Quantitative Weakest Pre vs. Strongest Post

Linpeng Zhang Benjamin Lucien Kaminski

Open Problems in Concurrency Theory

June 28, 2023, Bertinoro, Italy

Roadmap

- **1** Revisiting Weakest Preconditions
- 2 Quantitative Weakest Pre
- **3** Quantitative Strongest Post
- 4 On Liberal vs. Non-liberal predicate/quantity transformers
 - Even Strongest Liberal Postconditions (the ones Dijkstra & Scholten forgot (or didn't care) about)
- 5 Thoughts on Hoare logic and Incorrectness Logic

— revisited —

Objective: Forecast tomorrow's weather in Bertinoro

Objective: Forecast tomorrow's weather in Bertinoro

Our Model:

 States (σ, τ,...): Snapshots of the entire state of the earth's atmosphere at a single point in time

Objective: Forecast tomorrow's weather in Bertinoro

Our Model:

- States (σ, τ,...): Snapshots of the entire state of the earth's atmosphere at a single point in time
- Programs (C,...): Algorithmic state transformers [[C]]: States → States describing how the atmosphere evolves over the course of 24h

Objective: Forecast tomorrow's weather in Bertinoro

Our Model:

- States (σ, τ,...): Snapshots of the entire state of the earth's atmosphere at a single point in time
- Programs (C,...): Algorithmic state transformers [[C]]: States → States describing how the atmosphere evolves over the course of 24h
- Predicates (F, G, ...): Mappings φ: States → {true, false} describing sets of states

Question: Will it be warm tomorrow in Bertinoro?

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

• Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Given: Predicate $F: \text{States} \rightarrow \{\text{true}, \text{false}\}$

mapping to true iff the temperature in Bertinoro is above 25 degrees

[Dijkstra'75]

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

• Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Given: Predicate $F: \text{States} \rightarrow \{\text{true}, \text{false}\}$

mapping to true iff the temperature in Bertinoro is above 25 degrees

Question: Given the current atmosphere state σ ,

will it be warm in Bertinoro in 24h

(i.e. F evaluated in state $\llbracket C \rrbracket(\sigma)$)?

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

• Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Given: Predicate $F: \text{States} \rightarrow \{\text{true}, \text{false}\}$

mapping to true iff the temperature in Bertinoro is above 25 degrees

Question: Given the current atmosphere state σ ,

will it be warm in Bertinoro in 24h

(i.e. F evaluated in state $\llbracket C \rrbracket(\sigma)$)?

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Given: Predicate $F: \text{States} \rightarrow \{\text{true}, \text{false}\}$

mapping to true iff the temperature in Bertinoro is above 25 degrees

Question: Given the current atmosphere state σ ,

will it be warm in Bertinoro in 24h

(i.e. F evaluated in state $\llbracket C \rrbracket(\sigma)$)?

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Given: Predicate $F: \text{States} \rightarrow \{\text{true}, \text{false}\}$

mapping to true iff the temperature in Bertinoro is above 25 degrees

Question: Given the current atmosphere state σ ,

will it be warm in Bertinoro in 24h

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Given: Predicate $F: \text{States} \rightarrow \{\text{true}, \text{false}\}$

mapping to true iff the temperature in Bertinoro is above 25 degrees

Question: Given the current atmosphere state σ ,

will it be warm in Bertinoro in 24h

(i.e. F evaluated in state $\llbracket C \rrbracket(\sigma)$)?

Question: Will it be warm tomorrow in Bertinoro?

More Formally:

Given: Program $\llbracket C \rrbracket$: States \rightarrow States

describing how the atmosphere evolves within 24h

Given: Predicate $F: \text{States} \rightarrow \{\text{true}, \text{false}\}$

mapping to true iff the temperature in Bertinoro is above 25 degrees

Question: Given the current atmosphere state σ ,

will it be warm in Bertinoro in 24h

(i.e. F evaluated in state $\llbracket C \rrbracket(\sigma)$)?

$$x := 2$$
 $x := 27$ $x := x + 1$

$$x := 2$$
 $x := 27$ $x := x + 1$

false

$$x := 2$$
 $x := 27$
 $x := x + 1$
 $x > 25$
 $x := 27$
 $x := x + 1$

Weakest Precondition Examples

/// false x := 2 x := 27 x := x + 1/// x > 25 /// x > 25

/// false	/// true	
x := 2	x := 27	x := x + 1
$/\!\!/ x>25$	$/\!\!/$ $x>25$	

/// false	/// true	
x := 2	x := 27	x := x + 1
$/\!\!/ x>25$	$/\!\!/ x>25$	$/\!\!/$ $x>25$

\llbracket false	/// true	$ / \hspace{15cm} / \hspace{15cm} x > 24 \\$
x := 2	x := 27	x := x + 1
$/\!\!/ x>25$	$/\!\!/ x>25$	$/\!\!/ x>25$

warm \equiv "above 25 degrees"... really?

Quantitative Weakest Pre – A Fine-grained Weather Forecast

warm \equiv "above 25 degrees"... really?

Quantitative Weakest Pre – A Fine-grained Weather Forecast

warm \equiv "above 25 degrees"... really?

Objective: Forecast tomorrow's weather in Bertinoro

Our Model:

- States (σ, τ,...): Snapshots of the entire state of the earth's atmosphere at a single point in time
- Programs (C,...): Algorithmic state transformers [[C]]: States → States describing how the atmosphere evolves over the course of 24h

Quantitative Weakest Pre – A Fine-grained Weather Forecast

warm \equiv "above 25 degrees"... really?

Objective: Forecast tomorrow's weather in Bertinoro

Our Model:

- States (σ, τ,...): Snapshots of the entire state of the earth's atmosphere at a single point in time
- Programs (C,...): Algorithmic state transformers [[C]]: States → States describing how the atmosphere evolves over the course of 24h
- **Quantities** (f, g, ...): Mappings $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

[Dijkstra'75, Kozen'83, Mclver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

■ Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- **Given:** Quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

mapping atmosphere state to Bertinoro's temperature

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- **Given:** Quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

mapping atmosphere state to Bertinoro's temperature

Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state [C](σ))?

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- **Given:** Quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

mapping atmosphere state to Bertinoro's temperature

Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. *f* evaluated in state [[C]](σ))?

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- **Given:** Quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

mapping atmosphere state to Bertinoro's temperature

Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. *f* evaluated in state [[C]](σ))?

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- **Given:** Quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

mapping atmosphere state to Bertinoro's temperature

Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. *f* evaluated in state [[C]](σ))?

Quantitative Weakest Pre

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- **Given:** Quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

mapping atmosphere state to Bertinoro's temperature

 Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state [[C]](σ))?

Quantitative Weakest Pre

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

Question: What's tomorrow's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- **Given:** Quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$

mapping atmosphere state to Bertinoro's temperature

 Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state [[C]](σ))?

Examples

$$x := 2$$
 $x := 27$ $x := x + 1$

$$x := 2 \qquad x := 27 \qquad x := x + 1$$

Examples

Examples

Quantitative Weakest Pre Examples

Quantitative Strongest Post

— our main contribution —

Quantitative Weakest Pre

Question: What's tomorrow's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state [C](σ))?

Question: What's tomorrow's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state [[C]](σ))?

σ
$\frac{1}{\tau}$

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state σ, what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state [[C]](σ))?

σ
C
$\int_{\mathcal{T}}$

Question: What was yesterday's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- **Question:** Given the current atmosphere state τ ,

what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state $[C](\sigma)$?

Question: What was yesterday's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- **Question:** Given the current atmosphere state τ ,

what will the temperature in Bertinoro be in 24h (i.e. f evaluated in state $[C](\sigma)$?

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. f evaluated in state [C](σ))?

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

σ
C
τ

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

Question: What was yesterday's temperature in Bertinoro?

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

Question: What was yesterday's temperature in Bertinoro?

More Formally:

- Given: Program [[C]]: States → States describing how the atmosphere evolves within 24h
- Given: Quantity f: States → ℝ ∪ {-∞, +∞} mapping atmosphere state to Bertinoro's temperature
- Question: Given the current atmosphere state τ, what was the temperature in Bertinoro 24h ago (i.e. in atmosphere state [[C]]⁻¹(τ))?

 $\mathsf{sp}\,\llbracket C \rrbracket\,(f):\mathsf{Quant}\to\mathsf{Quant}$

x := x + 1

$$\begin{array}{c} \swarrow & \mathbf{x} \\ x & := x + 1 \end{array}$$

$\begin{array}{c} \swarrow & x \\ x := x + 1 \\ \swarrow & \exists v : \ [x = (x + 1) \ [x/v]] \land x \ [x/v] \end{array}$

$$\begin{array}{c} \swarrow & x \\ x := x + 1 \\ \swarrow & \exists v : \ [x = (x + 1) \ [x/v]] \land x \ [x/v] \\ \swarrow & \exists v : \ [x = v + 1] \land v \end{array}$$

$$\begin{array}{c} \swarrow & x \\ x := x + 1 \\ \swarrow & \exists v : \ [x = (x + 1) \ [x/v]] \land x \ [x/v] \\ \swarrow & \exists v : \ [x = v + 1] \land v \\ \swarrow & x - 1 \end{array}$$

$$\begin{array}{c} \swarrow & x \\ x := x + 1 \ ; \\ \swarrow & \exists v : \ [x = (x + 1) \ [x/v]] \land x \ [x/v] \\ \swarrow & \exists v : \ [x = v + 1] \land v \\ \swarrow & x - 1 \\ x := x - y \end{array}$$

$$\begin{array}{c} \label{eq:constraint} \label{constraint} \label{eq:constraint} \label{eq:constra$$

$$\begin{array}{c} \swarrow & x \\ x := x + 1 \ ; \\ \swarrow & \exists v : \ [x = (x + 1) \ [x/v]] \land x \ [x/v] \\ \swarrow & \exists v : \ [x = v + 1] \land v \\ \swarrow & x - 1 \\ x := x - y \\ \swarrow & x + y - 1 \end{array}$$

Flowing Concrete State Quantity

$$\begin{array}{c} \label{eq:constraint} \label{eq:const$$

Quantitative Strongest Post and the Flow of Quantitative Information

Quantitative Strongest Post and the Flow of Quantitative Information

Quantitative Strongest Post and the Flow of Quantitative Information

Liberal vs. Non-liberal

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

- Given: Program C and (post)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the anticipated value of f after executing C?

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

- Given: Program C and (post)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the anticipated value of f after executing C?

Weakest pre: Mapping from initial state σ to anticipated value of f evaluated in final state reached after execution of C on σ.

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

- Given: Program C and (post)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the anticipated value of f after executing C?

Weakest pre: Mapping from initial state σ to anticipated value of f evaluated in final state reached after execution of C on σ.

[Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

- Given: Program C and (post)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the anticipated value of f after executing C?

Weakest pre: Mapping from initial state σ to anticipated value of f evaluated in final state reached after execution of C on σ.

• Assign $-\infty$ to wp $\llbracket C \rrbracket$ $(f)(\sigma)$ if C does <u>not</u> terminate on σ .

Quantitative Weakest Liberal Pre [Dijkstra'75, Kozen'83, Mclver&Morgan'05, OOPSLA'22]

- **Given:** Program C and (post)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the anticipated value of f after executing C?

- Weakest liberal pre: Mapping from initial state σ to anticipated value of f evaluated in final state reached after execution of C on σ.
 - Assign $-\infty$ to wlp $\llbracket C \rrbracket (f)(\sigma)$ if C does <u>not</u> terminate on σ .

Quantitative Weakest Liberal Pre [Dijkstra'75, Kozen'83, Mclver&Morgan'05, OOPSLA'22]

- **Given:** Program C and (post)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the anticipated value of f after executing C?

- Weakest liberal pre: Mapping from initial state σ to anticipated value of f evaluated in final state reached after execution of C on σ.
 - Assign $+\infty$ to wlp $\llbracket C \rrbracket (f)(\sigma)$ if C does <u>not</u> terminate on σ .

[Dijkstra'75, Kozen'83, Mclver&Morgan'05, OOPSLA'22]

- Given: Program C and (pre)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the <u>retrocipated</u> value of f <u>before</u> executing C?

[Dijkstra'75, Kozen'83, Mclver&Morgan'05, OOPSLA'22]

- Given: Program C and (pre)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the <u>retrocipated</u> value of f <u>before</u> executing C?

Strongest post: Mapping from <u>final</u> state τ to <u>maximal retrocipated</u> value of f evaluated in <u>initial</u> state(s) that can reach τ by executing C.

[Dijkstra'75, Kozen'83, Mclver&Morgan'05, OOPSLA'22]

- Given: Program C and (pre)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the <u>retrocipated</u> value of f <u>before</u> executing C?

Strongest post: Mapping from <u>final</u> state τ to <u>maximal retrocipated</u> value of f evaluated in <u>initial</u> state(s) that can reach τ by executing C.

[Dijkstra'75, Kozen'83, Mclver&Morgan'05, OOPSLA'22]

- Given: Program C and (pre)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the <u>retrocipated</u> value of f <u>before</u> executing C?

Strongest post: Mapping from <u>final</u> state τ to <u>maximal retrocipated</u> value of f evaluated in <u>initial</u> state(s) that can reach τ by executing C.

• Assign $-\infty$ to sp $\llbracket C \rrbracket(f)(\tau)$ if τ is <u>unreachable</u> by executing C.

Quantitative Strongest Liberal Post [Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

- Given: Program C and (pre)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the <u>retrocipated</u> value of f <u>before</u> executing C?

- Strongest liberal post: Mapping from <u>final</u> state τ to <u>min. retrocip.</u> value of f evaluated in <u>initial</u> state(s) that can reach τ by executing C.
 - Assign $-\infty$ to slp $\llbracket C \rrbracket (f) (\tau)$ if τ is <u>unreachable</u> by executing C.

Quantitative Strongest Liberal Post [Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

- Given: Program C and (pre)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the <u>retrocipated</u> value of f <u>before</u> executing C?

- Strongest liberal post: Mapping from <u>final</u> state τ to <u>min. retrocip.</u> value of f evaluated in <u>initial</u> state(s) that can reach τ by executing C.
 - Assign $+\infty$ to slp $\llbracket C \rrbracket (f) (\tau)$ if τ is <u>unreachable</u> by executing C.

Quantitative Strongest Liberal Post [Dijkstra'75, Kozen'83, McIver&Morgan'05, OOPSLA'22]

- Given: Program C and (pre)quantity $f: \text{States} \to \mathbb{R} \cup \{-\infty, +\infty\}$
- **Question:** What is the <u>retrocipated</u> value of f <u>before</u> executing C?

- Strongest liberal post: Mapping from <u>final</u> state τ to <u>min. retrocip.</u> value of f evaluated in <u>initial</u> state(s) that can reach τ by executing C.
 - Assign $+\infty$ to slp $\llbracket C \rrbracket (f) (\tau)$ if τ is <u>unreachable</u> by executing C.

Reversible Assignment:

sp: slp: x := x + 1 x := x + 1

Reversible Assignment:

Reversible Assignment:

Reversible Assignment:

 sp:
 slp:

 x = x + 1 x = x + 1

 $x > 2v: [x = v + 1] \land v$ x = x + 1

Reversible Assignment:

sp: $\mathbb{Z} x - 1$

slp:

 $/\!\!/ x$

Reversible Assignment:

sp: $\mathbb{Z} x - 1$

slp:

 $\| x$ $/\!\!/ x - 1$

Reversible Assignment:

sp: x := x + 1 $/\!\!/ \quad \exists v \colon [x = v + 1] \land v \qquad /\!\!/ \quad \forall v \colon [x \neq v + 1] \lor v$ M x - 1

slp:

 $\parallel x$ x := x + 1 $/\!\!/ x - 1$

Irreversible Assignment:

Reversible Assignment:

sp: $\begin{array}{ll} x := x + 1 \\ \label{eq:relation} x := x + 1 \\ \label{eq:relation} & \mathcal{U}: \ [x = v + 1] \land v \\ \label{eq:relation} & \mathcal{U}: \ [x \neq v + 1] \land v \\ \end{array}$ M x - 1

slp:

 $\parallel x$ $\mathbb{Z} x - 1$

Irreversible Assignment:

Reversible Assignment:

sp: x := x + 1 $/\!\!/ \quad \exists v: \ [x=v+1] \land v \qquad /\!\!/ \quad \forall v: \ [x\neq v+1] \curlyvee v$ M x - 1

slp:

x := x + 1 $\mathbb{Z} x - 1$

Irreversible Assignment:

slp: $\square x$ x := 2

Reversible Assignment:

sp: x := x + 1 $/\!\!/ \quad \exists v: \ [x=v+1] \land v \qquad /\!\!/ \quad \forall v: \ [x\neq v+1] \curlyvee v$ M x - 1

slp:

x := x + 1 $\mathbb{Z} x - 1$

Irreversible Assignment:

Reversible Assignment:

sp: $\square x$ x := x + 1M x - 1

slp:

 $\square x$ x := x + 1 $\mathbb{Z} x - 1$

Irreversible Assignment:

sp: $\square \mathbf{x}$ x := 2 $/\!\!/ \exists v \colon [x=2] \land v$ M [x = 2]

slp: $\square \mathbf{x}$ x := 2 $/\!\!/ \quad \textit{ l } v \colon [x \neq 2] \lor v$

Reversible Assignment:

Irreversible Assignment:

slp:

$$\begin{array}{c} [\![] & x \\ x := x + 1 \\ [\![] & \ell v : \ [x \neq v + 1] \lor v \\ [\![] & x - 1 \end{array} \end{array}$$

$$hi := hi + 5$$

while
$$(lo < hi)$$
 {
 $lo := lo + 1$ }

$$hi$$
 := $hi + 5$

while
$$(lo < hi)$$
 {
 $lo := lo + 1$ }

// hi
hi := hi + 5
// hi - 5
while (lo < hi) {
 lo := lo + 1 }
// [lo
$$\geq$$
 hi] \land (hi - 5)

Weakest Pre vs. Strongest Post

Does what? liberal vs. non-liberal is about

Weakest Pre vs. Strongest Post

	Does what?	liberal vs. non-liberal	is about
weakest pre	predicts / anticipates	(non)termination	being able to reach a specified <i>final</i> state / coreachability

Weakest Pre vs. Strongest Post

	Does what?	liberal vs. non-liberal	is about
weakest pre	predicts / anticipates	(non)termination	being able to reach a specified <i>final</i> state / coreachability
strongest post	retrodicts / retrocipates	(un)reachability	being reachable from a specified <i>initial</i> state / reachability

Benjamin Kaminski

Quantitative Strongest Post

	Es gibt genau zwei Substantive, die vom Verb vormind	61	
Weakest Pre vs	0 Erreichbarkeit		
StackExchange Q Search on Gerr	 Dieses Substantiv beschreibt eine Möglichkeit, dass etwas am Ende eines Vorgangs steht. 1. Das was erreicht werden soll (z.B. ein Berggipfel) existierte bereits vorher, lag damals aber in der Ferne. Jetzt befindet man sich genau am selben Ort. 2. Das was erreicht werden soll (z.B. die Fussion zweier Unternehmen) existierte vorher niett sonder wurde erst durch den Vorgange sonder wielen. 	eichen" z	zu "???"
DEUTSCHE ST	Erroi-t	Feature	d on Meta
Home "is" PUBLIC Questions Tags	Erreichung Dieses Substantiv beschreibt den sehr kurzen Vorgang , in dem die zuvor beschriebene Möglichkeit zur Realität wird. Beide Substantive drehen sich also um das Ziel eines Vorgangs. Einmal als noch nicht realisierte Möglichkeit, das andere mal als Vorgang der Realisierung.	.n	are graduating the yling for vote arrows I/ML Tool examples Drafting Assistant We are updating ou and we would like b
Users Unanswered TEAMS X	Andere Substantive, die vom Verb erreichen abgeleitet sind, gibt es nicht.	Rel	ated Y
Stack Overflow for Teams – Start collaborating and sharing organizational	answered Apr 11, 2022 at 9:04 Hubert Schölnast 117k • 15 = 203 • 389		
Benjamin Kaminski	Quantitative Strongest Post	8.6.2023	21

Benjamin Kaminski

Galois Connections between Weakest Pre and Strongest Post

Dijkstra's classical predicate transformers:

$$G \implies \mathsf{wlp} \llbracket C \rrbracket (F) \qquad \mathsf{iff} \qquad \mathsf{sp} \llbracket C \rrbracket (G) \implies F$$

Galois Connections between Weakest Pre and Strongest Post

Dijkstra's classical predicate transformers:

$$G \implies \mathsf{wlp} \llbracket C \rrbracket (F) \quad \text{ iff } \quad \mathsf{sp} \llbracket C \rrbracket (G) \implies F$$

Our quantity transformers:

$$g \preceq \operatorname{wlp} \llbracket C \rrbracket(f)$$
 iff $\operatorname{sp} \llbracket C \rrbracket(g) \preceq f$

Galois Connections between Weakest Pre and Strongest Post

Dijkstra's classical predicate transformers:

$$G \implies \mathsf{wlp} \llbracket C \rrbracket (F) \quad \text{ iff } \quad \mathsf{sp} \llbracket C \rrbracket (G) \implies F$$

Our quantity transformers:

$$g \preceq \operatorname{wlp} \llbracket C \rrbracket (f) \quad \text{iff} \quad \operatorname{sp} \llbracket C \rrbracket (g) \preceq f$$
$$\operatorname{wp} \llbracket C \rrbracket (g) \preceq f \quad \text{iff} \quad g \preceq \operatorname{slp} \llbracket C \rrbracket (f)$$

Thoughts on Hoare Logic and Incorrectness Logic

Total vs. Partial Correctness Hoare Logic

Total vs. Partial Correctness Hoare Logic

Total Correctness Hoare Triples:

 $\langle \varphi \rangle C \langle \psi \rangle$ valid for total correctness iff $\varphi \implies wp \llbracket C \rrbracket (\psi)$

Total vs. Partial Correctness Hoare Logic

Total Correctness Hoare Triples:

 $\langle \varphi \rangle C \langle \psi \rangle$ valid for total correctness iff $\varphi \implies wp \llbracket C \rrbracket (\psi)$

Partial Correctness:

 $\langle \varphi \rangle C \langle \psi \rangle$ valid for partial correctness iff $\varphi \implies \mathsf{wlp} \llbracket C \rrbracket (\psi)$

Incorrectness Logic [O'Hearn'19]

Incorrectness Triples:

 $[\varphi] C [\psi] \text{ valid for incorrectness} \quad \text{ iff } \quad \psi \implies \text{ sp} \llbracket C \rrbracket (\varphi)$

Incorrectness Logic [O'Hearn'19]

Incorrectness Triples:

 $\left[\varphi\right] C \left[\psi\right] \text{valid for incorrectness} \quad \text{ iff } \quad \psi \implies \text{ sp} \left[\!\!\left[C\right]\!\!\right](\varphi)$

Partial/Liberal/??? Incorrectness Triples:

 $[\varphi] C [\psi]$ valid for partial incorrectness iff $\psi \implies \text{slp} [C] (\varphi)$

Claim: There are Precisely 6 Fundamentally Different Hoare Logics

implication		defines	
G	\implies	wp $\llbracket C \rrbracket$ (F)	total correctness
G	\implies	$wlp\llbracket C rbracket (F)$	partial correctness
$wp\llbracket C \rrbracket(F)$	\implies	G	partial incorrectness
$wlp \llbracket C \rrbracket (F)$	\implies	G	???
F	\implies	$\operatorname{sp} \llbracket C \rrbracket (G)$	(total) incorrectness
F	\implies	$slp\llbracket C rbracket (G)$	partial incorrectness
sp [[<i>C</i>]] (<i>G</i>)	\implies	F	partial correctness
$slp\llbracket C rbracket (G)$	\implies	F	555

_

Backup Slides

Rules for Strongest (Liberal) Post

С	$\operatorname{sp} \llbracket C \rrbracket (f)$	slp [[C]] (f)
diverge	-∞	+∞
$x \coloneqq e$	$\mathbf{\mathcal{C}}\alpha$: $[x = e[x/\alpha]] \land f[x/\alpha]$	$\boldsymbol{\zeta} \alpha \colon [x \neq e [x/\alpha]] \forall f [x/\alpha]$
C_1 ; C_2	$\operatorname{sp} \llbracket C_2 \rrbracket \left(\operatorname{sp} \llbracket C_1 \rrbracket (f) \right)$	$slp\llbracket C_2 \rrbracket \left(slp\llbracket C_1 \rrbracket \left(f \right) \right)$
$\set{C_1} \square \set{C_2}$	$\operatorname{sp} \llbracket C_1 \rrbracket (f) \forall \operatorname{sp} \llbracket C_2 \rrbracket (f)$	$slp[\![C_1]\!](f) \land slp[\![C_2]\!](f)$
$if(\varphi) \{C_1\} else \{C_2\}$	$\operatorname{sp} \llbracket C_1 \rrbracket \left(\llbracket \varphi \rrbracket \land f \right) \ \lor \ \operatorname{sp} \llbracket C_2 \rrbracket \left(\llbracket \neg \varphi \rrbracket \land f \right)$	$slp\llbracket C_1 \rrbracket \left([\neg \varphi] \lor f \right) \land \ slp\llbracket C_2 \rrbracket \left([\varphi] \lor f \right)$
while(φ){ C' }	$[\neg \varphi] \land (lfp Y. f \lor sp \llbracket C' \rrbracket ([\varphi] \land Y))$	$[\varphi] \lor (gfp Y. f \land slp\llbracket C' \rrbracket ([\neg \varphi] \lor Y))$