

Adaptive and Compositional Active Automata Learning

Mohammad Mousavi

mohammad.mousavi@kcl.ac.uk

26 June 2023

Active Automata Learning

Adaptive Learning

Compositional Learning

Active Automata Learning

[Aichernig, Mostowski, Mousavi, Tappler and Taromirad. Model Learning and Model-Baed Testing]

Active Learning: Why?

[Aichernig, Mostowski, Mousavi, Tappler and Taromirad. Model Learning and Model-Baed Testing]

Active Learning: What?

[Dana Angluin. Learning regular sets from queries and counterexamples.]

 $\bigcirc O = \{0,1\}$ I = {rain, swltv} SUL

roin/0			rain	swItv
swltv / 1	S	ϵ	0	1
	5.1	rain	0	1
	5.1	swItv	1	0

rain/0 swltv / 1			swltv / 1 (itv rain)			
		swltv / 0		T too	rain / 0	
_			rain	switv	$rain \cdot rain$	
Γ		ϵ	0	1	$0 \cdot 0$	
	S_r	swItv	1	0	$1 \cdot 0$	
		$swItv \cdot rain$	0	1	$0\cdot 1$	
		rain	0	1	$0 \cdot 0$	
$ S_r \cdot I_r $	$S \cdot I$	$swItv \cdot swItv$	0	1	$0 \cdot 0$	
	$D_r \cdot \mathbf{I}_r$	$swItv \cdot rain \cdot rain$	1	0	$1 \cdot 0$	
	$swItv \cdot rain \cdot swItv$	0	1	$0\cdot 1$		

Consistent: $\forall p \in S_r . I_r \exists p' \in S_r \cdot p \cong p'$ Complete: $\forall p, p' \in S_r \cdot p \cong p' \Rightarrow \forall i \in I p. i \cong p'. i$

Active Automata Learning

Adaptive Learning

Compositional Learning

Adaptive Learning (in Time and Sapce)

Based on Joint Work with:

Diego Damasceno, Ramtin Khosravi, Adenilso Simao, and Shaghayegh Tavassoli

What?

Given an evolving system that changed over time how can we efficiently learn its evolved behavior?

How sensitive is it to the amount of evolution?

[Groce, Peled, and Yannakakis. Adaptive model checking. 2002] [Chaki, Clarke, Sharygina, Sinha. Verification of evolving software via component substitutability analysis. 2008]

Does it Really work?

[https://www.openssl.org/]

[De Ruiter. A tale of the openssl state machine. 2016]

DOES IT REALLY WORK?

Given an evolving system that changed over time how can we efficiently learn its evolved behavior?

How sensitive is it to the amount of evolution?

OpenSSL Cryptography and SSL/TLS Toolkit

Does it Really work?

[Damasceno, M.R. Mousavi and A. Simao.

Learning to Reuse: Adaptive Model Learning for Evolving Systems. iFM'19]

Adaptive Learning in Space

Given an evolving system that changed in space how can we succintly summarise the variability?

How sensitive is it to the number of configuration samples?

Adaptive Learning in Space

[Damasceno, Mousavi, Simao._

Learning by Sampling: Learning Behavioral Family Models from Software Product Lines. EMSE 21]

Experiment Design

Analysis of Results: Size

Analysis of Results

Pearson correlation coefficient - Pairwise analysis

Analysis of Results: Sampling

Building a repository of queries that for changes in space

Building a repository of queries that for changes in space

[Tavassoli, Damasceno, Khosravi, Mousavi, SPLC 2022]

Active Automata Learning

Adaptive Learning

Compositional Learning

Compositional Learning

Based on Joint Work with:

Faezeh Labbaf, Jan Friso Groote, and Hossein Hojjat

Interleaving Parallel Systems

CL*

CL* Algorithm

Experiments: Subject Systems

- Body Comfort System
 - An automotive software product line of Volkswagen Golf model.
 - Contains 27 components
- Benchmarks
 - 100 FSMs
 - o 2 to 9 components
 - o 0 to 3840 states, average: 1278

[Lity, Lachmann, Lochau, and Schaefer.

Delta-oriented Software Product Line Test Models – The Body Comfort System Case Study]

Experiments: Performance

[Labbaf, Groote, Hojjat, MRM, FOSSACS 2023]

Experiments: Improvement

[Labbaf, Groote, Hojjat, MRM, FOSSACS 2023]

Experiments: Effect of Parallelism

[Labbaf, Groote, Hojjat, MRM, FOSSACS 2023]

Active Automata Learning

Adaptive Learning

Compositional Learning

- Compositional and Adaptive Equivalence Queries
- Compositional Learning of Synchronising Automata Cf. [Niele and Sammartino, FASE 2023], many challenges in identifying dependencies
- Compositional and Adaptive Tree-Based Learning : TTT and L[#]
 Cf. [Ferreira, van Heerdt, Silva, Frits Fest 2022]

Active Automata Learning

Compositional Learning

Adaptive Learning

Open Problems

Thank You!

Thank you very much!

Mohammad Mousavi mohammad.mousavi@kcl.ac.uk

© 2020 King's College London. All rights reserved