TU/e

Verifying shared-memory mutual exclusion

algorithms with non-atomic reads and writes

Myrthe Spronck and Bas Luttik

OPCT (June 26, 2023)

Edsger W. Dijkstra (1972)

critical section: part of thread code in
which some shared resource is accessed

mutual exclusion: at all times, at most one
thread has access to the resource

Goal: insert code before and after critical
section to ensure mutual exclusion.

Solution of a Problem in
Concurrent Programming Control

E. W. DuksTRA
Tech ical T

ity, Bindh The Netherland.

A number of mainly independent sequential-cyclic processes
with restricted means of communication with each ofher can
be made in such a way that at any moment one and only one
of them is engaged in the “crifical section” of ifs cycle.

Introduction

Given in this paper is a solution to a problem for which,
to the knowledge of the author, has been an open question
since at least 1962, irrespective of the solvability. The
paper consists of three parts: the problem, the solution,
and the proof. Although the setting of the problem might
seem somewhat academic at first, the author trusts that
anyone familiar with the logical problems that arise in
computer coupling will appreciate the significance of the
fact that this problem indeed can be solved.

The Problem

To begin, consider N computers, cach engaged in a
process which, for our aims, can be regarded as eyclic. In
each of the cycles a so-called “critical section” oceurs and
the computers have to be programmed in such a way that
at any moment only one of these N cyclic processes is in
its critical section. In order to effectuate this mutual
exclusion of critical-section execution the can
communicate with each other via a common store. Writing
a word into or nondestructively reading a word from this
store are undividable operations; i.e., when two or more
computers try to communicate (either for reading or for
writing) simultaneously with the same common location,
these communications will take place one after the other,
but in an unknown order.

The solution must satisfy the following requirements,

(a) The solution must be symmetrical between the N
computers; as a result we are not allowed to introduce a
static priority.

(b) Nothing may be assumed about the relative speeds
of the N computers; we may not even assume their speeds
to be constant in time.

(c) If any of the computers is stopped well outside its
critical section, this is not allowed to lead to potential
blocking of the others.

(d) If more than one computer is about to enter its
critical section, it must be impossible to devise for them
such finite speeds, that the decision to determine which
one of them will enter its critical section first is postponed
until eternity. In other words, constructions in which
“After you”-“After you”-blocking is still possible, although
improbable, are not to be regarded as valid solutions.

We beg the challenged reader to stop here for a while
and have a try himself, for this scems the only way to get
a feeling for the tricky consequences of the fact that each

Volume 8 / Number 9 / September, 1965

computer can only request one one-way message at a time.
And only this will make the reader realize to what extent
this problem is far from trivial.

The Solution

The common store consists of :

“Boolean array b, c[l:N); integer k"

The integer k will satisfy 1 <k < N, bli] and c[i]
will only be set by the ith computer; they will be inspected
by the others. It is assumed that all computers are started
well outside their eritical sections with all Boolean arra;

set to true; th i alue of k is i ial.

The program for the ith computer (1 <7 < N) is:

oger j;
: bli] = false;
i ik o i then
: begin cli]
1A blK) e

o to Lil

end

else

Lid: begin cfi] = false;
for j := 1 step 1 un

1N do

bi] = true
remainder of the cycle in which stopping is allowed;
&o to Li0"

The Proof

We start by observing that the solution is safe in the
sense that no two computers can be in their critical section
simultaneously. For the only way to enter its critical
section is the of the
Li4 without jumping back to Lil, i.., finding all other
s true after having set its own ¢ to false.

The second part of the proof must show that no infinite
“After you”-“After you”-blocking can occur; i.e., when
none of the computers is in its eritical section, of the
computers looping (i.e., jumping back to Lil) at least
one—and therefore exactly one—will be allowed to enter
its critical section in due time.

If the kth computer is not among the looping ones,
bik) will be true and the looping ones will all find k # 4.
As a result one or more of them will find in L3 the Boolean
blk] true and therefore one or more will decide to assign
“k = 1", After the first assignment ‘% 7, b[k] be-
comes false and no new computers can decide again to
assign a new value to k. When all decided assignments to
I have been performed, k will point to one of the looping
computers and will not change its value for the time being,
i.e., until b[k] becomes true, viz., until the kth computer
has completed its critical section. As soon as the value of
k does not change any more, the kth computer will wait
(via the compound statement Lid) until all other ¢’s are
true, but this situation will certainly arise, if not already
present, because all other looping ones are forced to set
their ¢ true, as they will find k # 4. And this, the author
believes, completes the proof.

Communications of the ACM 569

Communications of the
ACM 8:9, p. 569, 1965.

TU/e

X y z

The algorithm run by thread i € {1,2}

‘noncritical section’

X:=i

if y = 0 or y = i then skip else goto 2
Z:= |

if x = i then skip else goto 2

y =i

if z = i then skip else goto 2

‘critical section’

IR

Courtesy of Gerard J. Holzmann. The SPIN Model Checker — 3
primer and reference manual. Addison-Wesley, 2003.

FLAWED ALGORITHM

~

TU/e LI

The algorithm run by thread i € {1, 2} ' “—
1: ‘noncritical section’
s Xi=1 ‘ ’ \ \
: if y = 0 or y = i then skip else goto 2 B Y . ! .
2 Z =1

. if x = i then skip else goto 2

analysing system behaviour

: “critical section’

® N O VA WN

N o
\ te (2CNH efg{ X, 2)
P08) 7

N Y {
write(2, z, ﬂvs}r]té}iét @ﬂkw 4 \ w .»;(z X, 2)
v Zitite 3 \ X,
ik L N

~

TU/e LI

The algorithm run by thread i € {1, 2} ' “—
1: ‘noncritical section’
s Xi=1 ‘ ’ \ \
: if y = 0 or y = i then skip else goto 2 B Y . ! .
2 Z =1

. if x = i then skip else goto 2

analysing system behaviour

: “critical section’

® N O VA WN

wrltqggﬂm)

“ non_ xfnt(’l) —
read(2, y, oy Rl i

wrlteﬁ«&O %‘M ;

read("r ¥,.0)

) SR 0)
wnﬁ(’i‘{,‘ﬁ) W ke R, 2 \
write(d,. y.1 N \\ reag(Z x, 1)

read(1 14'@ —write(1, yﬁ-)%*wnte(z y,

TU/e

p— —
0] 0]
x y

~

The algorithm run by thread i € {1,2}
1: ‘noncritical section’
x:=i
. if y = 0 or y = i then skip else goto 2
z:=i
: if x = i then skip else goto 2
y:=i
: if z = i then skip else goto 2

© N YR WN

: “critical section’

non_c"ril(1)

non_? rit(2)

writ% X, 2)

“\
\
read(Z{ y, 0)

.

write(\2 z,2)

N
read(2, x, 2)
C Wit rite(
?éédﬁy&Qmw»Q@dﬁ.h@”ﬁ”@

COUNTEREXAMPLE

analysing system behaviour

) ait@)

Tread(2,%,.2)

write(z\, Y, 2)

regz,x, 2)
\

\A% 2)
read(é’ LY, 2)

write(é, X, 2)

read(;,ix, 1)
readg x, 1)

TU/e

Dekker’s mutual exclusion algorithm

Dijkstra’s mutual exclusion algorithm Correctness claims for these algorithms have

been established under the assumption that
threads interact with shared memory

Peterson’s mutual exclusion algorithm

Knuth’s mutual exclusion algorithm

MANY CORRECT MUTUAL EXCLUSION ALGORITHMS

jread0 , readsdy?/2 =~ reack8dlV2
possible register values: 0,1,2 write O write 2

Atomicity of memory interaction is not a reasonable
assumption for a solution to the mutual exclusion problem

Safe register (a.k.a. communication variable):
if a read is concurrent with a write, then it may obtain
any value in the domain of the register

Bakery Algorithm solves mutual exclusion problem

BUT (a.f.a.i.k): this has never been mechanically verified

Leslie Lamport (2013)

IreadOI . read 2 . %readl:

write 2

Our proofs have been done in the style of standard “journal mathematics”, using
informal reasoning that in principle can be reduced to very formal logic, but in
practice never is. Our experience in years of devising synchronization algorithms
has been that this style of proof is quite unreliable. We have on several occasions
“proved” the correctness of synchronization algorithms only to discover later that
they were incorrect. (Everyone working in this field seems to have the same
experience.) This is especially true of algorithms using our nonatomic communi-

cation primitives.
L. Lamport (1986):
The Mutual Exclusion Problem:
Part lI---Statement and Solutions
JACM 33(2), pp. 327-348

i

Leslie Lamport (2013)

VERIFY MECHANICALLY!

IreadOI . read 2 . %readl:

write 2

Recent progress in reasoning about nonatomic operations [12] and in temporal
logic specifications [13, 14] should make it possible to recast our definitions and
proofs in this formalism. However, doing so would be a major undertaking,
completely beyond the scope of this paper. We are therefore forced to leave these
proofs in their current form as traditional, informal proofs. The behavioral reason-
ing used in our correctness proofs, and in most other published correctness proofs
of concurrent algorithms, is inherently unreliable; we advise the reader to be
skeptical of such proofs.

L. Lamport (1986):

The Mutual Exclusion Problem:
Part IlI---Statement and Solutions
JACM 33(2), pp. 327-348

Goal: mechanically verify correctness of mutual exclusion

, algorithms not relying on atomic communication primitives
Leslie Lamport (2013)

VERIFY MECHANICALLY!

TU/e

* Devised general method to model non-atomic memory
interactions in mCRL2

* Analysed several mutual exclusion protocols claimed to be
robust for such interactions

 Lamport only considered single-writer, multi-reader;
Spronck’s definition is suitable for multi-writer, multi-reader.

Myrthe Spronck (2077)

A BACHELOR RESEARCH PROJECT

e

Main ideas:
 Interactions split up into start and finish
* Register modelled as separate process
* Register keeps track of threads currently reading and writing R, (d :D, s : Ss)
* Read overlapping with write:

> return arbitrary value from domain

* Write overlapping with a write: using mCRL2’s facility to
> register assumes arbitrary value from domain algebraically specify data types
st fro(2)
T0: : read O : 1 read 2 1 — read 1
T1- . write O : : write 2
T
swy(0) fw, 12

MODELLING REGISTERS WITH NON-ATOMIC OPERATIONS

TU/e

NB: Peterson never claimed that his algorithm is
correct also for nonatomic memory interactions!

. flagli] < 1
: turn < J

1

2
Counterexample below shown only to illustrate how 3: await flag[j] =0V turn =1
4
5

nonatomic memory interactions influence correctness : critical section

: flagli] < 0O

noncrit flag[0]«—1 flag[1]=1 turn=0 crit
TO: o i i i - i o
turn—1
: ® I] I it i} i °
T noncrit flag[1]«—1 turn—0 flag[0]=1 turn=1 crit

PETERSON (COUNTEREXAMPLE)

7 a0
,"f\w
50 ¢
5 W
Tow

N g

WIKIPEDIA

The Free Encyclopedia

Main page
Contents
Current events

Article Talk

Szymanski's algorithm

From Wikipedia, the free encyclopedia

& Not logged in Talk Contributions Create account Login

Read Edit View history | Search Wikipedia Q

Szymanski's Mutual Exclusion Algorithm is a mutual exclusion algorithm devised by computer scientist Dr. Bolestaw Szymariski, which has many favorable properties including linear wait,[/[2] and which extension[® solved the open problem posted by Leslie Lamport!*] whether there is an algorithm with a constant number
of communication bits per process that satisfies every reasonable faimess and failure-tolerance requirement that Lamport conceived of (Lamport's solution used n factorial communication variables vs. Szymariski's 5).

Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

Download as PDF
Printable version

Languages

X
Edit lin

Pr of the Fifth Confe on

T Israel, October 1990

|IEEE Computer Society Press, Los Alamitos, CA, pp. 110-117
Mutual Exclusion Revisited{

Boleslaw K. Szymanski

Computer Science Department

R laer Polytechnic
Troy, NY 12180

Abstract

A family of four mutual exclusion algorithms is pre-
sented. Its members vary from a simple three-bit linear
wait mutual exclusion to the four-bit first-come first-
served algorithm immune to various faults. The algo-
rithms are based on a scheme similar to the Morris's
solution of the mutual exclusion with three weak sema-
phores. The presented algorithms compare favorably
with i blished mutual excli i

in their program’s size and the number of required com-
munication bits.

1. Introduction

Mutual exclusion is at the center of many concur-
rent process synchronization problems and, conse-
quently, is of a great theoretical and practical signifi-
cance in parallel and distributed processing. In the
mutual exclusion problem, there is a collection of asyn-
chronous processes. Each process contains a distinct
part of the code called a crifical section (or region).
The process’s remaining code is referred to as a noncrit-
ical section (or region) [2]. Each process alternately
executes its noncritical and critical sections. Processes
can proceed in parallel outside of the critical section but
only one process at a time can execute the critical sec-
tion.

Mutual exclusion in uniprocessor systems can be
provided by disabling interrupts when a process is in its
critical section. Such a solution is efficient only if criti-
cal sections are short. Otherwise the system response
time would degrade and disabled interrupts could be

i The other limitation of this i is
that in most systems interrupt disabling and enabling is
beyond control of the user programs.

This woek was partially supporied by the National Science
Foundation under grant No. CCR-8613353 and by the Ammy
Rescarch Office under contract DAALD3-86.K-0112

In multiprocessors with a shared memory. a spe-
cial test-and-set instruction can be used to support the
mutual exclusion. However, this solution requires syn-
chronized accesses to the shared memory from all pro-
cesses and such accesses could be difficult to support.
In a multiprocessor multiport memory system the test-
and-set instruction cannot be implemented by control-
ling an access cycle of a single processor [4].[11].On a
large VLSI chip processors cannot run on the same
clock because sending a clock pulse across the chip
introduces a delay in a pulse propagation. Growing
popularity of parallel and distributed architectures has
led to rencwed interest in algorithmic solutions to the
mutual exclusion problem [1], [4]. [6], 7], [9], [11],
[12],113].

Algorithmic solutions to the mutual exclusion
problem were extensively studied in the past [2]. [3],
[5], [12]. Recently, Lamport in [7] presented a new
extended definition of the mutual exclusion and its four
solutions characterized by different degrees of enforced
faimess and Lamport's ith are
immune to several types of process malfunctions.
Unlike the majority of older solutions, his algorithms do
not assume that ites from/to icati
varigbles arc mutually exclusive. Such robustness is
important in large distributed systems where failure of a
single processor should not break down the entire sys-
tem. It is also needed in VLSI chip based multiprocessor
systems, in which nonuniform conditions in the chip’s
wafer result in varying reliability of individual proces-
sors.

In Lamport's algorithms, the desired degree of
faimess and robustness decides the number of commu-
nication variables required by cach process. Let n
denotes the number of processes participating in the
mutual exclusion. The strongest fairness condition
(known as first-come first-served property) together with
the strongest robustness requirement are provided by the
algorithm that uses n-factorial of communication binary
varigbles per process. The fair solution with a constant
number of ication variables was i in

[13] (lincar wait, four one-bit communication variables),
and reported in [8] (first-come first-served, five one-bit

to leave the critical section closes the exit door and reopens the entry door, so the next batch of

and the exit door is closed. All processes which request entry into the critical section at roughly thi e waiting room; the last of them closes the entry door and opens the exit door. The processes then

d by all others (this single-writer property is desirable for efficient cache usage

“...which extension solved the open
problem posted by Leslie Lamport
whether there is an algorithm with a
constant number of communication
bits per process that satisfies every
reasonable fairness and failure-
tolerance requirement that Lamport
conceived of...”

Scheme of Process States During &7
Execution

door

sh exit protocol

has
0 be closed

thread other than self. For example, if the test is any flag[1..N] = 1 and only flag[self] = 1, then the test is said to have failed/returned 0. Despite the intuitive explanation, the algorithm was not easy to prove correct,
presented. (2I(5]

ait". F ings of the 2nd it ional on Sup puting - ICS '88. ICS '88: Proceeding

BN 978-0-89791-

“Despite the intuitive
explanation, the algorithm was
not easy to prove correct”

iness: A Birthday Salute to Edsger W. Dijkstra. Springer Verlag. pp. 289-301. ISBN 978-Q
Technology. Jerusalem, Israel: 110-117.
(2): 327-348. CiteSeerX 10.1.1 .32.QBOBaA doi:10.1145/5383.5385 (2. S2CID 7387839
Zwiers, Job (November 2001). Concurrency Verification(Z. Number 54 in Cambridge TracH

« Dekker's algorithm
 Eisenberg & McGuire algorithm
* Peterson's algorithm

TU/e

noncrit
TO: @

—
—

—
e

: flagli] < 0O

flagli] 1
await Vj. flag[j] < 3

flagli] < 3
if 35. flag[j] = 1 then
flagli] <2
await 3j. flag[j] =4
flagli] « 4

await Vj < i. flag[j] < 2
critical section
await Vj > i. flag[j] < 2V flag[j] > 3

flag[0]«—1 flag[0] =1 flag[1]=1

T1:

o) i H H i
noncrit flag[1]«—1 flag[0] =0 flag[1l] =1

SZYMANSKI (COUNTEREXAMPLE)

TU/e

_|
Q

flagli] « 1
await Vj. flag[j] < 3
flagli] < 3
if 35. flag[j] = 1 then
flagli] < 2
await 3j. flag[j] =4
flagli] < 4
await Vj < i. flag[j] < 2
critical section
await Vj > i. flag[j] < 2V flag[j] > 3
: flag[i] < 0

—_
_ O

flag[0]«—1 flag[0] =1 flag[1]=1

both
threads |

T1:

Y S " Sy ——

atline 3 E }

*flag[1]—1 Tlagl0] = 0 flagl] =1

SZYMANSKI (COUNTEREXAMPLE)

flagli] 1
await Vj. flag[j] < 3
flagli] < 3
if 35. flag[j] = 1 then
flag[i] 2
await 3j. flag[j] =4
flagli] < 4
await Vj < i. flag[j] < 2
critical section
await Vj > i. flag[j] < 2V flag[j] > 3
flagli] <= 0

TU/e

—

—

_|
Q

1

1

:

both i

! threads |

1 1

T1: !atline3!

SZYMANSKI (COUNTEREXAMPLE)

flagli] « 1
await Vj. flag[j] < 3
flagli] < 3
if 35. flag[j] = 1 then
flagli] < 2
await 3j. flag[j] =4
flagli] < 4
await Vj < i. flag[j] < 2
critical section
await Vj > i. flag[j] < 2V flag[j] > 3
: flag[i] < 0

TU/e

—_
_ O

i i flag[0]«—3 flag[0] =3 flag[1] =4 flag[1]«—1 crit
TO: ! : - i - o
: both :
i threads |
. 1 atline 3 —1 H H H i '3
Thatline s i T]e—3 'flaglo] = 3" flag[l] =3 flag[l]l—4 flagl0] = 1 Tt

SZYMANSKI (COUNTEREXAMPLE)

IreadOI : read 2 : %readﬂl:

write 2

Atomicity of memory interaction is not a reasonable
assumption for a solution to the mutual exclusion problem

Safe register (a.k.a. communication variable):
if a read is concurrent with a write, then it may obtain
any value in the domain of the register

Regular register:
if a read is concurrent with a write, then it may obtain
the old or the new value

Leslie Lamport (2013)

REGULAR REGISTERS

e

Main ideas: R.(d:D,s:S,)
* Register modelled as separate process
 Interactions split up into start and finish
* Register keeps track of threads currently reading and writing Bookkeeping
* Read overlapping with write: for every executing read:
> return value written right before or during read * which values were written concurrently
* Write overlapping with a write: for every executing write:

> non-deterministically fix order of writes at runtime * has it been effectuated or not?

oWy

_ read O - writel L‘ read 1/2 read 1

TO:

write O write 2

T1:

ow,(0) ow; 22

REGULAR MULTI-WRITER MULTI-READER REGISTER

e

> non-deterministically fix order of writes at runtime e has it been effectuated or not?

Important to get finite—state model! ow,

read O write 1 1 read 1/2 read 2
TO: } 1 11 —1 1

write O] write 2

T1: } | i

ow,(0) 0

REGULAR MULTI-WRITER MULTI-READER REGISTER

Main ideas: R.(d:D,s:S,)
* Register modelled as separate process
 Interactions split up into start and finish
* Register keeps track of threads currently reading and writing Bookkeeping
* Read overlapping with write: for every executing read:
> return value written right before or during read * which values were written concurrently
* Write overlapping with a write: for every executing write:

24

TU/e

1: flag[i] <+ 1

2: turn < J

3: await flag[j] =0V turn =i
4

5}

NB: Peterson never claimed that his algorithm is
correct also for nonatomic memory interactions!

Counterexample below shown only to illustrate how
nonatomic memory interactions influence correctness

. critical section
: flagli] < 0O

noncrit flag[0]<—1 flag[1]=1 turn=1 crit
TO: °® i g[‘] i > - gl1] i -
turn<—0
: o I i I I i} i °
™ noncrit ﬂag[ﬁ<—1 turn<—r= flag[0] =1 turn=0 crit

PETERSON (COUNTEREXAMPLE)

e

* Definitions given as conditions on
computations (cf. fairness assumptions)
* Not directly useful for model checking

: - , e Atomici
A computation satisfies the write-order condition if romicity

associated with every read r there is a total order S,
on the writes (consistent with the computation) such
that S;and S, agree on all writes relevant to both

.

4 .
TO: erlte 1ﬁ : read 2 :

T1- erlte Zﬁ Fread lﬁ.

OUR DEFINITION OF
REGULAR REGISTER

Atomicity

ID, WB, LC

MWRegWO f\ MWRegNI

ED

P

e |

OTHER MWMR REGULAR REGISTER DEFINITIONS

=]

Shao, Welch, Pierce, Lee (2011):
Multiwriter Consistency Conditions
for Shared Memory Registers

SIAM J. Comput. 40(1), pp. 28-62

26

TU/e

Defined generic mCRL2 models for safe, reqgular and atomic MWMR registers
see: https://github.com/mCRL2org/mCRL2/tree/master/examples/non-atomic_registers

Proved relationship with alternative definitions in literature

Verified several well-known mutual exclusion algorithms

Found issues

https://github.com/mCRL2org/mCRL2/tree/master/examples/non-atomic_registers

TU/e

Correctness hinges on subtle
implementation detail

Subtle reformulation of the
algorithm introduces flaw

Safe

Aravind (BLRU) |2,
Attiya-Welch [3, Alg
Attiya-Welch alterny
Dekker (1, Figure
Dijkstra [6]
Knuth (8]
Lamport (3 bit) [10, Figure 2]
Peterson (18]

Szymanski (flag) [21, Figure 2]

e 4]
m 12]
2 (20, Figure 19.1]

Szymanski (flag with bits)
Szymanski (3 bit lin. wait) [22, Figure 1]

X 3% MR Y egie ey wgrey ey

R AR RIS MR

Regular Atomic
Tutex Reach | Mutex Reach

v v Vv v
v v v v
v X v v
v v v v
v v v v
v v v v
v v v v
X v v v
X v v v
X v X v
X v X v

28

TU/e

private variables: j, f with range 1 ... N,
v with range cycleson | ... N;
communication variables: x;, y; initially false, z;;
repeat forever
noncritical section;
yi .= true,
[1: x; := true,
[2: v = ORD{i:y; = true}
f:= minimum {j € v:CG(z, v, J) = true};
for j := fcyclically to /
do if y; then x; =:== false;
goto /2
fi
od;
if —x; then goto /1 fi;
for j := i@ 1 cyclically to /
do if x; then goto /2 fi od;
critical section,
Z; .= TZ;
X; .= false;
y; .= false
end repeat 29

LAMPORT'S THREE BIT ALGORITHM

TU/e

—
=)

flagli] < 0
await flag[j] =0V turn = j

flagli] <+ 1
if turn =1 then
if flag[j] = 1 then
goto line 1
else
await flag[j] =0

critical section

turn < 1
: flagli] < 0

—
-

repeat
flagli] < 0
await flag[j] =0V turn =j
flagli] <1
until turn = j V flag[j] = 0
if turn = 5 then
await flag[j] =0
critical section
turn <1

: flagli] < 0O

Are the regular register models by Shao et al. finite-state?

If not, can we incorporate their conditions in modal mu-calculus formulas?

Is Peterson’s algorithm correct with respect to the regular registers of Shao et al.?
4. How to formulate fairness assumptions to verify starvation freedom?

5. Model other types of failures

OPEN PROBLEMS

