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Collective Systems
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Collective Adaptive Systems

From a computer science perspective these systems can be viewed as
being made up of a large number of interacting entities.

Each entity may have its own properties, objectives and actions.

At the system level these combine to create the collective behaviour.
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How these entities interact?

In the classic theory of concurrency, interaction among components is
typically modelled in terms of communication or cooperation.

In the systems we are considering we have implicit interactions.

An action/activity is executed with a probability that depends on the state
of entities in the system.
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An Example: Red Blue Scenario. . .

Let us considered a population of agents that can be either red or blue.

Starting from a common initial area, each agent must reach the goal area
of its own colour:
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An Example: Red Blue Scenario. . .

Each agent should reach a cell of its own colour...

under the assumption
that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

■ follows a random movement;

■ the probability to move from one location to one of its neighbours
depend on the fraction of agents in the target location.

An agent change it state to inform others agents about possible routes
becoming either a landmark or a barrier.

The higher is the number of landmarks/barriers at a cell, the higher/lower
is the probability that one agent can jump on it.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 6 / 31



An Example: Red Blue Scenario. . .

Each agent should reach a cell of its own colour... under the assumption
that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

■ follows a random movement;

■ the probability to move from one location to one of its neighbours
depend on the fraction of agents in the target location.

An agent change it state to inform others agents about possible routes
becoming either a landmark or a barrier.

The higher is the number of landmarks/barriers at a cell, the higher/lower
is the probability that one agent can jump on it.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 6 / 31



An Example: Red Blue Scenario. . .

Each agent should reach a cell of its own colour... under the assumption
that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

■ follows a random movement;

■ the probability to move from one location to one of its neighbours
depend on the fraction of agents in the target location.

An agent change it state to inform others agents about possible routes
becoming either a landmark or a barrier.

The higher is the number of landmarks/barriers at a cell, the higher/lower
is the probability that one agent can jump on it.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 6 / 31



An Example: Red Blue Scenario. . .

Each agent should reach a cell of its own colour... under the assumption
that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

■ follows a random movement;

■ the probability to move from one location to one of its neighbours
depend on the fraction of agents in the target location.

An agent change it state to inform others agents about possible routes
becoming either a landmark or a barrier.

The higher is the number of landmarks/barriers at a cell, the higher/lower
is the probability that one agent can jump on it.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 6 / 31



An Example: Red Blue Scenario. . .

Each agent should reach a cell of its own colour... under the assumption
that position of coloured cells is unknown to the agents.

To reach the target cells each agent:

■ follows a random movement;

■ the probability to move from one location to one of its neighbours
depend on the fraction of agents in the target location.

An agent change it state to inform others agents about possible routes
becoming either a landmark or a barrier.

The higher is the number of landmarks/barriers at a cell, the higher/lower
is the probability that one agent can jump on it.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 6 / 31



In this talk. . .

1. A model to describe (quantitative) behaviour of multi-agents systems;

2. A temporal logic to specify
■ global properties, properties at the level of the system;
■ local properties, properties at the level of individuals.

3. A behavioural equivalence that permits reducing the state space while
preserving formulas satisfaction (at both global and local level).
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Multi-Agent Stochastic Processes. . .

A Multi-Agent Stochastic Process with size N consists of a set of random
variables {X (t), t ∈ T} that assume values in SN .

S represents the set of states representing behaviour of the agents in our
model.

In this talk, for the sake of simplicity, we focus on Discrete Time
Multi-Agent Stochastic Process.
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Multi-Agent Discrete Time Markov Chain. . .

We let ∆ be a set of agent definitions consisting of:

■ a set S of agent states;

■ a probability matrix P : S∗ → S × S → [0, 1];

■ a set of atomic propositions AP
■ a labelling function L : S → 2AP .

We assume that for any q⃗ ∈ S∗ and for any s ∈ S:∑
s′∈S

P(q⃗)[s, s ′] = 1
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Multi-Agent Discrete Time Markov Chain. . .

A Multi-Agent Discrete Time Markov Chain (MA-DTMC) with size N for
a agent definition ∆, MN

∆, is a DTMC (SN ,PN):

PN [q⃗1, q⃗2] = Πn
i=1P(q⃗1) [q⃗1[i ], q⃗2[i ]]

Given a q⃗ ∈ SN . . .

■ q⃗[i ] ∈ S denotes the state of agent in position i ;

■ for any s ∈ S:

#(q⃗, s) = |{i |q⃗[i ] = s}| %(q⃗, s) =
#(q⃗, s)

N
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Global paths. . .

A global path π over MN is a non empty (infinite) sequence of states
q⃗0q⃗1q⃗2 · · · of states in SN such that, for any i , PN [q⃗i , q⃗i+1] > 0.

...

...

p1−→
...

...

p2−→
...

...

p3−→
...

...

. . .

...

...

pk−→
...

...

. . .
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Path Projections and Local Paths. . .

Given a global path π of MN , we can consider the projection of index i ,
denoted by π ↓ i :

i

...

...

...

...

...

...

...

...

. . .

...

...

...

...

. . .

We say that πℓ is a local path of agent i over MN if there exists
π ∈ PathsMN such that πℓ = π ↓ i .
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In this talk. . .

1. A model to describe (quantitative) behaviour of multi-agents systems;

2. A temporal logic to specify
■ global properties, properties at the level of the system;
■ local properties, properties at the level of individuals.
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Local and global properties

We can specify properties at two different levels:

Global Level: we are considering a global perspective

. . . the state of a system is considered as a whole;

. . . and identities of single agents are lost.

In at most k1 steps almost all agents have reached their target location.

Local Level: one is interested in the properties of the single agents

. . . the focus is on a single component in the system;

. . . the global configuration is not considered.

If an agent becomes a barrier, in at most k2 steps it restarts its journey
and in at most k3 steps it will reach its goal area.
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GLoTL: Global and Local Temporal Logic. . .

Global Formulas

Φ ::= true
∣∣ ¬Φ ∣∣ Φ1 ∧ Φ2

∣∣ %[ϕ] ▷◁ p
∣∣ X Φ

∣∣ Φ1 U≤k Φ2

Local Formulas

ϕ ::= true
∣∣ α ∣∣ ¬ϕ ∣∣ ϕ1 ∧ ϕ2

∣∣ X ϕ
∣∣ ϕ1 U≤k ϕ2

■ A global formula Φ, which permits specifying properties of global
computations;

■ A local formula ϕ, is used to specify properties of the single agents.
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∣∣ α ∣∣ ¬ϕ ∣∣ ϕ1 ∧ ϕ2

∣∣ X ϕ
∣∣ ϕ1 U≤k ϕ2

Operators of both global and local formulas are standard. Both the
fragments are a variant of bounded LTL.

The only novel operator %[ϕ] ▷◁ p is used to specify that, at a given point
in the computation, the fraction of agents satisfying local formula ϕ is ▷◁ p
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Derivable Operators. . .

Global Formulas Local Formulas

false = ¬true false = ¬true
Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2) ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)

Φ1 → Φ2 = ¬Φ1 ∧ Φ2 ϕ1 → ϕ2 = ¬ϕ1 ∧ ϕ2

♢≤kΦ = true U≤k Φ ♢≤kϕ = true U≤k ϕ

□≤kΦ = ¬♢≤k¬Φ □≤kϕ = ¬♢≤k¬ϕ
∃ϕ = %[ϕ] > 0

∀ϕ = %[ϕ] ≥ 1

%[ϕ] ∈ [v1, v2] = %[ϕ] ≥ v1 ∧%[ϕ] ≤ v2
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Global Formulas: Semantics. . .

Let MN = (SN ,PN) be a MA-DTMC and L : S → 2AP be a labelling
function. . .

π |=MN ,L true

π |=MN ,L ¬Φ ⇐⇒ π ̸|=MN ,L Φ

π |=MN ,L Φ1 ∧ Φ2 ⇐⇒ π |=MN ,L Φ1 ∧ π |=MN ,L Φ2

π |=MN ,L %[ϕ] ▷◁ p ⇐⇒ |{i |π↓i |=MN ,L
ℓ ϕ}|
N ▷◁ p

π |=MN ,L X Φ ⇐⇒ π[1..] |=MN ,L Φ

π |=MN ,L Φ1 U≤k Φ2 ⇐⇒

∃0 ≤ h ≤ k . π[h..] |=MN ,L Φ2 ∧ ∀0 ≤ i < h. π[i ..] |= Φ1
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Local Formulas: Semantics. . .

πℓ |=MN ,L
ℓ true

πℓ |=MN ,L
ℓ α ⇐⇒ πℓ[0] ∈ L(α)

πℓ |=MN ,L
ℓ ¬ϕ ⇐⇒ πℓ ̸|=MN ,L

ℓ ϕ

πℓ |=MN ,L
ℓ ϕ1 ∧ ϕ2 ⇐⇒ πℓ |=MN ,L

ℓ ϕ1 ∧ πℓ |=MN ,L
ℓ ϕ2

πℓ |=MN ,L
ℓ X ϕ ⇐⇒ πℓ[1..] |=MN ,L

ℓ ϕ

πℓ |=MN ,L
ℓ ϕ1 U≤k ϕ2 ⇐⇒

∃0 ≤ h ≤ k . πℓ[h..] |=MN ,L
ℓ ϕ2 ∧ ∀0 ≤ i < h. πℓ[i ..] |= ϕ1
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Satisfaction Probability. . .

Let MN = (SN ,PN) be a MA-DTMC and L : S → 2AP be a labelling
function.

For any q⃗ ∈ SN and formula Φ we let µ be the function amounting the
probability that q⃗ satisfies Φ:

µ(MN ,L, q⃗,Φ) = PrMN{π ∈ PathsMN (q⃗)|π |=MN ,L Φ}
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An Example: Red-Blue scenario
Global and Local Properties

■ almost all blue and read agents have reached their goal areas::

Φgb = (%[blue@goal ] ∈ [0.5− ε, 0.5 + ε])

Φgr = (%[read@goal ] ∈ [0.5− ε, 0.5 + ε])

■ the system is able to reach a configuration where almost all agents
have reached their goal area:

Φ1 = ♢≤k1 (Φgb ∧ Φgr )
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An Example: Red-Blue scenario

■ if an agent becomes a barrier, in at most k2 it restarts its journey and
in at most k3 steps it will reach its goal area.

ϕbb = bb → ♢≤k2(¬bb ∧ ♢≤k3blue@goal)

ϕrb = rb → ♢≤k2(¬br ∧ ♢≤k3read@goal)

■ in the next k4 steps, if the fraction of agents that are barriers is
greater than 30% then 75% of them satisfy ϕbb or ϕrb:

Φ2 = □≤k4 (%[bb ∨ br ] ≥ .30 → %[ϕbr ∧ ϕrb] ≥ .75)
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In this talk. . .

1. A model to describe (quantitative) behaviour of multi-agents systems;

2. A temporal logic to specify
■ global properties, properties at the level of the system;
■ local properties, properties at the level of individuals.

3. A behavioural equivalence that permits reducing the state space while
preserving formulas satisfaction (at both global and local level).
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Global Bisimulation. . .

Let MN
∆ = (SN ,PN) be a MA-DTMC model, an equivalence relation

R ⊆ SN × SN is a Global Probabilistic Bisimulation Relation if and only if
for any (q⃗1, q⃗2) ∈ R:

1. ∀i L(q⃗1[i ]) = L(q⃗2[i ]);
2. for any equivalence class C ∈ SN/R

PN [q⃗1, C] = PN [q⃗2, C]

We let ∼G denote the largest Global Probabilistic Bisimulation Relation
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Local Bisimulation. . .

Let ∆ = (S,P,AP,L), an equivalence relation R ⊆ S × S is a Local
Probabilistic Bisimulation Relation if and only if for any (s1, s2) ∈ R:

1. L(s1) = L(s2);
2. for any q⃗ ∈ SN and for any equivalence class C ∈ S/R

P(q⃗)[s1, C] = P(q⃗)[s2, C]

We let ∼L denote the largest Local Probabilistic Bisimulation Relation.
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Computing Local Bisimulation. . .

We say that ∆ = (S,P,AP,L) is in polynomial form if for any s1, s2 ∈ S:

P(x̃S)[s1, s2] =
p(x̃S)

q(x̃S)

where p(x̃S) and q(x̃S) are multivariate polynomials in the variable x̃S .

For each s ∈ S, xs is associated with the number/fraction of agents in the
state s.

Following the an approach similar to CTTV171 we can compute the
equivalence classes of ∼L in S.

1Maximal aggregation of polynomial dynamical systems, L. Cardelli, M. Tribastone,
M. Tschaikowski, A. Vandin, PNAS 17.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 27 / 31



Computing Local Bisimulation. . .

We say that ∆ = (S,P,AP,L) is in polynomial form if for any s1, s2 ∈ S:

P(x̃S)[s1, s2] =
p(x̃S)

q(x̃S)

where p(x̃S) and q(x̃S) are multivariate polynomials in the variable x̃S .

For each s ∈ S, xs is associated with the number/fraction of agents in the
state s.

Following the an approach similar to CTTV171 we can compute the
equivalence classes of ∼L in S.

1Maximal aggregation of polynomial dynamical systems, L. Cardelli, M. Tribastone,
M. Tschaikowski, A. Vandin, PNAS 17.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 27 / 31



Computing Local Bisimulation. . .

We say that ∆ = (S,P,AP,L) is in polynomial form if for any s1, s2 ∈ S:

P(x̃S)[s1, s2] =
p(x̃S)

q(x̃S)

where p(x̃S) and q(x̃S) are multivariate polynomials in the variable x̃S .

For each s ∈ S, xs is associated with the number/fraction of agents in the
state s.

Following the an approach similar to CTTV171 we can compute the
equivalence classes of ∼L in S.

1Maximal aggregation of polynomial dynamical systems, L. Cardelli, M. Tribastone,
M. Tschaikowski, A. Vandin, PNAS 17.

Michele Loreti OPCT 2023 — June 26-30, Bertinoro, Italy 27 / 31



State space reduction. . .
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Some results. . .

Let ∆ = (S,P,AP,L) and MN
∆ = (SN ,PN) be a MA-DTMC model.

■ For any q⃗1, q⃗2 ∈ SN . . .

∀i .q⃗1[i ] ∼L q⃗2[i ] =⇒ q⃗1 ∼G q⃗2

■ For any q⃗1, q⃗2 ∈ SN . . .

q⃗1 ∼G q⃗2 =⇒ ∀Φ.Pr [q⃗1 |= Φ] = Pr [q⃗2 |= Φ]

■ For any s1, s2 ∈ S. . .

s1 ∼L s2 =⇒ ∀q⃗ ∈ SN∀ϕ.Pr [s1|q⃗ |= ϕ] = Pr [s2|q⃗ |= ϕ]
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Concluding remark

In this talk we have presented a methodology that can be used to specify
properties of CAS at both global and local level.

A behavioural equivalence has been proposed to aggregate states at both
global and local level.

The proposed equivalences are sound (but not complete) w.r.t. the
proposed logic.
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