<" DI UDINE

hic sunt futura

Marino Miculan marino.miculan@uniud.it

OPCT 2023 - Bertinoro

Event-driven programming of smart systems

Condition
Environment
RULE
(sensors) (actuators)
= input @ output z
: 9o | ——— &
L =}
- O L
State-based ECA rules: “on movement if alarm = "active" then siren + on"

variables can be internal, or connected to sensors or to actuators

fnnnnmm M. Miculan

Common loT architecture

m Centralized

m No intra-nodes communication
Internet

» Cloud and Internet-dependent

Vi lar: & 02 @)
u Very popular , l] A

IR M. Miculan OPCT 2023

- Next (ECA) loT architecture: edge computing

Fully distributed

m Communication between nodes

R >
» Cloud-agnostic Internet
= |dentity decoupled, for scalability) _
& & o Ry o
m Collective Adaptive Systems v

TR M. Miculan OPCT 2023

- Programming model for edge CAS?

We need programming abstractions and models for edge computing with:

m peer-to-peer, decentralised control
» identity decoupling, for scalability (no point-to-point communication)
= open and flexible (nodes can join and leave dynamically)

» which integrate neatly within the ECA paradigm

IR M. Miculan OPCT 2023

Programming model for edge CAS?

Alrahman et al. (2015): attribute-based communication, a new form of broadcast for
coordinating large numbers of components: the actual receivers are selected “on the fly"
by means of predicates.

Proposed the AbC calculus, which has two communication actions:
m (E)Q@I1.P: send the values of E to those components whose attributes satisfy [1;

m [(x).P: receive from any component whose attributes (and possibly transmitted
values) satisfy [1.

But message-passing is not proper of state-based declarative ECA programming:
Interaction is on shared memory and modified variables.

IR M. Miculan OPCT 2023

[M., Pasqua, ICTAC 2021]

- Attribute-based Memory Updates
Nodes behavior: defined by ECA rules like “on z for all M : x + €”
Interaction: remote updates

Nodes state: local memory

Attribute-based interaction: on all nodes satisfying 1, update the remote x with e
TG

[ary

- AbC-AbU correspondence

AbC AbU

Communication | message-passing = memory updates
Output (E)en on

Input M(x) nodes invariant

= In AbU there are no explicit input primitives, to filter incoming updates

= But we can specify admissible states by means of state invariants

fRnnnRnnnnm M. Miculan OPCT 2023

The AbU language

m An AbU system S is an AbU node R, (X, ©) or the parallel of systems S; || S
m Each node is equipped with a list R of AbU rules and an invariant ¢

event default forall @ -----=-—-—--- X < ¢ (remote)

‘ ‘ task
evt » act; , cnd: acty assignments/
| | Q N

list of resources L

x + ¢ (local)

“on all nodes with (remote) x greater than the current (local) x”
forall: @(x < X): X+ x,y«y+1

“assign the (remote) x with the current (local) x, and increment remote y”

fnrnnnnnnnnm M. Miculan OPCT 2023

The AbU Language: a Domain Specific Language for the loT

1 # AbU devices definition. 22 \%

2 23 AbU (ECA) rules definition.

S| hvac : "An HVAC control system" { 24 Rules can be referenced by multiple devices.
4 physical output boolean heating = fals 25 JAN

5 physical output boolean condit = false 26

6 logical integer temp = 0O 27 rule cool on temp

7 logical integer humidity = 0 28 for (this.temp < 18) do this.heating = true
8 physical input boolean airButton 29

9 logical string node = "hvac" 30 rule warm on temp

10 where not (condit and heating == true) 31 for (this.temp > 27) do this.heating = false
11 } has cool warm dry stopAir 32

12 33 rule dry on humidity; temp

13 tempSens : "A temperature sensor" { 34 for (this.temp * 0.14 < this.humidity)

14 physical input integer temp 85 do this.condit = true

15 logical string node = "tempSens" 36

16 } has notifyTemp 37 rule stopAir on airButton

17 38 for (this.airButton) do this.condit = false
18 humSens : "A humidity sensor" { 39

19 physical input integer humidity 40 rule notifyTemp on temp

20 logical string node = "humSens" 41 for all (ext.node == "hvac")

21 } has notifyHum 42 do ext.temp = this.temp

See paper on |IEEE Access 2022

111 111 M. Miculan OP 3

AbU execution model
Stable

Stable
(WAVE)
e o , @ @
= S ®
T N
E Y discovery o5 :
3 w discovery
A []
L (Exec) L |
@ O||1 2 i— 0 @1 2 S > O @
@ @ i ‘ @ 3

discovery
OPCT 2023

M. Miculan

- AbU operational semantics [Pasqua, M., TCS 2023]

LTS semantics, with judgments:

R,.(X,0) % R, (X', 0

A label o can be:
® an input label, upd » T
® an execution label, upd > T

m a discovery label, T

IRRRRnnnnnm M. Miculan OPCT 2023

AbU operational semantics: rules

upd € © upd = (21,v1) ... (xg,vk) X' =Tfvr/ar...on/z] Y E
0" =0\ {upd} X =A{z;|ie[l.k]AXS(z;) # X (z:)}
© = 0" UDefUpds(R, X,¥’) U LocalUpds(R, X,%') T = ExtTasks(R, X,%’)

(ExEC) "
R,u(%,0) 2T R (s, 0
upd € © upd = (z1,v1) ... (xp,vk) X =3vr/zq...vp/zx] Y e O =0\ {upd}
(ExEC-FAIL) TodST
R,u(%,0) 2= R, (D, 0)

Vi, €V X =X /e ovgfek]) X ={z1,.. ., 2k}
©’ = © U DefUpds(R, X,¥’) U LocalUpds(R, X,%') T = ExtTasks(R, X,Y’)

e R,u(n,0) koo b sy 6y
O" ={[act]¥ | J € [l.n] .task; = p:act AL =} O =0U06"
(D) R,u(x,0) Bt p 50
S1 %S S, s i LS S, %S,
(STEPL) 3 ” s, o S’l H 5,2 a€{upd>T,upd»-T} (STEPR) s, ” S5 o S’l H 512 a€{upd>T,upd»-T}

I M. Miculan OPCT 2023

Research questions and problems

Stability: after an input, does a wave computation always terminates?
Confluence: will different executions end up with the same state(s)?

Global invariants: how to guarantee that trajectories will not invalidate a given
global property?

B

Security: how to avoid information leakages?

Safety: how to avoid unintended interactions?

Implementation: how to make it efficient, portable and scalable?

[~

fnnmm M. Miculan OPCT 2023

- Q1: Stabilization

The wave semantics may exhibit internal divergence, namely S 2% S0 2%,
Question: how to guarantee that a program will always stabilize, after an input?

rule A > (0): e+ 0O

ECA ® ®

rule B nn>(0):n+0
dependency graph \
® @)} rule C s> (0):re <+ 0O
® @/ rule D n>(0):n+0
Theorem (AbU stabilization)
If the ECA dependency graph of an AbU system S is acyclic, then S is stabilizing. J

fnnnmm M. Miculan OPCT 2023

- Q1: Stabilization

The wave semantics may exhibit internal divergence, namely S 2% S0 2%,
Question: how to guarantee that a program will always stabilize, after an input?

l rule A > (0): e+ 0n <« 0O
ECA ® @ rule B nn>(0):n+0
dependency graph \
® @)} rule C s> (0):re <+ 0O
® @/ rule D n>(0):n+0
Theorem (AbU stabilization)
If the ECA dependency graph of an AbU system S is acyclic, then S is stabilizing. J

Can we do better? E.g., including (some) loops? (Control theory may be useful here?)
TN

- Q2: Confluence

We may want the semantics not to be influenced by scheduler decisions:
for all S1,S> s.t. S —* Sy and S —* Sy, there exists S’ s.t. S; —=* S’ and S, —»* §/

® D ® rule A > (0): e+ 0O
labeled ECA 5 \3‘ rule B > (0):n«0
dependency graph ® @
’ Jerp rule C s> (0):r O
C A
® ® rule D n>(0):n«0

Theorem (AbU confluence)

If for each pair (x, y) of nodes in the labeled ECA dependency graph of an AbU system
S we have that |walks(x, y)| < 1, then S is confluent.

fnnnmm M. Miculan OPCT 2023

- Q2: Confluence

We may want the semantics not to be influenced by scheduler decisions:
for all S1,S> s.t. S —* Sy and S —* Sy, there exists S’ s.t. S; —=* S’ and S, —»* §/

® D ® rule A > (0): e+ 0O+ 0
labeled ECA \L\‘ 5 \3‘ rule B > (0):n«0
dependency graph ® @
’ Jerp rule C s> (0):r5 O
C A
® @ rule D > (0):n+ O

Theorem (AbU confluence)

If for each pair (x, y) of nodes in the labeled ECA dependency graph of an AbU system
S we have that |walks(x, y)| < 1, then S is confluent.

fnnnmm M. Miculan OPCT 2023

Q4: Security, and Q5: Safety [Pasqua, M., SEFM 2021]

Security
H f. enter area H log position)L =
= —> - - - - - - - - - -
ey (] =
H g new post H '? new post L w
S Yy --------- >
Safety

, save photo F R fold F N upload photo
— Ssame rtolder —— >
| =

leave work . - . open window
P T —— implicit interaction _—
1 Ll

fnnnmnm M. Miculan OPCT 2023

[

Hiding bisimulation

m Weak bisimulation hiding labels not related to the requirements

m Parametric on a function /1 making non-observable labels « such that h(a) = ¢

J7a1 J7a1

[e5} [e58
if has) #o @) m [if hlao) = 2l A [ob with h(ah) = o
a3z [ek}
J7a3 J7013
Security h_ hides: Safety hs hides:
m discovery labels m discovery labels
= execution labels with H resources m execution labels produced by S

fnnnnmm M. Miculan OPCT 2023

Q4: Security: behavioral equivalence

Protection of confidential data (noninterference)

m Security policy: L (public) and H (confidential) resources

= No flows from H to L allowed

m Bisimulation ~p, that hides H-level updates

m Ry ...R, is interference-free if it "behaves the same” for L-equivalent states

K' \, Hiding bisimulation:

execution labels
Ri...R,

~ with H resources
e~ @ e

for all L-equivalent states ¥y = X} ... X, = X

fnnnnmm M. Miculan OPCT 2023

- Q4: Security: behavioral equivalence

= This definition captures leaks due to internal resources modifications, but not leaks
originated by external changes (i.e., inputs) on high-level variables. E.g.:

motion > (00:00 < time A time < 06:00) : light < ‘on’

(where motion is H and light is L) is interference-free as defined above, but it
actually leaks confidential information.

m R;...R, is presence-sensitive interference-free if it “behaves the same” for
L-equivalent states and under renaming of rule triggers of level H

KRl...R,,ﬁ

Ri...R, R, ...R

~h

IRRRRnnnnannnnnm M. Miculan OPCT 2023

Q4: Security: behavioral equivalence

= This definition captures leaks due to internal resources modifications, but not leaks
originated by external changes (i.e., inputs) on high-level variables. E.g.:

motion > (00:00 < time A time < 06:00) : light < ‘on’

(where motion is H and light is L) is interference-free as defined above, but it
actually leaks confidential information.

m R;...R, is presence-sensitive interference-free if it “behaves the same” for
L-equivalent states and under renaming of rule triggers of level H

f \

R ...R,

for all L-equivalent states 3 = ¥} ... X, = X}

IRRRRnnnnannnnnm M. Miculan OPCT 2023

Q4: Security: verification algorithm

Algorithm IFRules for computing information flows:

context is L context is H
o explicit Yz implicit
TR T f ™
x: L £ not constant x: L € constant

= Compute a constancy analysis for conditions and expressions
m Check explicit flows for the default action

m Check explicit and implicit flows for the task action

Theorem (Soundness for Security) J

If IFRules(R) = false then R is noninterferent, hence R is secure.

i M. Miculan OPCT 2023

Q5: Safety: behavioral equivalence

Prevention of unintended interactions

» The systems S and R are known to be safe
» |s the ensemble of all nodes in S and R still safe?
m Bisimulation =g that hides the updates of S

et e L L LDttt . Foc---a Hiding bisimulation:
S I E ~ : : execution labels
‘looo . hs | : produced by S

S does not interact with, or is transparent for, R

IRRRRnnnnannnnnm M. Miculan OPCT 2023

Q5: Safety: verification algorithm

m Compute sinks: resources that rules may update
» Compute sources: resources that may influence rules behavior

Check that the sinks of S does not overlap with the sources of R

LHS LHS

/7{)/17 cee 7}/n}) {yn+17 s 7yn+m}ﬁ
event default task

[Xl...ka >[y1 “—€1...Vn <—€,,J ,[(ch) S Yntl < Entl---Yntm < Entm }
‘ ‘RHS ‘ ‘RHS
{x1,...,x,} UVars(e1) U...UVars(e,) U Vars(cnd) U Vars(epp1) U ... U Vars(epym)

Theorem (Soundness for Safety)
If sinks(S) N sources(R) = & then S is transparent for R. J

IRRRRRnRnnannnnnmm M. Miculan OPCT 2023

Q5: A (modular) distributed implementation

AbU node
Distributed discover c Attribute-based memory updates
Ve - { ECA rules engine % fffffffff
i . ; o o C ication laye
loT interface __ __ ﬂ Device drlversH Distribution # ****** ommunicatt ver
Sl I J Meusest
sensors/actuators [metwork other AbU nodes

m ECA rules engine module: AbU semantics

m Device drivers module: abstraction of physical resources

» Distribution module: abstraction of send/receive and cluster nodes join/leave
» Available at https://github.com/abu-lang

i M. Miculan OPCT 2023

https://github.com/abu-lang

Conclusion and Future Work

AbU: a new ECA programming paradigm for smart devices

Open Problems:
Stability: after an input, does a wave computation always terminates?
Confluence: will different executions end up with the same state(s)?
Global invariants: how to guarantee that trajectories will not invalidate a given
global property?
Security: how to avoid information leakage?
@ Safety: how to avoid unintended interactions?
[@ Implementation: how to make it efficient, portable and scalable?

Abstract model: what is the bedrock of decentralised event-driven programming?

I M. Miculan OPCT 2023

Thanks for the attention

- M Miculan, M Pasqua, A Calculus for Attribute-based Memory Updates, Proc. ICTAC
2021 - LNCS 12819;

- M Pasqua, M Miculan, On the Security and Safety of AbU Systems, International
Conference on Software Engineering and Formal Methods, LNCS 13085, 2021.

- M Pasqua, M Miculan, Distributed Programming of Smart Systems with
Event-Condition-Action Rules, ICTCS 2022: 201-206

- M Pasqua, M Comuzzo, M Miculan, The AbU Language: loT Distributed
Programming Made Easy, |EEE Access 10: 132763-132776 (2022)

- M Pasqua, M Miculan, AbU: A calculus for distributed event-driven programming with
attribute-based interaction. TCS 958: 113841 (2023)

- https://github.com/abu-lang

M. Miculan OPCT 2023

https://github.com/abu-lang

