
Verifying shared-memory mutual exclusion 
algorithms with non-atomic reads and writes

OPCT (June 26, 2023) 

Myrthe Spronck and Bas Luttik



2

MUTUAL EXCLUSION

Edsger W. Dijkstra (1972)

• critical section: part of thread code in 
which some shared resource is accessed

• mutual exclusion: at all times, at most one 
thread has access to the resource

• Goal: insert code before and after critical 
section to ensure mutual exclusion.

Communications of the 
ACM 8:9, p. 569, 1965.



3

FLAWED ALGORITHM

Courtesy of Gerard J. Holzmann. The SPIN Model Checker – 
primer and reference manual. Addison-Wesley, 2003.



4

STATE SPACE



5

STATE SPACE



6

COUNTEREXAMPLE



7

Dekker’s mutual exclusion algorithm

Dijkstra’s mutual exclusion algorithm

Peterson’s mutual exclusion algorithm

Knuth’s mutual exclusion algorithm

…

MANY CORRECT MUTUAL EXCLUSION ALGORITHMS

Correctness claims for these algorithms have 
been established under the assumption that 
threads interact atomically with shared memory



8

write 0

read 0

write 2

read 0/1/2read 0/1/2

ATOMICITY?

Leslie Lamport (2013)

Atomicity of memory interaction is not a reasonable 
assumption for a solution to the mutual exclusion problem

Safe register (a.k.a. communication variable):
if a read is concurrent with a write, then it may obtain 
any value in the domain of the register 

possible register values: 0,1,2
read 2 read 1

Bakery Algorithm solves mutual exclusion problem

BUT (a.f.a.i.k): this has never been mechanically verified



9

write 0

read 0

write 2

VERIFY MECHANICALLY!

Leslie Lamport (2013)

possible register values: 0,1,2
read 2 read 1

L. Lamport (1986):
The Mutual Exclusion Problem:

Part II---Statement and Solutions
JACM 33(2), pp. 327-348



10

write 0

read 0

write 2

VERIFY MECHANICALLY!

Leslie Lamport (2013)

possible register values: 0,1,2
read 2 read 1

L. Lamport (1986):
The Mutual Exclusion Problem:

Part II---Statement and Solutions
JACM 33(2), pp. 327-348

Goal: mechanically verify correctness of mutual exclusion 
algorithms not relying on atomic communication primitives   



11

A BACHELOR RESEARCH PROJECT

Myrthe Spronck (20??)

• Devised general method to model non-atomic memory 
interactions in mCRL2

• Analysed several mutual exclusion protocols claimed to be 
robust for such interactions

• Lamport only considered single-writer, multi-reader; 
Spronck’s definition is suitable for multi-writer, multi-reader.



12

MODELLING REGISTERS WITH NON-ATOMIC OPERATIONS

write 0

read 0

write 2

read 2 read 1

sw1(0) fw1

sr0 fr0(2)

T0:

T1:

Main ideas:
• Interactions split up into start and finish
• Register modelled as separate process
• Register keeps track of threads currently reading and writing
• Read overlapping with write:
➢ return arbitrary value from domain

• Write overlapping with a write:
➢ register assumes arbitrary value from domain

using mCRL2’s facility to 
algebraically specify data types 



13

PETERSON (COUNTEREXAMPLE)

flag[1]⟵1 turn⟵0 flag[0] = 1

flag[0]⟵1 flag[1] = 1 turn=0

noncrit

noncrit
T0:

T1:

turn⟵1

turn=1 crit

crit

NB: Peterson never claimed that his algorithm is 
correct also for nonatomic memory interactions!

Counterexample below shown only to illustrate how 
nonatomic memory interactions influence correctness



14

SZYMANSKI’S ALGORITHM

“…which extension solved the open 
problem posted by Leslie Lamport 

whether there is an algorithm with a 
constant number of communication 
bits per process that satisfies every 

reasonable fairness and failure-
tolerance requirement that Lamport 

conceived of…”

“Despite the intuitive 
explanation, the algorithm was 

not easy to prove correct”



15

SZYMANSKI (COUNTEREXAMPLE)

flag[1]⟵1 flag[0] = 0 flag[1] = 1

flag[0]⟵1 flag[0] = 1 flag[1] = 1

noncrit

noncrit
T0:

T1:



16
flag[1]⟵1 flag[0] = 0 flag[1] = 1

flag[0]⟵1 flag[0] = 1 flag[1] = 1

T1:

T0:

SZYMANSKI (COUNTEREXAMPLE)

both 
threads 
at line 3



17

flag[0] = 1 flag[1] = 1
T0:

T1:

both 
threads 
at line 3

SZYMANSKI (COUNTEREXAMPLE)



18

SZYMANSKI (COUNTEREXAMPLE)

T0:

T1:

both 
threads 
at line 3

flag[1]⟵3

flag[0]⟵3

flag[0] = 3 flag[1] = 3 flag[1]⟵4 flag[0] = 1

flag[0] = 3 flag[1] = 4 flag[1]⟵1

crit

crit



20

write 0

read 0

write 2

REGULAR REGISTERS

Leslie Lamport (2013)

Atomicity of memory interaction is not a reasonable 
assumption for a solution to the mutual exclusion problem

Safe register (a.k.a. communication variable):
if a read is concurrent with a write, then it may obtain 
any value in the domain of the register 

possible register values: 0,1,2
read 2 read 0

Regular register:
if a read is concurrent with a write, then it may obtain 
the old or the new value

read 1



22

read 1

REGULAR MULTI-WRITER MULTI-READER REGISTER

write 0

read 0

write 2

write 1 read 1/2

ow1(0) ow1

ow0

T0:

T1:

Main ideas:
• Register modelled as separate process
• Interactions split up into start and finish
• Register keeps track of threads currently reading and writing
• Read overlapping with write:
➢ return value written right before or during read

• Write overlapping with a write:
➢ non-deterministically fix order of writes at runtime

for every executing read:
• which values were written concurrently
for every executing write:
• has it been effectuated or not?

Bookkeeping



24

read 2

REGULAR MULTI-WRITER MULTI-READER REGISTER

write 0

read 0

write 2

write 1 read 1/2

ow1(0) ow1

ow0

T0:

T1:

Main ideas:
• Register modelled as separate process
• Interactions split up into start and finish
• Register keeps track of threads currently reading and writing
• Read overlapping with write:
➢ return value written right before or during read

• Write overlapping with a write:
➢ non-deterministically fix order of writes at runtime

for every executing read:
• which values were written concurrently
for every executing write:
• has it been effectuated or not?

Bookkeeping

Important to get finite–state model!



25

PETERSON (COUNTEREXAMPLE)

flag[1]⟵1 turn⟵1 flag[0] = 1

flag[0]⟵1 flag[1] = 1 turn=1

noncrit

noncrit
T0:

T1:

turn⟵0

turn=0 crit

crit

NB: Peterson never claimed that his algorithm is 
correct also for nonatomic memory interactions!

Counterexample below shown only to illustrate how 
nonatomic memory interactions influence correctness



26

OTHER MWMR REGULAR REGISTER DEFINITIONS

Shao, Welch, Pierce, Lee (2011):
 Multiwriter Consistency Conditions

 for Shared Memory Registers
SIAM J. Comput. 40(1), pp. 28-62

OUR DEFINITION OF
REGULAR REGISTER

• Definitions given as conditions on 
computations (cf. fairness assumptions)

• Not directly useful for model checking

A computation satisfies the write-order condition if 
associated with every read r there is a total order Sr 

on the writes (consistent with the computation) such 
that Sr and Sr’ agree on all writes relevant to both 

write 1T0:

T1:

read 2

write 2 read 1



27

• Defined generic mCRL2 models for safe, regular and atomic MWMR registers
see: https://github.com/mCRL2org/mCRL2/tree/master/examples/non-atomic_registers

• Proved relationship with alternative definitions in literature

• Verified several well-known mutual exclusion algorithms

• Found issues

CONCLUSION

https://github.com/mCRL2org/mCRL2/tree/master/examples/non-atomic_registers


28

CONCLUSIONS

Subtle reformulation of the 
algorithm introduces flaw

Correctness hinges on subtle 
implementation detail



29

LAMPORT’S THREE BIT ALGORITHM



30

ATTIYA-WELCH



31

1. Are the regular register models by Shao et al. finite-state?

2. If not, can we incorporate their conditions in modal mu-calculus formulas?

3. Is Peterson’s algorithm correct with respect to the regular registers of Shao et al.?

4. How to formulate fairness assumptions to verify starvation freedom?

5. Model other types of failures

6. …

OPEN PROBLEMS


