D =b

Δ F + D,||  D + E =b
Δ D + F, 

Theorem. Then+E | D =b
Δ F | D,++  D | E =b

Δ D | F, 
Theorem. Then     E\L =b

Δ F\L, 
Theorem. Then     E[f] =b

Δ F[f], and 
Theorem. Then   μX.E =b

Δ μX.F if X is weakly guarded in E and F.


Proof: substitutions are transparent, e.g. α.(E[P/X, ...]) ≡ (α.E)[P/X, ...].
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Consequences

• Weak guardedness is the only restriction of the result. 
In practice, it does not make sense to have unguarded variables, 
as they do not lead to any behaviours. 
➥ Rooted divergence-preserving branching bisimilarity 
➥ is a congruence for all practically relevant CCS processes.


• Simple general components (e.g. counters) may require infinite state space 
➥ Component library can be filled with usable components; 
➥ they can be combined without changing the specified behaviour.
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Still Open...

• Still, the proof requires that recursions be weakly guarded.


• While unguarded variables do not add any behaviours, 
there may be situations where eliminating them is complex. 
 
May also need to restrict contexts to those avoiding unguarded variables.


• Problem: In step (3) of the key lemma, 
Problem: we cannot use the full power of transition induction.
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