From Global to Local and Back: Different Perspectives to Reason about Emerging Behavior

Michele Loreti
joint work with Michela Quadrini and Aniqa Rehman
University of Camerino

Open Problems in Concurrency Theory June 26-30, Bertinoro, Italy

Collective Systems

We are surrounded by examples of collective systems:

Collective Systems

We are surrounded by examples of collective systems:
in the natural world

Collective Systems

We are surrounded by examples of collective systems:
.... and in the man-made world

Collective Systems

We are surrounded by examples of collective systems:
.... and in the man-made world

Collective Adaptive Systems

From a computer science perspective these systems can be viewed as being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.
At the system level these combine to create the collective behaviour.

How these entities interact?

How these entities interact?

In the classic theory of concurrency, interaction among components is typically modelled in terms of communication or cooperation.

How these entities interact?

In the classic theory of concurrency, interaction among components is typically modelled in terms of communication or cooperation.

In the systems we are considering we have implicit interactions.

How these entities interact?

In the classic theory of concurrency, interaction among components is typically modelled in terms of communication or cooperation.

In the systems we are considering we have implicit interactions.

An action/activity is executed with a probability that depends on the state of entities in the system.

An Example: Red Blue Scenario...

Let us considered a population of agents that can be either red or blue.

An Example: Red Blue Scenario...

Let us considered a population of agents that can be either red or blue.

Starting from a common initial area, each agent must reach the goal area of its own colour:

An Example: Red Blue Scenario...

Each agent should reach a cell of its own colour...

An Example: Red Blue Scenario...

Each agent should reach a cell of its own colour... under the assumption that position of coloured cells is unknown to the agents.

An Example: Red Blue Scenario...

Each agent should reach a cell of its own colour... under the assumption that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

- follows a random movement;
- the probability to move from one location to one of its neighbours depend on the fraction of agents in the target location.

An Example: Red Blue Scenario...

Each agent should reach a cell of its own colour... under the assumption that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

- follows a random movement;
- the probability to move from one location to one of its neighbours depend on the fraction of agents in the target location.

An agent change it state to inform others agents about possible routes becoming either a landmark or a barrier.

An Example: Red Blue Scenario...

Each agent should reach a cell of its own colour... under the assumption that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

- follows a random movement;
- the probability to move from one location to one of its neighbours depend on the fraction of agents in the target location.

An agent change it state to inform others agents about possible routes becoming either a landmark or a barrier.

The higher is the number of landmarks/barriers at a cell, the higher/lower is the probability that one agent can jump on it.

In this talk...

In this talk...

1. A model to describe (quantitative) behaviour of multi-agents systems;

In this talk...

1. A model to describe (quantitative) behaviour of multi-agents systems;
2. A temporal logic to specify

- global properties, properties at the level of the system;
- local properties, properties at the level of individuals.

In this talk...

1. A model to describe (quantitative) behaviour of multi-agents systems;
2. A temporal logic to specify

- global properties, properties at the level of the system;
- local properties, properties at the level of individuals.

3. A behavioural equivalence that permits reducing the state space while preserving formulas satisfaction (at both global and local level).

In this talk...

1. A model to describe (quantitative) behaviour of multi-agents systems;
2. A temporal logic to specify

- global properties, properties at the level of the system;
- local properties, properties at the level of individuals.

3. A behavioural equivalence that permits reducing the state space while preserving formulas satisfaction (at both global and local level).

Multi-Agent Stochastic Processes. . .

Multi-Agent Stochastic Processes. . .

A Multi-Agent Stochastic Process with size N consists of a set of random variables $\{X(t), t \in T\}$ that assume values in \mathcal{S}^{N}.

Multi-Agent Stochastic Processes. . .

A Multi-Agent Stochastic Process with size N consists of a set of random variables $\{X(t), t \in T\}$ that assume values in \mathcal{S}^{N}.
\mathcal{S} represents the set of states representing behaviour of the agents in our model.

Multi-Agent Stochastic Processes. . .

A Multi-Agent Stochastic Process with size N consists of a set of random variables $\{X(t), t \in T\}$ that assume values in \mathcal{S}^{N}.
\mathcal{S} represents the set of states representing behaviour of the agents in our model.

In this talk, for the sake of simplicity, we focus on Discrete Time Multi-Agent Stochastic Process.

Multi-Agent Discrete Time Markov Chain. . .

We let Δ be a set of agent definitions consisting of:

- a set \mathcal{S} of agent states;
- a probability matrix $\mathbf{P}: \mathcal{S}^{*} \rightarrow \mathcal{S} \times \mathcal{S} \rightarrow[0,1]$;
- a set of atomic propositions $\mathcal{A P}$
- a labelling function $\mathcal{L}: \mathcal{S} \rightarrow 2^{\mathcal{A P}}$.

Multi-Agent Discrete Time Markov Chain. . .

We let Δ be a set of agent definitions consisting of:

- a set \mathcal{S} of agent states;
- a probability matrix $\mathbf{P}: \mathcal{S}^{*} \rightarrow \mathcal{S} \times \mathcal{S} \rightarrow[0,1] ;$
- a set of atomic propositions $\mathcal{A P}$
- a labelling function $\mathcal{L}: \mathcal{S} \rightarrow 2^{\mathcal{A P}}$.

We assume that for any $\vec{q} \in \mathcal{S}^{*}$ and for any $s \in \mathcal{S}$:

$$
\sum_{s^{\prime} \in \mathcal{S}} \mathbf{P}(\vec{q})\left[s, s^{\prime}\right]=1
$$

Multi-Agent Discrete Time Markov Chain. . .

A Multi-Agent Discrete Time Markov Chain (MA-DTMC) with size N for a agent definition $\Delta, \mathcal{M}_{\Delta}^{N}$, is a $\operatorname{DTMC}\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$:

$$
\mathbf{P}^{N}\left[\vec{q}_{1}, \vec{q}_{2}\right]=\Pi_{i=1}^{n} \mathbf{P}\left(\vec{q}_{1}\right)\left[\vec{q}_{1}[i], \vec{q}_{2}[i]\right]
$$

Multi-Agent Discrete Time Markov Chain. . .

A Multi-Agent Discrete Time Markov Chain (MA-DTMC) with size N for a agent definition $\Delta, \mathcal{M}_{\Delta}^{N}$, is a $\operatorname{DTMC}\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$:

$$
\mathbf{P}^{N}\left[\vec{q}_{1}, \vec{q}_{2}\right]=\Pi_{i=1}^{n} \mathbf{P}\left(\vec{q}_{1}\right)\left[\vec{q}_{1}[i], \vec{q}_{2}[i]\right]
$$

Given a $\vec{q} \in \mathcal{S}^{N} \ldots$

- $\vec{q}[i] \in \mathcal{S}$ denotes the state of agent in position i;
- for any $s \in \mathcal{S}$:

$$
\#(\vec{q}, s)=|\{i \mid \vec{q}[i]=s\}| \quad \%(\vec{q}, s)=\frac{\#(\vec{q}, s)}{N}
$$

Global paths...

A global path π over \mathcal{M}^{N} is a non empty (infinite) sequence of states $\vec{q}_{0} \vec{q}_{1} \vec{q}_{2} \cdots$ of states in \mathcal{S}^{N} such that, for any $i, \mathbf{P}^{N}\left[\vec{q}_{i}, \vec{q}_{i+1}\right]>0$.

Global paths...

A global path π over \mathcal{M}^{N} is a non empty (infinite) sequence of states $\vec{q}_{0} \vec{q}_{1} \vec{q}_{2} \cdots$ of states in \mathcal{S}^{N} such that, for any $i, \mathbf{P}^{N}\left[\vec{q}_{i}, \vec{q}_{i+1}\right]>0$.

Path Projections and Local Paths...

Given a global path π of \mathcal{M}^{N}, we can consider the projection of index i, denoted by $\pi \downarrow i$:

Path Projections and Local Paths...

Given a global path π of \mathcal{M}^{N}, we can consider the projection of index i, denoted by $\pi \downarrow i$:

Path Projections and Local Paths...

Given a global path π of \mathcal{M}^{N}, we can consider the projection of index i, denoted by $\pi \downarrow i$:

We say that π_{ℓ} is a local path of agent i over \mathcal{M}^{N} if there exists $\pi \in$ Paths $_{\mathcal{M}^{N}}$ such that $\pi_{\ell}=\pi \downarrow i$.

In this talk...

1. A model to describe (quantitative) behaviour of multi-agents systems;
2. A temporal logic to specify

- global properties, properties at the level of the system;
- local properties, properties at the level of individuals.

3. A behavioural equivalence that permits reducing the state space while preserving formulas satisfaction (at both global and local level)

Local and global properties

We can specify properties at two different levels:

Local and global properties

We can specify properties at two different levels:
Global Level: we are considering a global perspective
... the state of a system is considered as a whole;
... and identities of single agents are lost.

Local and global properties

We can specify properties at two different levels:
Global Level: we are considering a global perspective
... the state of a system is considered as a whole;
... and identities of single agents are lost.
In at most k_{1} steps almost all agents have reached their target location.

Local and global properties

We can specify properties at two different levels:
Global Level: we are considering a global perspective
... the state of a system is considered as a whole;
\ldots and identities of single agents are lost.
In at most k_{1} steps almost all agents have reached their target location.

Local Level: one is interested in the properties of the single agents ... the focus is on a single component in the system; ... the global configuration is not considered.

Local and global properties

We can specify properties at two different levels:
Global Level: we are considering a global perspective
... the state of a system is considered as a whole;
... and identities of single agents are lost.
In at most k_{1} steps almost all agents have reached their target location.

Local Level: one is interested in the properties of the single agents ... the focus is on a single component in the system; ... the global configuration is not considered.

If an agent becomes a barrier, in at most k_{2} steps it restarts its journey and in at most k_{3} steps it will reach its goal area.

GLoTL: Global and Local Temporal Logic. . .

GLoTL: Global and Local Temporal Logic. . .

$$
\begin{gathered}
\text { Global Formulas } \\
\Phi \quad:=\text { true }|\neg \Phi| \Phi_{1} \wedge \Phi_{2}|\%[\phi] \bowtie p| \mathcal{X} \Phi \mid \Phi_{1} \mathcal{U} \leq k \Phi_{2} \\
\text { Local FORMULAS } \\
\phi \quad::=\text { true }|\alpha| \neg \phi\left|\phi_{1} \wedge \phi_{2}\right| \mathcal{X} \phi \mid \phi_{1} \mathcal{U} \leq k \phi_{2}
\end{gathered}
$$

- A global formula Φ, which permits specifying properties of global computations;

GLoTL: Global and Local Temporal Logic. . .

\[

\]

- A global formula Φ, which permits specifying properties of global computations;
- A local formula ϕ, is used to specify properties of the single agents.

Global and Local Temporal Logic. . .

$$
\begin{aligned}
& \text { Global Formulas } \\
& \Phi \quad::=\text { true }|\neg \Phi| \Phi_{1} \wedge \Phi_{2}|\%[\phi] \bowtie p| \mathcal{X} \Phi \mid \Phi_{1} \mathcal{U} \leq k \Phi_{2} \\
& \text { Local Formulas } \\
& \phi \quad:=\text { true }|\alpha| \neg \phi\left|\phi_{1} \wedge \phi_{2}\right| \mathcal{X} \phi \mid \phi_{1} \mathcal{U} \leq k \phi_{2}
\end{aligned}
$$

Operators of both global and local formulas are standard. Both the fragments are a variant of bounded LTL.

Global and Local Temporal Logic. . .

Global Formulas

$$
\begin{aligned}
& \Phi \quad::= \operatorname{true}|\neg \Phi| \Phi_{1} \wedge \Phi_{2}|\%[\phi] \bowtie p| \mathcal{X} \Phi \mid \Phi_{1} \mathcal{U} \leq k \Phi_{2} \\
& \text { LOCAL FORMULAS } \\
& \phi \quad::= \text { true }|\alpha| \neg \phi\left|\phi_{1} \wedge \phi_{2}\right| \mathcal{X} \phi \mid \phi_{1} \mathcal{U} \leq k \phi_{2}
\end{aligned}
$$

Operators of both global and local formulas are standard. Both the fragments are a variant of bounded LTL.

The only novel operator $\%[\phi] \bowtie p$ is used to specify that, at a given point in the computation, the fraction of agents satisfying local formula ϕ is $\bowtie p$

Derivable Operators. . .

$$
\begin{array}{rlrl}
\text { GlOBAL FORMULAS } & & \text { LOCAL FORMULAS } \\
\text { false } & =\neg \text { true } & \text { false } & =\neg \text { true } \\
\Phi_{1} \vee \Phi_{2} & =\neg\left(\neg \Phi_{1} \wedge \neg \Phi_{2}\right) & \phi_{1} \vee \phi_{2} & =\neg\left(\neg \phi_{1} \wedge \neg \phi_{2}\right) \\
\Phi_{1} \rightarrow \Phi_{2} & =\neg \Phi_{1} \wedge \Phi_{2} & \phi_{1} \rightarrow \phi_{2} & =\neg \phi_{1} \wedge \phi_{2} \\
\diamond \leq k \Phi & =\text { true } \mathcal{U} \leq k \Phi & \diamond \leq k \phi & =\operatorname{true} \mathcal{U} \leq k \phi \\
\square \leq k \Phi & =\neg \Delta \leq k \neg \Phi & \square \leq k \phi & =\neg \diamond \leq k \neg \phi \\
\exists \phi & =\%[\phi]>0 & & \\
\forall \phi & =\%[\phi] \geq 1 & & \\
\%[\phi] \in\left[v_{1}, v_{2}\right] & =\%[\phi] \geq v_{1} \wedge \%[\phi] \leq v_{2} & &
\end{array}
$$

Global Formulas: Semantics. . .

Let $\mathcal{M}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC and $\mathcal{L}: \mathcal{S} \rightarrow 2^{\mathcal{A P}}$ be a labelling function...

Global Formulas: Semantics. . .

Let $\mathcal{M}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC and $\mathcal{L}: \mathcal{S} \rightarrow 2^{\mathcal{A P}}$ be a labelling function...

$$
\begin{array}{llll}
\pi & \models \mathcal{M}^{N}, \mathcal{L} & \text { true } & \\
\pi & \models \mathcal{M}^{N}, \mathcal{L} & \neg \Phi & \Longleftrightarrow \pi \not \mathcal{M}^{N}, \mathcal{L} \Phi \\
\pi & \models^{\mathcal{M}^{N}, \mathcal{L}} & \Phi_{1} \wedge \Phi_{2} & \Longleftrightarrow \pi \models^{\mathcal{M}^{N}, \mathcal{L}} \Phi_{1} \wedge \pi \models \mathcal{M}^{N}, \mathcal{L} \Phi_{2}
\end{array}
$$

Global Formulas: Semantics...

Let $\mathcal{M}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC and $\mathcal{L}: \mathcal{S} \rightarrow 2^{\mathcal{A P}}$ be a labelling function...
$\pi \quad \models^{\mathcal{M}^{N}, \mathcal{L}} \quad$ true
$\pi \quad \neq \mathcal{M}^{N}, \mathcal{L} \quad \neg \Phi \quad \Longleftrightarrow \pi \not \vDash \mathcal{M}^{N}, \mathcal{L} \Phi$
$\pi \quad \models^{\mathcal{M}^{N}, \mathcal{L}} \quad \Phi_{1} \wedge \Phi_{2} \quad \Longleftrightarrow \quad \pi \models^{\mathcal{M}^{N}, \mathcal{L}} \Phi_{1} \wedge \pi \models^{\mathcal{M}^{N}, \mathcal{L}} \Phi_{2}$
$\pi \quad \models \mathcal{M}^{N}, \mathcal{L} \quad \%[\phi] \bowtie p \quad \Longleftrightarrow \frac{\left|\left\{i \mid \pi \downarrow i \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}^{\prime}} \phi\right\}\right|}{N} \bowtie p$

Global Formulas: Semantics. . .

Let $\mathcal{M}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC and $\mathcal{L}: \mathcal{S} \rightarrow 2^{\mathcal{A P}}$ be a labelling function...

$$
\begin{array}{rlll}
\pi & \models \mathcal{M}^{N}, \mathcal{L} & \text { true } & \\
\pi & \models \mathcal{M}^{N}, \mathcal{L} & \neg \Phi & \Longleftrightarrow \pi \mid \mathcal{M}^{N}, \mathcal{L} \Phi \\
\pi & \models^{\mathcal{M}^{N}, \mathcal{L}} \quad \Phi_{1} \wedge \Phi_{2} & \Longleftrightarrow \pi \models^{\mathcal{M}^{N}, \mathcal{L}} \Phi_{1} \wedge \pi \models \mathcal{M}^{N}, \mathcal{L} \Phi_{2} \\
\pi & \models^{\mathcal{M}^{N}, \mathcal{L}} \quad \%[\phi] \bowtie p & \Longleftrightarrow & \frac{\left|\left\{i \mid \pi \downarrow i \models_{\ell} \mathcal{M}^{N}, \mathcal{L} \phi\right\}\right|}{N} \bowtie p \\
\pi & \models^{\mathcal{M}^{N}, \mathcal{L}} \quad \mathcal{X} \Phi & \Longleftrightarrow \pi[1 . .] \models^{\mathcal{M}^{N}, \mathcal{L}} \Phi \\
\pi & \models^{\mathcal{M}^{N}, \mathcal{L}} \quad \Phi_{1} \mathcal{U} \leq k \Phi_{2} & \Longleftrightarrow \\
& \exists 0 \leq h \leq k . \pi[h . .] \models \mathcal{M}^{N}, \mathcal{L} \\
& \Phi_{2} \wedge \forall 0 \leq i<h . \pi[i . .] \models \Phi_{1}
\end{array}
$$

Local Formulas: Semantics...

$$
\begin{aligned}
& \pi_{\ell} \quad=_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \quad \text { true } \\
& \pi_{\ell} \quad \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \quad \alpha \quad \Longleftrightarrow \pi_{\ell}[0] \in \mathcal{L}(\alpha) \\
& \pi_{\ell} \quad \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \quad \neg \phi \quad \Longleftrightarrow \pi_{\ell} \not \vDash_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \phi \\
& \pi_{\ell} \quad \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \quad \phi_{1} \wedge \phi_{2} \quad \Longleftrightarrow \pi_{\ell} \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \phi_{1} \wedge \pi_{\ell} \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \phi_{2} \\
& \pi_{\ell} \quad \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \quad \mathcal{X} \phi \quad \Longleftrightarrow \pi_{\ell}[1 . .] \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \phi \\
& \pi_{\ell} \quad \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \quad \phi_{1} \mathcal{U}^{\leq k} \phi_{2} \Longleftrightarrow \\
& \exists 0 \leq h \leq k . \pi_{\ell}[h . .] \models_{\ell}^{\mathcal{M}^{N}, \mathcal{L}} \phi_{2} \wedge \forall 0 \leq i<h . \pi_{\ell}[i . .] \models \phi_{1}
\end{aligned}
$$

Satisfaction Probability...

Let $\mathcal{M}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC and $\mathcal{L}: \mathcal{S} \rightarrow 2^{\mathcal{A} \mathcal{P}}$ be a labelling function.

For any $\vec{q} \in \mathcal{S}^{N}$ and formula Φ we let μ be the function amounting the probability that \vec{q} satisfies Φ :

$$
\mu\left(\mathcal{M}^{N}, \mathcal{L}, \vec{q}, \Phi\right)=\operatorname{Pr}_{\mathcal{M}^{N}}\left\{\pi \in \operatorname{Path}_{\mathcal{M}^{N}}(\vec{q})|\pi| \models^{\mathcal{M}^{N}, \mathcal{L}} \Phi\right\}
$$

An Example: Red-Blue scenario

Global and Local Properties

- almost all blue and read agents have reached their goal areas::

$$
\begin{aligned}
& \Phi_{g b}=(\%[\text { blue@goal }] \in[0.5-\varepsilon, 0.5+\varepsilon]) \\
& \Phi_{g r}=(\%[\text { read } @ \text { goal }] \in[0.5-\varepsilon, 0.5+\varepsilon])
\end{aligned}
$$

An Example: Red-Blue scenario

Global and Local Properties

- almost all blue and read agents have reached their goal areas::

$$
\begin{aligned}
& \Phi_{g b}=(\%[\text { blue@goal }] \in[0.5-\varepsilon, 0.5+\varepsilon]) \\
& \Phi_{g r}=(\%[\text { read } @ g o a l] \in[0.5-\varepsilon, 0.5+\varepsilon])
\end{aligned}
$$

- the system is able to reach a configuration where almost all agents have reached their goal area:

$$
\Phi_{1}=\diamond \leq k_{1}\left(\Phi_{g b} \wedge \Phi_{g r}\right)
$$

An Example: Red-Blue scenario

- if an agent becomes a barrier, in at most k_{2} it restarts its journey and in at most k_{3} steps it will reach its goal area.

$$
\begin{aligned}
& \phi_{b b}=b b \rightarrow \Delta^{\leq k_{2}}\left(\neg b b \wedge \Delta^{\leq k_{3}} \text { blue@goal }\right) \\
& \phi_{r b}=r b \rightarrow \Delta^{\leq k_{2}}\left(\neg b r \wedge \Delta^{\leq k_{3}} \text { read@goal }\right)
\end{aligned}
$$

An Example: Red-Blue scenario

- if an agent becomes a barrier, in at most k_{2} it restarts its journey and in at most k_{3} steps it will reach its goal area.

$$
\begin{aligned}
& \phi_{b b}=b b \rightarrow \Delta^{\leq k_{2}}\left(\neg b b \wedge \Delta^{\leq k_{3}} \text { blue@goal }\right) \\
& \phi_{r b}=r b \rightarrow \Delta^{\leq k_{2}}\left(\neg b r \wedge \Delta^{\leq k_{3}} \text { read@goal }\right)
\end{aligned}
$$

- in the next k_{4} steps, if the fraction of agents that are barriers is greater than 30% then 75% of them satisfy $\phi_{b b}$ or $\phi_{r b}$:

$$
\Phi_{2}=\square^{\leq k_{4}}\left(\%[b b \vee b r] \geq .30 \rightarrow \%\left[\phi_{b r} \wedge \phi_{r b}\right] \geq .75\right)
$$

In this talk...

1. A model to describe (quantitative) behaviour of multi-agents systems;
2. A temporal logic to specify

- global properties, properties at the level of the system;
- local properties, properties at the level of individuals.

3. A behavioural equivalence that permits reducing the state space while preserving formulas satisfaction (at both global and local level).

Global Bisimulation...

Let $\mathcal{M}_{\Delta}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC model, an equivalence relation $\mathcal{R} \subseteq \mathcal{S}^{N} \times \mathcal{S}^{N}$ is a Global Probabilistic Bisimulation Relation if and only if for any $\left(\overrightarrow{q_{1}}, \overrightarrow{q_{2}}\right) \in \mathcal{R}$:

1. $\forall i \mathcal{L}\left(\overrightarrow{q_{1}}[i]\right)=\mathcal{L}\left(\overrightarrow{q_{2}}[i]\right)$;
2. for any equivalence class $\mathcal{C} \in \mathcal{S}^{N} / \mathcal{R}$

$$
\mathbf{P}^{N}\left[\overrightarrow{q_{1}}, \mathcal{C}\right]=\mathbf{P}^{N}\left[\overrightarrow{q_{2}}, \mathcal{C}\right]
$$

Global Bisimulation. . .

Let $\mathcal{M}_{\Delta}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC model, an equivalence relation $\mathcal{R} \subseteq \mathcal{S}^{N} \times \mathcal{S}^{N}$ is a Global Probabilistic Bisimulation Relation if and only if for any $\left(\overrightarrow{q_{1}}, \overrightarrow{q_{2}}\right) \in \mathcal{R}$:

1. $\forall i \mathcal{L}\left(\overrightarrow{q_{1}}[i]\right)=\mathcal{L}\left(\overrightarrow{q_{2}}[i]\right)$;
2. for any equivalence class $\mathcal{C} \in \mathcal{S}^{N} / \mathcal{R}$

$$
\mathbf{P}^{N}\left[\overrightarrow{q_{1}}, \mathcal{C}\right]=\mathbf{P}^{N}\left[\overrightarrow{q_{2}}, \mathcal{C}\right]
$$

We let \sim_{G} denote the largest Global Probabilistic Bisimulation Relation

Local Bisimulation. . .

Let $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A P}, \mathcal{L})$, an equivalence relation $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S}$ is a Local Probabilistic Bisimulation Relation if and only if for any $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:

1. $\mathcal{L}\left(s_{1}\right)=\mathcal{L}\left(s_{2}\right) ;$
2. for any $\vec{q} \in \mathcal{S}^{N}$ and for any equivalence class $\mathcal{C} \in \mathcal{S} / \mathcal{R}$

$$
\mathbf{P}^{(\vec{q})}\left[s_{1}, \mathcal{C}\right]=\mathbf{P}^{(\vec{q})}\left[s_{2}, \mathcal{C}\right]
$$

Local Bisimulation. . .

Let $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A} \mathcal{P}, \mathcal{L})$, an equivalence relation $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S}$ is a Local Probabilistic Bisimulation Relation if and only if for any $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:

1. $\mathcal{L}\left(s_{1}\right)=\mathcal{L}\left(s_{2}\right) ;$
2. for any $\vec{q} \in \mathcal{S}^{N}$ and for any equivalence class $\mathcal{C} \in \mathcal{S} / \mathcal{R}$

$$
\mathbf{P}^{(\vec{q})}\left[s_{1}, \mathcal{C}\right]=\mathbf{P}^{(\vec{q})}\left[s_{2}, \mathcal{C}\right]
$$

We let \sim_{L} denote the largest Local Probabilistic Bisimulation Relation.

Local Bisimulation. . .

Let $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A} \mathcal{P}, \mathcal{L})$, an equivalence relation $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S}$ is a Local Probabilistic Bisimulation Relation if and only if for any $\left(s_{1}, s_{2}\right) \in \mathcal{R}$:

1. $\mathcal{L}\left(s_{1}\right)=\mathcal{L}\left(s_{2}\right) ;$
2. for any $\vec{q} \in \mathcal{S}^{N}$ and for any equivalence class $\mathcal{C} \in \mathcal{S} / \mathcal{R}$

$$
\mathbf{P}^{(\vec{q})}\left[s_{1}, \mathcal{C}\right]=\mathbf{P}^{(\vec{q})}\left[s_{2}, \mathcal{C}\right]
$$

We let \sim_{L} denote the largest Local Probabilistic Bisimulation Relation.

Computing Local Bisimulation. . .

We say that $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A} \mathcal{P}, \mathcal{L})$ is in polynomial form if for any $s_{1}, s_{2} \in \mathcal{S}$:

$$
\mathbf{P}\left(\tilde{x}_{S}\right)\left[s_{1}, s_{2}\right]=\frac{p\left(\tilde{x}_{S}\right)}{q\left(\tilde{x}_{S}\right)}
$$

where $p\left(\tilde{x}_{S}\right)$ and $q\left(\tilde{x}_{S}\right)$ are multivariate polynomials in the variable \tilde{x}_{S}.

[^0]
Computing Local Bisimulation. . .

We say that $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A} \mathcal{P}, \mathcal{L})$ is in polynomial form if for any $s_{1}, s_{2} \in \mathcal{S}$:

$$
\mathbf{P}\left(\tilde{x}_{S}\right)\left[s_{1}, s_{2}\right]=\frac{p\left(\tilde{x}_{S}\right)}{q\left(\tilde{x}_{S}\right)}
$$

where $p\left(\tilde{x}_{S}\right)$ and $q\left(\tilde{x}_{S}\right)$ are multivariate polynomials in the variable \tilde{x}_{S}.

For each $s \in \mathcal{S}, x_{s}$ is associated with the number/fraction of agents in the state s.

[^1]
Computing Local Bisimulation. . .

We say that $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A} \mathcal{P}, \mathcal{L})$ is in polynomial form if for any $s_{1}, s_{2} \in \mathcal{S}$:

$$
\mathbf{P}\left(\tilde{x}_{S}\right)\left[s_{1}, s_{2}\right]=\frac{p\left(\tilde{x}_{S}\right)}{q\left(\tilde{x}_{S}\right)}
$$

where $p\left(\tilde{x}_{S}\right)$ and $q\left(\tilde{x}_{S}\right)$ are multivariate polynomials in the variable \tilde{x}_{S}.

For each $s \in \mathcal{S}, x_{s}$ is associated with the number/fraction of agents in the state s.

Following the an approach similar to CTTV17 ${ }^{1}$ we can compute the equivalence classes of \sim_{L} in \mathcal{S}.

[^2]
State space reduction...

State space reduction. . .

State space reduction...

Some results...

Let $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A P}, \mathcal{L})$ and $\mathcal{M}_{\Delta}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC model.

Some results...

Let $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A P}, \mathcal{L})$ and $\mathcal{M}_{\Delta}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC model.

- For any $\vec{q}_{1}, \vec{q}_{2} \in \mathcal{S}^{N} \ldots$

$$
\forall i . \vec{q}_{1}[i] \sim_{L} \vec{q}_{2}[i] \Longrightarrow \vec{q}_{1} \sim_{G} \vec{q}_{2}
$$

Some results...

Let $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A P}, \mathcal{L})$ and $\mathcal{M}_{\Delta}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC model.

- For any $\vec{q}_{1}, \vec{q}_{2} \in \mathcal{S}^{N} \ldots$

$$
\forall i . \vec{q}_{1}[i] \sim_{L} \vec{q}_{2}[i] \Longrightarrow \vec{q}_{1} \sim_{G} \vec{q}_{2}
$$

- For any $\vec{q}_{1}, \vec{q}_{2} \in \mathcal{S}^{N} \ldots$

$$
\vec{q}_{1} \sim{ }_{G} \vec{q}_{2} \Longrightarrow \forall \Phi \cdot \operatorname{Pr}\left[\vec{q}_{1} \models \Phi\right]=\operatorname{Pr}\left[\vec{q}_{2} \models \Phi\right]
$$

Some results...

Let $\Delta=(\mathcal{S}, \mathbf{P}, \mathcal{A P}, \mathcal{L})$ and $\mathcal{M}_{\Delta}^{N}=\left(\mathcal{S}^{N}, \mathbf{P}^{N}\right)$ be a MA-DTMC model.

- For any $\vec{q}_{1}, \vec{q}_{2} \in \mathcal{S}^{N} \ldots$

$$
\forall i . \vec{q}_{1}[i] \sim_{L} \vec{q}_{2}[i] \Longrightarrow \vec{q}_{1} \sim_{G} \vec{q}_{2}
$$

- For any $\vec{q}_{1}, \vec{q}_{2} \in \mathcal{S}^{N} \ldots$

$$
\vec{q}_{1} \sim_{G} \vec{q}_{2} \Longrightarrow \forall \Phi \cdot \operatorname{Pr}\left[\vec{q}_{1} \models \Phi\right]=\operatorname{Pr}\left[\vec{q}_{2} \models \Phi\right]
$$

- For any $s_{1}, s_{2} \in \mathcal{S} \ldots$

$$
s_{1} \sim_{L} s_{2} \Longrightarrow \forall \vec{q} \in \mathcal{S}^{N} \forall \phi \cdot \operatorname{Pr}\left[s_{1} \mid \vec{q} \models \phi\right]=\operatorname{Pr}\left[s_{2} \mid \vec{q} \models \phi\right]
$$

Concluding remark

In this talk we have presented a methodology that can be used to specify properties of CAS at both global and local level.

Concluding remark

In this talk we have presented a methodology that can be used to specify properties of CAS at both global and local level.

A behavioural equivalence has been proposed to aggregate states at both global and local level.

Concluding remark

In this talk we have presented a methodology that can be used to specify properties of CAS at both global and local level.

A behavioural equivalence has been proposed to aggregate states at both global and local level.

The proposed equivalences are sound (but not complete) w.r.t. the proposed logic.

[^0]: ${ }^{1}$ Maximal aggregation of polynomial dynamical systems, L. Cardelli, M. Tribastone, M. Tschaikowski, A. Vandin, PNAS 17.

[^1]: ${ }^{1}$ Maximal aggregation of polynomial dynamical systems, L. Cardelli, M. Tribastone, M. Tschaikowski, A. Vandin, PNAS 17.

[^2]: ${ }^{1}$ Maximal aggregation of polynomial dynamical systems, L. Cardelli, M. Tribastone, M. Tschaikowski, A. Vandin, PNAS 17.

