
Modeling Collective Adaptive Systems

with Attribute-Based Events:

Recent Trends and Open Problems

based on joint work with M. Pasqua (U. Verona), M. Paier (IMT Lucca), and others

Marino Miculan

OPCT 2023 - Bertinoro
June 29, 2023

marino.miculan@uniud.it

Event-driven programming of smart systems

Environment

RULE

input

Ev
en

t

Condition

output

Action

(sensors) (actuators)

State-based ECA rules: “on movement if alarm = "active" then siren on”

variables can be internal, or connected to sensors or to actuators

M. Miculan OPCT 20231 24

Common IoT architecture

Centralized

No intra-nodes communication

Cloud and Internet-dependent

Very popular:

Internet

M. Miculan OPCT 20232 24

Next (ECA) IoT architecture: edge computing

Fully distributed

Communication between nodes

Cloud-agnostic

Identity decoupled, for scalability

Collective Adaptive Systems

Internet

M. Miculan OPCT 20233 24

Programming model for edge CAS?

We need programming abstractions and models for edge computing with:
peer-to-peer, decentralised control

identity decoupling, for scalability (no point-to-point communication)

open and flexible (nodes can join and leave dynamically)

which integrate neatly within the ECA paradigm

M. Miculan OPCT 20234 24

Programming model for edge CAS?

Alrahman et al. (2015): attribute-based communication, a new form of broadcast for
coordinating large numbers of components: the actual receivers are selected “on the fly”
by means of predicates.

Proposed the AbC calculus, which has two communication actions:
(E)@⇧.P : send the values of E to those components whose attributes satisfy ⇧;
⇧(x).P : receive from any component whose attributes (and possibly transmitted
values) satisfy ⇧.

But message-passing is not proper of state-based declarative ECA programming:
Interaction is on shared memory and modified variables.

M. Miculan OPCT 20235 24

Attribute-based Memory Updates [M., Pasqua, ICTAC 2021]

Nodes behavior: defined by ECA rules like “on z for all ⇧ : x e”

3 2

1

Nodes state: local memory

Interaction: remote updates

1

2

Interaction: remote updates

1

2

Attribute-based interaction: on all nodes satisfying ⇧, update the remote x with e

M. Miculan OPCT 20236 24

AbC-AbU correspondence

AbC AbU

Communication message-passing memory updates

Output (E)@⇧ @ ⇧

Input ⇧(x) nodes invariant

In AbU there are no explicit input primitives, to filter incoming updates
But we can specify admissible states by means of state invariants

M. Miculan OPCT 20237 24

The AbU language

An AbU system S is an AbU node R , ◆h⌃, ⇥i or the parallel of systems S1 kS2

Each node is equipped with a list R of AbU rules and an invariant ◆

evt m act1 , cnd : act2
task

event

list of resources

assignments

x " (local)

forall @ x " (remote)default

for all: @(x < x̄) : x̄ x , ȳ ȳ + 1
“on all nodes with (remote) x greater than the current (local) x”

“assign the (remote) x with the current (local) x , and increment remote y ”

M. Miculan OPCT 20238 24

The AbU Language: a Domain Specific Language for the IoT

1 # AbU devices definition.

2

3 hvac : "An HVAC control system" {

4 physical output boolean heating = false

5 physical output boolean condit = false

6 logical integer temp = 0

7 logical integer humidity = 0

8 physical input boolean airButton

9 logical string node = "hvac"

10 where not (condit and heating == true)

11 } has cool warm dry stopAir

12

13 tempSens : "A temperature sensor" {

14 physical input integer temp

15 logical string node = "tempSens"

16 } has notifyTemp

17

18 humSens : "A humidity sensor" {

19 physical input integer humidity

20 logical string node = "humSens"

21 } has notifyHum

22 \%

23 AbU (ECA) rules definition.

24 Rules can be referenced by multiple devices.

25 %\

26

27 rule cool on temp

28 for (this.temp < 18) do this.heating = true

29

30 rule warm on temp

31 for (this.temp > 27) do this.heating = false

32

33 rule dry on humidity; temp

34 for (this.temp * 0.14 < this.humidity)

35 do this.condit = true

36

37 rule stopAir on airButton

38 for (this.airButton) do this.condit = false

39

40 rule notifyTemp on temp

41 for all (ext.node == "hvac")

42 do ext.temp = this.temp

See paper on IEEE Access 2022

M. Miculan OPCT 20239 24

AbU execution model

Stable

(I
N

P
U

T)

v
discovery

~1 ~2

v

(EXEC)
~1

discovery

~4 ~2
~3

~1 . . .

. . .

~3

(E
X

E
C
)

~3
discovery

~3

Stable

(WAVE)

S S0

M. Miculan OPCT 202310 24

AbU operational semantics [Pasqua, M., TCS 2023]

LTS semantics, with judgments:

R , ◆h⌃, ⇥i ↵�_ R , ◆h⌃0, ⇥0i

A label ↵ can be:
an input label, upd I T

an execution label, upd B T

a discovery label, T

M. Miculan OPCT 202311 24

AbU operational semantics: rules

(Exec)

upd 2 � upd = (x1, v1) . . . (xk, vk) �� = �[v1/x1 . . . vk/xk] �� |= ◆
��� = � \ {upd} X = {xi | i 2 [1..k] ^ �(xi) 6= ��(xi)}

�� = ��� [DefUpds(R, X, ��) [LocalUpds(R, X, ��) T = ExtTasks(R, X, ��)

R, ◆h�, �i upd�T����_ R, ◆h��, ��i

(Exec-Fail)
upd 2 � upd = (x1, v1) . . . (xk, vk) �� = �[v1/x1 . . . vk/xk] �� 6|= ◆ �� = � \ {upd}

R, ◆h�, �i upd�T����_ R, ◆h�, ��i

(Input)

v1, . . . , vk 2 V �� = �[v1/x1 . . . vk/xk] X = {x1, . . . , xk}
�� = � [DefUpds(R, X, ��) [LocalUpds(R, X, ��) T = ExtTasks(R, X, ��)

R, ◆h�, �i (x1,v1)...(xk,vk)�T������������_ R, ◆h��, ��i

(Disc)
��� = {�act�� | �i 2 [1..n] . taski = � : act ^ � |= �} �� = � [���

R, ◆h�, �i task1...taskn�������_ R, ◆h�, ��i

(StepL)
S1

��_ S�
1 S2

T�_ S�
2

S1 k S2
��_ S�

1 k S�
2

��{upd�T,upd�T} (StepR)
S1

T�_ S�
1 S2

��_ S�
2

S1 k S2
��_ S�

1 k S�
2

��{upd�T,upd�T}

Figure 1: Semantics of AbU calculus with invariants.

indicating in which operative state is the drone; and a resource helpPos, indicating the position of a drone
that needs help. Formally, the AbU system modeling the drone-swarm scenario is

S = Rh�1, ?i k Rh�2, ?i k Rh�3, ?i k Rh�4, ?i

where R contains, among the others, the following two AbU rules:

battery m @(battery < 5 ^ battery > 80) : helpPos position (1)
helpPos m (|position� helpPos| < 7.0) : mode ‘rescue’ (2)

Now suppose that the execution states of the drones are the following:

�1 = [battery ��4 position ��2.0 mode �� ‘measure’ helpPos ��0.0]
�2 = [battery ��81 position ��15.0 mode �� ‘measure’ helpPos ��0.0]
�3 = [battery ��97 position ��6.0 mode �� ‘measure’ helpPos ��0.0]
�4 = [battery ��65 position ��8.0 mode �� ‘measure’ helpPos ��0.0]

The rule (1) says that when the current drone battery level is low (battery < 5), then the current drone
have to send to all (@) neighbors with some energy to share (battery > 80) its position, performing a remote
update (helpPos position). In the example, the first node can fire the rule (1), since its battery level
is low. Then, it pre-evaluates the task condition, yielding 4 < 5 ^ battery > 80, which is sent to the other
nodes, together with the pre-evaluation of the task action, i.e., helpPos 2.0. Among all receivers, only
the second and the third nodes are interested in the communication, since they are the only with battery
level greater than 80. So they both add to their pool the update (helpPos, 2.0). This ends the discovery
phase originated by the first node.

The rule (1), instead, is fired when a drone receives a help request (i.e., when its resource helpPos changes)
and basically checks if the current drone position is close to the requester position (|position� helpPos| <
7.0). If it is the case, the current drone enters the rescue mode performing a local update (mode ‘rescue’).
In the example, when the second and the third nodes execute the update (helpPos, 2.0), the task of the rule
(1) may be executed. For the second node this does not happen, since |15.0 � 2.0| < 7.0 is not true (the
node is too far from the first node). Instead, |6.0� 2.0| < 7.0 and the third node can execute the rule task,
adding to its pool the update (mode, ‘rescue’).

5

M. Miculan OPCT 202312 24

Research questions and problems

1 Stability: after an input, does a wave computation always terminates?
2 Confluence: will different executions end up with the same state(s)?
3 Global invariants: how to guarantee that trajectories will not invalidate a given

global property?
4 Security: how to avoid information leakages?
5 Safety: how to avoid unintended interactions?
6 Implementation: how to make it efficient, portable and scalable?
7 . . .

M. Miculan OPCT 202313 24

Q1: Stabilization

The wave semantics may exhibit internal divergence, namely S ↵0�_ S0 ↵1�_ . . .
Question: how to guarantee that a program will always stabilize, after an input?

ECA
dependency graph

r1 r2

r3 r4

r5 r6
rule D r1 m (⇤) : r2 ⇤

rule C r5 m (⇤) : r6 ⇤

rule B r3 r2 m (⇤) : r4 ⇤

rule A r4 m (⇤) : r6 ⇤

rule A r4 m (⇤) : r6 ⇤ r1 ⇤

Theorem (AbU stabilization)

If the ECA dependency graph of an AbU system S is acyclic, then S is stabilizing.

Can we do better? E.g., including (some) loops? (Control theory may be useful here?)

M. Miculan OPCT 202314 24

Q1: Stabilization

The wave semantics may exhibit internal divergence, namely S ↵0�_ S0 ↵1�_ . . .
Question: how to guarantee that a program will always stabilize, after an input?

ECA
dependency graph

r1 r2

r3 r4

r5 r6
rule D r1 m (⇤) : r2 ⇤

rule C r5 m (⇤) : r6 ⇤

rule B r3 r2 m (⇤) : r4 ⇤

rule A r4 m (⇤) : r6 ⇤ r1 ⇤

Theorem (AbU stabilization)

If the ECA dependency graph of an AbU system S is acyclic, then S is stabilizing.

Can we do better? E.g., including (some) loops? (Control theory may be useful here?)

M. Miculan OPCT 202314 24

Q2: Confluence

We may want the semantics not to be influenced by scheduler decisions:
for all S1, S2 s.t. S �_⇤ S1 and S �_⇤ S2, there exists S0 s.t. S1 �_⇤ S0 and S2 �_⇤ S0

labeled ECA
dependency graph

r1 r2

r3 r4

r5 r6

rule A r4 m (⇤) : r6 ⇤

rule B r3 r2 m (⇤) : r4 ⇤

rule C r5 m (⇤) : r6 ⇤

rule D r1 m (⇤) : r2 ⇤

D

B
B

C A

rule A r4 m (⇤) : r6 ⇤ r3 ⇤
A

Theorem (AbU confluence)

If for each pair (x , y) of nodes in the labeled ECA dependency graph of an AbU system
S we have that |walks(x , y)|  1, then S is confluent.

M. Miculan OPCT 202315 24

Q2: Confluence

We may want the semantics not to be influenced by scheduler decisions:
for all S1, S2 s.t. S �_⇤ S1 and S �_⇤ S2, there exists S0 s.t. S1 �_⇤ S0 and S2 �_⇤ S0

labeled ECA
dependency graph

r1 r2

r3 r4

r5 r6

rule B r3 r2 m (⇤) : r4 ⇤

rule C r5 m (⇤) : r6 ⇤

rule D r1 m (⇤) : r2 ⇤

D

B
B

C A

rule A r4 m (⇤) : r6 ⇤ r3 ⇤
A

Theorem (AbU confluence)

If for each pair (x , y) of nodes in the labeled ECA dependency graph of an AbU system
S we have that |walks(x , y)|  1, then S is confluent.

M. Miculan OPCT 202315 24

Q4: Security, and Q5: Safety [Pasqua, M., SEFM 2021]

Security

H H Lenter area log position

H H Lnew post new post

Safety

save photo upload photo
same folder

leave work open window
implicit interaction

M. Miculan OPCT 202316 24

Hiding bisimulation

Weak bisimulation hiding labels not related to the requirements
Parametric on a function h making non-observable labels ↵ such that h(↵) = ⇧

if h(↵2) 6= ⇧

↵1

↵2

↵3

⇡h

↵1

↵2

↵3

if h(↵2) = ⇧

↵1

↵2

↵3

⇡h with h(↵0
2
) = ⇧

↵1

↵0
2

↵3

Security hL hides:
discovery labels
execution labels with H resources

Safety hS hides:
discovery labels
execution labels produced by S

M. Miculan OPCT 202317 24

Q4: Security: behavioral equivalence

Protection of confidential data (noninterference)

Security policy: L (public) and H (confidential) resources
No flows from H to L allowed
Bisimulation ⇡hL

that hides H-level updates
R1 . . .Rn is interference-free if it “behaves the same” for L-equivalent states

R1 . . .Rn

R1 . . .Rn R1 . . .Rn

⌃1
. . . ⌃n ⌃0

1
. . . ⌃0

n
⇡hL

Hiding bisimulation:
execution labels
with H resources

for all L-equivalent states ⌃1 ⌘L ⌃0
1
. . . ⌃n ⌘L ⌃0

n

M. Miculan OPCT 202318 24

Q4: Security: behavioral equivalence

This definition captures leaks due to internal resources modifications, but not leaks
originated by external changes (i.e., inputs) on high-level variables. E.g.:

motion m (00 :00 < time ^ time < 06 :00) : light ‘on’

(where motion is H and light is L) is interference-free as defined above, but it
actually leaks confidential information.
R1 . . .Rn is presence-sensitive interference-free if it “behaves the same” for
L-equivalent states and under renaming of rule triggers of level H

R1 . . .Rn

R1 . . .Rn R 0
1

. . .R 0
n

⌃1
. . . ⌃n ⌃0

1
. . . ⌃0

n
⇡hL

for all L-equivalent states ⌃1 ⌘L ⌃0
1
. . . ⌃n ⌘L ⌃0

n

M. Miculan OPCT 202319 24

Q4: Security: behavioral equivalence

This definition captures leaks due to internal resources modifications, but not leaks
originated by external changes (i.e., inputs) on high-level variables. E.g.:

motion m (00 :00 < time ^ time < 06 :00) : light ‘on’

(where motion is H and light is L) is interference-free as defined above, but it
actually leaks confidential information.
R1 . . .Rn is presence-sensitive interference-free if it “behaves the same” for
L-equivalent states and under renaming of rule triggers of level H

R1 . . .Rn

R1 . . .Rn R 0
1

. . .R 0
n

⌃1
. . . ⌃n ⌃0

1
. . . ⌃0

n
⇡hL

for all L-equivalent states ⌃1 ⌘L ⌃0
1
. . . ⌃n ⌘L ⌃0

n
M. Miculan OPCT 202319 24

Q4: Security: verification algorithm

Algorithm IFRules for computing information flows:

context is L

x "
explicit

x : L " not constant

context is H

x "
implicit

x : L " constant

Compute a constancy analysis for conditions and expressions
Check explicit flows for the default action
Check explicit and implicit flows for the task action

Theorem (Soundness for Security)

If IFRules(R) = false then R is noninterferent, hence R is secure.

M. Miculan OPCT 202320 24

Q5: Safety: behavioral equivalence

Prevention of unintended interactions

The systems S and R are known to be safe
Is the ensemble of all nodes in S and R still safe?
Bisimulation ⇡hS

that hides the updates of S

S k ⇡hS

R R
Hiding bisimulation:

execution labels
produced by S

S does not interact with, or is transparent for, R

M. Miculan OPCT 202321 24

Q5: Safety: verification algorithm

Compute sinks: resources that rules may update
Compute sources: resources that may influence rules behavior

Check that the sinks of S does not overlap with the sources of R

x1 . . . xk m y1 "1 . . . yn "n , (cnd) : yn+1 "n+1 . . . yn+m "n+m

event default task

{y1, . . . , yn} [{yn+1, . . . , yn+m} LHSLHS

{x1, . . . , xk} [Vars("1) [. . . [Vars("n) [Vars(cnd) [Vars("n+1) [. . . [Vars("n+m)
RHS RHS

Theorem (Soundness for Safety)

If sinks(S) \ sources(R) = ? then S is transparent for R.

M. Miculan OPCT 202322 24

Q5: A (modular) distributed implementation

AbU node

Device driversIoT interface

sensors/actuators

Distribution Communication layer

other AbU nodes
network

ECA rules engine Attribute-based memory updatesDistributed discovery

ECA rules engine module: AbU semantics
Device drivers module: abstraction of physical resources
Distribution module: abstraction of send/receive and cluster nodes join/leave
Available at https://github.com/abu-lang

M. Miculan OPCT 202323 24

https://github.com/abu-lang

Conclusion and Future Work

AbU: a new ECA programming paradigm for smart devices

Open Problems:
1 Stability: after an input, does a wave computation always terminates?
2 Confluence: will different executions end up with the same state(s)?
3 Global invariants: how to guarantee that trajectories will not invalidate a given

global property?
4 Security: how to avoid information leakage?
5 Safety: how to avoid unintended interactions?
6 Implementation: how to make it efficient, portable and scalable?
7 Abstract model: what is the bedrock of decentralised event-driven programming?

M. Miculan OPCT 202324 24

References

Thanks for the attention

- M Miculan, M Pasqua, A Calculus for Attribute-based Memory Updates, Proc. ICTAC
2021 - LNCS 12819;
- M Pasqua, M Miculan, On the Security and Safety of AbU Systems, International
Conference on Software Engineering and Formal Methods, LNCS 13085, 2021.
- M Pasqua, M Miculan, Distributed Programming of Smart Systems with
Event-Condition-Action Rules, ICTCS 2022: 201-206
- M Pasqua, M Comuzzo, M Miculan, The AbU Language: IoT Distributed
Programming Made Easy, IEEE Access 10: 132763-132776 (2022)
- M Pasqua, M Miculan, AbU: A calculus for distributed event-driven programming with
attribute-based interaction. TCS 958: 113841 (2023)
- https://github.com/abu-lang

M. Miculan OPCT 2023

https://github.com/abu-lang

