
“Observing States”

Nadine Karsten
Uwe Nestmann 

OPCT 
Bertinoro

2023-06-27



Motivation



Distributed Consensus
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6

“pseudo” code 
incomplete

informal
…

shows “code” for just one participant
…

underlying communication mechanism by textual explanation

“pseudo” proofs !
handwaving
“intuitive”



Distributed Consensus
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6

A Fault Tolerance Bisimulation Proof For Consensus
(Extended Abstract)

Adrian Francalanza
1

and Matthew Hennessy
2

1
Imperial College, London SW7 2BZ, England, adrianf@doc.ic.ac.uk

2
University of Sussex, Brighton BN1 9RH, England, matthewh@sussex.ac.uk

Abstract. The possibility of partial failure occuring at any stage of computa-

tion complicates rigorous formal treatment of distributed algorithms. We propose

a methodology for formalising and proving the correctness of distributed algo-

rithms which alleviates this complexity. The methodology uses fault-tolerance

bisimulation proof techniques to split the analysis into two phases, that is a failure-

free phase and a failure phase, permitting separation of concerns. We design a

minimal partial-failure calculus, develop a corresponding bisimulation theory for

it and express a consensus algorithm in the calculus. We then use the consensus

example and the calculus theory to demonstrate the benefits of our methodology.

1 Introduction

The areas of Distributed Systems and Process Calculi are two (major) areas in Com-

puter Science addressing the same problems but ”speak(ing) di�erent languages” [14].

In particular, seminal work in Distributed Systems, such as [2, 11] present algorithms

in semi-formal pseudo-code and correctness proofs of an informal algorithmic nature.

The understandable reluctance to apply the rigorous theory of process calculi to formal

proofs for standard distributed algorithms stems from the complexity and sheer size of

the resulting formal descriptions and proofs. This problem is accentuated when failures

are considered, which typically occur at any point during computation and can poten-

tially a�ect execution. More specifically, in a process calculus with formal semantics

based on labelled transition systems (lts), and a related bisimulation equivalence ↵, cor-

rectness proofs compare the behaviour of the distributed algorithm, described in the

base calculus, to a correctness specification, also defined in the base calculus, using ↵;

see Table 1(a). The required witness bisimulation relations resulting from this general

approach turn out to be substantial, even for the simplest of algorithms and specifica-

tions. Even worse, partial failure tends to obfuscate the simplicity of the correctness

specification while enlarging the state space of the bisimulations.

To tame such complexity, attempts at formalising distributed algorithm proofs have

made use of mechanised theorem provers [8] or translations into tailor-made abstract

interpretations [14]. In spite of their e�ectiveness, such tools and techniques tend to

obscure the natural structure of the proofs of correctness, because they either still pro-

duce monolithic proofs, which are hard to digest, or else depart from the source formal

language in which the algorithm is expressed.

We propose a prescriptive methodology to formally prove correctness of distributed

algorithms which fine tunes well-studied bisimulation techniques to a partial failure



Distributed Consensus
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6



Validity 
every decision value must have been proposed by one of them

Agreement 
no two (correct) processes decide differently

Termination 
every correct process eventually decides

Distributed Consensus
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6



Distributed Consensus
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6



Distributed Consensus
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6

For this algorithm, Agreement requires sufficiently reliable failure detection.

Weak Accuracy (Chandra/Toueg): 
Some correct process will never be suspected.



Distributed Consensus
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6

For this algorithm, Agreement requires sufficiently reliable failure detection.

Weak Accuracy (Chandra/Toueg): 
Some correct process will never be suspected.

Fuzzati/N. call this process “trusted immortal”. Let ti refer to it.



Informal Correctness Argument

Before round ti, “anything goes”.

In such a round, any process may receive the value proposed by any  
coordinator of the rounds until then. Or not. No guarantees …

Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6



Informal Correctness Argument

Before round ti, “anything goes”.

In such a round, any process may receive the value proposed by any  
coordinator of the rounds until then. Or not. No guarantees …

In round ti, in which ti is coordinator,  
no process can suspect it to have failed, so all with adopt ti’s proposal.

Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6



Formal Methods

(* choose your hammer *)

mathematical 
structure

State 
Machines

Petri 
Nets… TLA[+]

syntax

“code”

“ABZ” Process 
Calculi …



Why Process Calculi ?
- precisely capture concurrent computation models
- rich algebraic theories (behavioural & logical) 
- action-based proof technique



Why Process Calculi ?

choose an “expressive enough” PC of your liking 
(define a domain-specific one yourself) 

model the algorithm as a process term 

model the specification 
also as a process term? (requires equational reasoning) 
as a logical formula? (requires model-checking)

- precisely capture concurrent computation models
- rich algebraic theories (behavioural & logical) 
- action-based proof technique



Why Process Calculi ?

choose an “expressive enough” PC of your liking 
(define a domain-specific one yourself) 

model the algorithm as a process term 

model the specification 
also as a process term? (requires equational reasoning) 
as a logical formula? (requires model-checking)

“executable” code
complete

formal
...

- precisely capture concurrent computation models
- rich algebraic theories (behavioural & logical) 
- action-based proof technique



CONCUR 2003
Consensus in a Process Calculus



CONCUR 2003
Consensus in a Process Calculus

state-based reasoning is the key !



CONCUR 2003
Consensus in a Process Calculus

state-based reasoning is the key !

Acta Informatica 2007
Consensus as a “State Machine”

TCS 2012 / PhD 2013
From Pseudo Code to Checked Proofs

APC 2005
Much Ado About Nothing



CONCUR 2003
Consensus in a Process Calculus

FORTE 2009 / Diploma Thesis 2012 
Consensus in a Process Calculus, Again ...

state-based reasoning is the key !

Acta Informatica 2007
Consensus as a “State Machine”

TCS 2012 / PhD 2013
From Pseudo Code to Checked Proofs

APC 2005
Much Ado About Nothing



CONCUR 2003
Consensus in a Process Calculus

FORTE 2009 / Diploma Thesis 2012 
Consensus in a Process Calculus, Again ...

EXPRESS 2014:
States in Process Calculi

state-based reasoning is the key !

Acta Informatica 2007
Consensus as a “State Machine”

TCS 2012 / PhD 2013
From Pseudo Code to Checked Proofs

APC 2005
Much Ado About Nothing



CONCUR 2003
Consensus in a Process Calculus

FORTE 2009 / Diploma Thesis 2012 
Consensus in a Process Calculus, Again ...

EXPRESS 2014:
States in Process Calculi

state-based reasoning is the key !

Acta Informatica 2007
Consensus as a “State Machine”

TCS 2012 / PhD 2013
From Pseudo Code to Checked Proofs

APC 2005
Much Ado About Nothing

TRENDS 2013



state-based reasoning is the key !



More precisely: 

- Most of the correctness reasoning requires  
invariants about the global state of the system.  
(TLA-style …)


- Global state is composed of  
local states plus “messages in travel”.


- Local state is not present in Process Calculi … 

state-based reasoning is the key !



Explicit States in  
Distributed Process Calculi 

— 
Syntax



Memories

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).

Variables Values “declared” “undefined”



Memories

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).

Variables Values “declared” “undefined”

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).



Expressions & Evaluation

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).



Expressions & Evaluation

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).



Expressions & Evaluation

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).

4 Nadine Karsten & Uwe Nestmann

2 Memories

We employ the widely-used idea that states, in the simplest possible way, are
just variable assignments, which are often also called memories. This follows the
tradition of research on state-based reasoning (see the ABZ conference series [2]).

We assume a set V of values v, for example, booleans or natural numbers. We
also assume a countably infinite set X of variables x. A memory is modeled as a
total function M : X ! V [ {>,?}, by which variables may be associated with
values or otherwise have the status of being just initialized (>) or undefined (?).
The set dom(M) , {x 2 X | M(x) 6= ?} denotes all variables defined in M .
Accordingly, M? denotes an initial memory, thus without any defined variables.

By their mutable nature, memories may be updated, which can be defined
as follows: a memory Mhx 7! wi, where x is updated to map to w 2 V [ {>},
behaves just like memory M unless we access the entry of the updated variable x:

Mhx 7! wi(y) ,
(
w if x = y

M(y) if x 6= y

Note that also those cases are properly covered, where M(y) 2 {>,?}.

We assume a set E of expressions e with V [ X ✓ E . One may consider
arbitrarily complex expressions with vectors and function symbols, as given by:

e ::= v
�� x

�� (e, . . . , e)
�� f(e)

The intended application will decide the respective range of allowed expressions.
We define the set fv(e) of (free) variables of e inductively by fv(v) , ;,

fv(x) , {x}, fv((e1, . . . , en)) , (fv(e1), . . . , fv(en)), and fv(f(e)) , f(fv(e)).
We assume that expressions can be “reduced” to values by terminating com-

putations. As expressions e 2 E may contain variables, we should evaluate them
within the context of a memory M with fv(e) ✓ dom(M). We let the function
fetchM : E ! E [ {?} for memory M replace the variables in fv(e) with their
M -value; if a variable is only initialized, the result will yield undefined.

fetchM (e) ,

8
>>>>>><

>>>>>>:

e if e 2 V
M(e) if e 2 X ^M(e) 2 V
(fetchM (e1), . . . , fetchM (en)) if e = (e1, . . . , en)

f(fetchM (e0)) if e = f(e0)

? else

To model the evaluation of expressions that include function symbols f, we as-
sume a homomorphic function eval(·) : E [ {?} ! V [ {?} to be employed
after fetchM (e) has fetched—if possible—values for the variables contained in e

from M . The obvious idea then is that eval applies the semantics of each appli-
cation of the function symbol f. Thus, we define evalM (e) , eval(fetchM (e)).



Message Reception
         (Channels)a, b, c ∈ 𝒞



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P for any value v ∈ 𝒱



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P
binding



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P
replaces all (free) occurrences of  in  with x P vbinding



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P
replaces all (free) occurrences of  in  with x P vbinding

With local states (e.g. [Garavel]):

c(x) . P c?v ?



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P
replaces all (free) occurrences of  in  with x P vbinding

update the “associated” memory  by M M⟨x ↦ v⟩

With local states (e.g. [Garavel]):

c(x) . P c?v ?



Message Reception
         (Channels)a, b, c ∈ 𝒞

c(x) . P
(1)
(2)
(3)

input some value  from channel 

use  to “remember”  afterwards

continue with/as 

v c
x v

P

Classically (e.g. [Milner]):

c(x) . P c?v {v/x}P
replaces all (free) occurrences of  in  with x P vbinding

update the “associated” memory  by M M⟨x ↦ v⟩binding

With local states (e.g. [Garavel]):

c(x) . P c?v ?



Store Locally, Prove Globally 5

3 A Distributed Process Calculus with Explicit States

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one location to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as thay cannot
happen at the same time. Causally evident, send actions must always occur
strictly before their corresponding receive action, which calls for a representation
of “messages in travel”. All local memory states together with all messages in
travel then provide us with the global state of a system. In the following, we
fix these concepts as a calculus with two-level syntax for threads and processes.
Along the way, the standard issues of bindings of variables as well as the notion
of ↵-conversion inevitably pop up and get proper treatment.

Syntax.

– recall E with X and V
– assume set M of memories
– introduce bag notation for outgoing (O) and travelling (AE) messages
– assume E to contain at least boolean values B = {t, f} such that the use of

a conditional (if e then T else T ) makes sense,
– assume set C ✓ V of channel names c; use c for concrete channel names
– assume set I of thread identifiers

• with list x1, . . . , xn of variables as superscript indicating its dynamically
scoped interface to the memory that it is supposed to be asociated with

• with defining equation I
x1,...,xn

def
= G where fv(G) ✓ {x1, . . . , xn}.

Let C denote the set of available channels. We may send messages in form of
expressions e over a channel a, written ahei, and receive a message over a channel
a to store it in variable x, written a(x). As we use asynchronous communication,
a process ahei.P shall not be blocked, but its expression e must be evaluated at
some point.

We use N as a metavariable to range over such networks in N .

O ::= ;
�� ËeheiÈ �� O ]O outgoing bag

Æ ::= ;
�� ËchviÈ �� Æ ] Æ message aether AE

µ ::= var x
�� hx := ei

�� a(x)
�� O actions A

G ::= 0
�� µ.T

�� G+G selections G
T ::= G

�� Ix1,...,xn
�� if e then T else T

�� T | T threads T

P ::= [M / T ] processes P

N ::= P
�� Æ

�� NkN networks N

Threads, Processes, Networks



Store Locally, Prove Globally 5

3 A Distributed Process Calculus with Explicit States

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one location to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as thay cannot
happen at the same time. Causally evident, send actions must always occur
strictly before their corresponding receive action, which calls for a representation
of “messages in travel”. All local memory states together with all messages in
travel then provide us with the global state of a system. In the following, we
fix these concepts as a calculus with two-level syntax for threads and processes.
Along the way, the standard issues of bindings of variables as well as the notion
of ↵-conversion inevitably pop up and get proper treatment.

Syntax.

– recall E with X and V
– assume set M of memories
– introduce bag notation for outgoing (O) and travelling (AE) messages
– assume E to contain at least boolean values B = {t, f} such that the use of

a conditional (if e then T else T ) makes sense,
– assume set C ✓ V of channel names c; use c for concrete channel names
– assume set I of thread identifiers

• with list x1, . . . , xn of variables as superscript indicating its dynamically
scoped interface to the memory that it is supposed to be asociated with

• with defining equation I
x1,...,xn

def
= G where fv(G) ✓ {x1, . . . , xn}.

Let C denote the set of available channels. We may send messages in form of
expressions e over a channel a, written ahei, and receive a message over a channel
a to store it in variable x, written a(x). As we use asynchronous communication,
a process ahei.P shall not be blocked, but its expression e must be evaluated at
some point.

We use N as a metavariable to range over such networks in N .

O ::= ;
�� ËeheiÈ �� O ]O outgoing bag

Æ ::= ;
�� ËchviÈ �� Æ ] Æ message aether AE

µ ::= var x
�� hx := ei

�� a(x)
�� O actions A

G ::= 0
�� µ.T

�� G+G selections G
T ::= G

�� Ix1,...,xn
�� if e then T else T

�� T | T threads T

P ::= [M / T ] processes P

N ::= P
�� Æ

�� NkN networks N

Store Locally, Prove Globally 5

3 A Distributed Process Calculus with Explicit States

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one location to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as thay cannot
happen at the same time. Causally evident, send actions must always occur
strictly before their corresponding receive action, which calls for a representation
of “messages in travel”. All local memory states together with all messages in
travel then provide us with the global state of a system. In the following, we
fix these concepts as a calculus with two-level syntax for threads and processes.
Along the way, the standard issues of bindings of variables as well as the notion
of ↵-conversion inevitably pop up and get proper treatment.

Syntax.

– recall E with X and V
– assume set M of memories
– introduce bag notation for outgoing (O) and travelling (AE) messages
– assume E to contain at least boolean values B = {t, f} such that the use of

a conditional (if e then T else T ) makes sense,
– assume set C ✓ V of channel names c; use c for concrete channel names
– assume set I of thread identifiers

• with list x1, . . . , xn of variables as superscript indicating its dynamically
scoped interface to the memory that it is supposed to be asociated with

• with defining equation I
x1,...,xn

def
= G where fv(G) ✓ {x1, . . . , xn}.

Let C denote the set of available channels. We may send messages in form of
expressions e over a channel a, written ahei, and receive a message over a channel
a to store it in variable x, written a(x). As we use asynchronous communication,
a process ahei.P shall not be blocked, but its expression e must be evaluated at
some point.

We use N as a metavariable to range over such networks in N .

O ::= ;
�� ËeheiÈ �� O ]O outgoing bag

Æ ::= ;
�� ËchviÈ �� Æ ] Æ message aether AE

µ ::= var x
�� hx := ei

�� a(x)
�� O actions A

G ::= 0
�� µ.T

�� G+G selections G
T ::= G

�� Ix1,...,xn
�� if e then T else T

�� T | T threads T

P ::= [M / T ] processes P

N ::= P
�� Æ

�� NkN networks N

Threads, Processes, Networks



Store Locally, Prove Globally 5

3 A Distributed Process Calculus with Explicit States

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one location to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as thay cannot
happen at the same time. Causally evident, send actions must always occur
strictly before their corresponding receive action, which calls for a representation
of “messages in travel”. All local memory states together with all messages in
travel then provide us with the global state of a system. In the following, we
fix these concepts as a calculus with two-level syntax for threads and processes.
Along the way, the standard issues of bindings of variables as well as the notion
of ↵-conversion inevitably pop up and get proper treatment.

Syntax.

– recall E with X and V
– assume set M of memories
– introduce bag notation for outgoing (O) and travelling (AE) messages
– assume E to contain at least boolean values B = {t, f} such that the use of

a conditional (if e then T else T ) makes sense,
– assume set C ✓ V of channel names c; use c for concrete channel names
– assume set I of thread identifiers

• with list x1, . . . , xn of variables as superscript indicating its dynamically
scoped interface to the memory that it is supposed to be asociated with

• with defining equation I
x1,...,xn

def
= G where fv(G) ✓ {x1, . . . , xn}.

Let C denote the set of available channels. We may send messages in form of
expressions e over a channel a, written ahei, and receive a message over a channel
a to store it in variable x, written a(x). As we use asynchronous communication,
a process ahei.P shall not be blocked, but its expression e must be evaluated at
some point.

We use N as a metavariable to range over such networks in N .

O ::= ;
�� ËeheiÈ �� O ]O outgoing bag

Æ ::= ;
�� ËchviÈ �� Æ ] Æ message aether AE

µ ::= var x
�� hx := ei

�� a(x)
�� O actions A

G ::= 0
�� µ.T

�� G+G selections G
T ::= G

�� Ix1,...,xn
�� if e then T else T

�� T | T threads T

P ::= [M / T ] processes P

N ::= P
�� Æ

�� NkN networks N

Store Locally, Prove Globally 5

3 A Distributed Process Calculus with Explicit States

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one location to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as thay cannot
happen at the same time. Causally evident, send actions must always occur
strictly before their corresponding receive action, which calls for a representation
of “messages in travel”. All local memory states together with all messages in
travel then provide us with the global state of a system. In the following, we
fix these concepts as a calculus with two-level syntax for threads and processes.
Along the way, the standard issues of bindings of variables as well as the notion
of ↵-conversion inevitably pop up and get proper treatment.

Syntax.

– recall E with X and V
– assume set M of memories
– introduce bag notation for outgoing (O) and travelling (AE) messages
– assume E to contain at least boolean values B = {t, f} such that the use of

a conditional (if e then T else T ) makes sense,
– assume set C ✓ V of channel names c; use c for concrete channel names
– assume set I of thread identifiers

• with list x1, . . . , xn of variables as superscript indicating its dynamically
scoped interface to the memory that it is supposed to be asociated with

• with defining equation I
x1,...,xn

def
= G where fv(G) ✓ {x1, . . . , xn}.

Let C denote the set of available channels. We may send messages in form of
expressions e over a channel a, written ahei, and receive a message over a channel
a to store it in variable x, written a(x). As we use asynchronous communication,
a process ahei.P shall not be blocked, but its expression e must be evaluated at
some point.

We use N as a metavariable to range over such networks in N .

O ::= ;
�� ËeheiÈ �� O ]O outgoing bag

Æ ::= ;
�� ËchviÈ �� Æ ] Æ message aether AE

µ ::= var x
�� hx := ei

�� a(x)
�� O actions A

G ::= 0
�� µ.T

�� G+G selections G
T ::= G

�� Ix1,...,xn
�� if e then T else T

�� T | T threads T

P ::= [M / T ] processes P

N ::= P
�� Æ

�� NkN networks N

Store Locally, Prove Globally 5

3 A Distributed Process Calculus with Explicit States

As we intend to use this calculus in the context of distributed systems, we have
to rely on a concept of distributable units. We propose to use threads that
dispose of their own private memory, which we call processes, as the units of
distribution. In physically distributed systems, messages take time to travel from
one location to another. Therefore, the asynchronous variant of message passing
is to be preferred, in which send and receive actions are decoupled, as thay cannot
happen at the same time. Causally evident, send actions must always occur
strictly before their corresponding receive action, which calls for a representation
of “messages in travel”. All local memory states together with all messages in
travel then provide us with the global state of a system. In the following, we
fix these concepts as a calculus with two-level syntax for threads and processes.
Along the way, the standard issues of bindings of variables as well as the notion
of ↵-conversion inevitably pop up and get proper treatment.

Syntax.

– recall E with X and V
– assume set M of memories
– introduce bag notation for outgoing (O) and travelling (AE) messages
– assume E to contain at least boolean values B = {t, f} such that the use of

a conditional (if e then T else T ) makes sense,
– assume set C ✓ V of channel names c; use c for concrete channel names
– assume set I of thread identifiers

• with list x1, . . . , xn of variables as superscript indicating its dynamically
scoped interface to the memory that it is supposed to be asociated with

• with defining equation I
x1,...,xn

def
= G where fv(G) ✓ {x1, . . . , xn}.

Let C denote the set of available channels. We may send messages in form of
expressions e over a channel a, written ahei, and receive a message over a channel
a to store it in variable x, written a(x). As we use asynchronous communication,
a process ahei.P shall not be blocked, but its expression e must be evaluated at
some point.

We use N as a metavariable to range over such networks in N .

O ::= ;
�� ËeheiÈ �� O ]O outgoing bag

Æ ::= ;
�� ËchviÈ �� Æ ] Æ message aether AE

µ ::= var x
�� hx := ei

�� a(x)
�� O actions A

G ::= 0
�� µ.T

�� G+G selections G
T ::= G

�� Ix1,...,xn
�� if e then T else T

�� T | T threads T

P ::= [M / T ] processes P

N ::= P
�� Æ

�� NkN networks N

Threads, Processes, Networks



Processes

Store Locally, Prove Globally 7

For example, in process

var x.T1 | hx := ei.T2

variable x is both free and bound, as x 2 bv(var x.T1) and x 2 fv(hx := ei.T2).
(Think about an appropriate treatment for Ben’s valid criticism that we ac-

tually should have an interest to fix var -bound variable names instead of freely
renaming them. This could be done by a comparison of the possible executions for
the cases where alpha-conversion is permitted, or not. Full executions that admit
↵-conversion during transitions must also be possible without ↵-conversion.)

As usual, we may employ the concept of ↵-conversion to identify processes
that only differ in the concrete naming of variables. Likewise, we may rename
bound variables, when needed, by consistently replacing all bound occurrences
together with the respective binders with appropriately fresh variables. We write
T1 =↵ T2, if T1 and T2 differ only in consistent renamings of var-bound variables.

Here, we also apply this principle to locations [M / T ]. We may rename
variables in T that are bound by M with fresh variables: We do so by consistently
replacing them in M—i.e., in dom(M), as the values associated by M do not
contain variables—together with all of the respective bound occurrences in T .
Formally, replacing a binding for x in M (i.e., with x 2 dom(M)) by a binding
for a sufficiently fresh y to the M -value of x, can be defined as

{y/x}M , (M�dom(M)\{x})hy 7! M(x)i

by first removing the binding for x (M�dom(M)\{x}), then updating hy 7! M(x)i.
Let {y/x}T denotes the standard substitution of free occurrences of x in T with y.
Assuming x 2 dom(M) and y fresh for [M / T ], we then define:

[M / T ] =↵ [ {y/x}M / {y/x}T ]

The reflexive, symmetric and transitive closure of =↵ is of course an equivalence.
As it just involves consistent in-place renamings of variables, it also satisfy con-
gruence properties. For example, we define [M / T ] =↵ [M / T

0] if T =↵ T
0.

Processes shall provide sufficient knowledge about their local variables. There-
fore, a process P is called closed if fv(P ) = ;. Is practically useful to always
require closedness, as the intuitive meaning of an “open” process referring to free
variables would be rather dubious: Where should such variables, not bound to
their location, refer to? We generalize closedness of processes to networks by
stating: A network N is called legal, if all its locations are closed.

Structural Equivalence. We define the equivalence ⌘ for1:

– threads
• (G,+,0) is a commutative monoid

1 For simplicity of the presentation, we heavily overload the symbol ⌘ by using it for
various definitions on sets of threads, processes and networks. The use of metavari-
ables will in each case (like an implicit typing scheme) clarify how it is to be applied.



Processes

All free variables of a thread T must be “bound” by M.

Store Locally, Prove Globally 7

For example, in process

var x.T1 | hx := ei.T2

variable x is both free and bound, as x 2 bv(var x.T1) and x 2 fv(hx := ei.T2).
(Think about an appropriate treatment for Ben’s valid criticism that we ac-

tually should have an interest to fix var -bound variable names instead of freely
renaming them. This could be done by a comparison of the possible executions for
the cases where alpha-conversion is permitted, or not. Full executions that admit
↵-conversion during transitions must also be possible without ↵-conversion.)

As usual, we may employ the concept of ↵-conversion to identify processes
that only differ in the concrete naming of variables. Likewise, we may rename
bound variables, when needed, by consistently replacing all bound occurrences
together with the respective binders with appropriately fresh variables. We write
T1 =↵ T2, if T1 and T2 differ only in consistent renamings of var-bound variables.

Here, we also apply this principle to locations [M / T ]. We may rename
variables in T that are bound by M with fresh variables: We do so by consistently
replacing them in M—i.e., in dom(M), as the values associated by M do not
contain variables—together with all of the respective bound occurrences in T .
Formally, replacing a binding for x in M (i.e., with x 2 dom(M)) by a binding
for a sufficiently fresh y to the M -value of x, can be defined as

{y/x}M , (M�dom(M)\{x})hy 7! M(x)i

by first removing the binding for x (M�dom(M)\{x}), then updating hy 7! M(x)i.
Let {y/x}T denotes the standard substitution of free occurrences of x in T with y.
Assuming x 2 dom(M) and y fresh for [M / T ], we then define:

[M / T ] =↵ [ {y/x}M / {y/x}T ]

The reflexive, symmetric and transitive closure of =↵ is of course an equivalence.
As it just involves consistent in-place renamings of variables, it also satisfy con-
gruence properties. For example, we define [M / T ] =↵ [M / T

0] if T =↵ T
0.

Processes shall provide sufficient knowledge about their local variables. There-
fore, a process P is called closed if fv(P ) = ;. Is practically useful to always
require closedness, as the intuitive meaning of an “open” process referring to free
variables would be rather dubious: Where should such variables, not bound to
their location, refer to? We generalize closedness of processes to networks by
stating: A network N is called legal, if all its locations are closed.

Structural Equivalence. We define the equivalence ⌘ for1:

– threads
• (G,+,0) is a commutative monoid

1 For simplicity of the presentation, we heavily overload the symbol ⌘ by using it for
various definitions on sets of threads, processes and networks. The use of metavari-
ables will in each case (like an implicit typing scheme) clarify how it is to be applied.



Binders …

Store Locally, Prove Globally 7

For example, in process

var x.T1 | hx := ei.T2

variable x is both free and bound, as x 2 bv(var x.T1) and x 2 fv(hx := ei.T2).
(Think about an appropriate treatment for Ben’s valid criticism that we ac-

tually should have an interest to fix var -bound variable names instead of freely
renaming them. This could be done by a comparison of the possible executions for
the cases where alpha-conversion is permitted, or not. Full executions that admit
↵-conversion during transitions must also be possible without ↵-conversion.)

As usual, we may employ the concept of ↵-conversion to identify processes
that only differ in the concrete naming of variables. Likewise, we may rename
bound variables, when needed, by consistently replacing all bound occurrences
together with the respective binders with appropriately fresh variables. We write
T1 =↵ T2, if T1 and T2 differ only in consistent renamings of var-bound variables.

Here, we also apply this principle to locations [M / T ]. We may rename
variables in T that are bound by M with fresh variables: We do so by consistently
replacing them in M—i.e., in dom(M), as the values associated by M do not
contain variables—together with all of the respective bound occurrences in T .
Formally, replacing a binding for x in M (i.e., with x 2 dom(M)) by a binding
for a sufficiently fresh y to the M -value of x, can be defined as

{y/x}M , (M�dom(M)\{x})hy 7! M(x)i

by first removing the binding for x (M�dom(M)\{x}), then updating hy 7! M(x)i.
Let {y/x}T denotes the standard substitution of free occurrences of x in T with y.
Assuming x 2 dom(M) and y fresh for [M / T ], we then define:

[M / T ] =↵ [ {y/x}M / {y/x}T ]

The reflexive, symmetric and transitive closure of =↵ is of course an equivalence.
As it just involves consistent in-place renamings of variables, it also satisfy con-
gruence properties. For example, we define [M / T ] =↵ [M / T

0] if T =↵ T
0.

Processes shall provide sufficient knowledge about their local variables. There-
fore, a process P is called closed if fv(P ) = ;. Is practically useful to always
require closedness, as the intuitive meaning of an “open” process referring to free
variables would be rather dubious: Where should such variables, not bound to
their location, refer to? We generalize closedness of processes to networks by
stating: A network N is called legal, if all its locations are closed.

Structural Equivalence. We define the equivalence ⌘ for1:

– threads
• (G,+,0) is a commutative monoid

1 For simplicity of the presentation, we heavily overload the symbol ⌘ by using it for
various definitions on sets of threads, processes and networks. The use of metavari-
ables will in each case (like an implicit typing scheme) clarify how it is to be applied.



Binders …

Store Locally, Prove Globally 7

For example, in process

var x.T1 | hx := ei.T2

variable x is both free and bound, as x 2 bv(var x.T1) and x 2 fv(hx := ei.T2).
(Think about an appropriate treatment for Ben’s valid criticism that we ac-

tually should have an interest to fix var -bound variable names instead of freely
renaming them. This could be done by a comparison of the possible executions for
the cases where alpha-conversion is permitted, or not. Full executions that admit
↵-conversion during transitions must also be possible without ↵-conversion.)

As usual, we may employ the concept of ↵-conversion to identify processes
that only differ in the concrete naming of variables. Likewise, we may rename
bound variables, when needed, by consistently replacing all bound occurrences
together with the respective binders with appropriately fresh variables. We write
T1 =↵ T2, if T1 and T2 differ only in consistent renamings of var-bound variables.

Here, we also apply this principle to locations [M / T ]. We may rename
variables in T that are bound by M with fresh variables: We do so by consistently
replacing them in M—i.e., in dom(M), as the values associated by M do not
contain variables—together with all of the respective bound occurrences in T .
Formally, replacing a binding for x in M (i.e., with x 2 dom(M)) by a binding
for a sufficiently fresh y to the M -value of x, can be defined as

{y/x}M , (M�dom(M)\{x})hy 7! M(x)i

by first removing the binding for x (M�dom(M)\{x}), then updating hy 7! M(x)i.
Let {y/x}T denotes the standard substitution of free occurrences of x in T with y.
Assuming x 2 dom(M) and y fresh for [M / T ], we then define:

[M / T ] =↵ [ {y/x}M / {y/x}T ]

The reflexive, symmetric and transitive closure of =↵ is of course an equivalence.
As it just involves consistent in-place renamings of variables, it also satisfy con-
gruence properties. For example, we define [M / T ] =↵ [M / T

0] if T =↵ T
0.

Processes shall provide sufficient knowledge about their local variables. There-
fore, a process P is called closed if fv(P ) = ;. Is practically useful to always
require closedness, as the intuitive meaning of an “open” process referring to free
variables would be rather dubious: Where should such variables, not bound to
their location, refer to? We generalize closedness of processes to networks by
stating: A network N is called legal, if all its locations are closed.

Structural Equivalence. We define the equivalence ⌘ for1:

– threads
• (G,+,0) is a commutative monoid

1 For simplicity of the presentation, we heavily overload the symbol ⌘ by using it for
various definitions on sets of threads, processes and networks. The use of metavari-
ables will in each case (like an implicit typing scheme) clarify how it is to be applied.

This is good. And bad.



Locations

Store Locally, Prove Globally 11

4 Location Failures and Their Detection

In the so-called fail-stop model of distributed systems, processes may crash; and
when they do so, they do not recover from this state. A process that crashes in a
run does no longer contribute to the system evolution in that run; it does neither
send nor receive messages. A process that does not crash in a run, is called correct
in that run. Failure detection provides processes with the permission to suspect
other processes to have crashed and, thus, to no longer wait for their messages
to arrive. Perfect (i.e., always reliable) failure detection is not implementable in
purely asynchronous systems, since it is impossible to distinguish the processes
that are crashed from those that are just slow. Here, Chandra and Toueg [6]
proposed the concept of unreliable failure detection, whose degree of reliability is
expressed by means of temporal constraints on runs. For the Consensus algorithm
that we study later on in this paper, a property called Weak Accuracy suffices:
“Some correct process is never suspected by any correct process.”

We follow the approach of [19] and introduce a set L ⇢ V of location names.
In our calculus, we then let processes [M /T ] evolve into locations `[M /T ], where
` 2 L, so locations are simply located processes [11]. In case of location failure,
we will allow—for verification purposes—that the associated memory may silll
be inspected in spite of the location no longer contributing.

We adapt communication actions to become “location-aware”:

– Output c@lhei adds the name of the intended target;
– Input c@l(x) adds the name of the intended source;

where l represents an expression that is expected to be evaluated to a location
name, so we should require that evalM (l) 2 L. This has two concrete advan-
tages: (i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions.

In order to track the failures of locations, and also to identify the trusted-
immortal process/location that is required by Weak Accuracy, we use (i) a cen-
tralized component F ✓ L of location names that indicates which locations have
failed (crashed); (ii) the notion of a “trusted immortal” (a dynamically deter-
mined location name, abstractly denoted as trim 2 L), which will never crash
and will never be suspected to have crashed in a given run. For Weak Accuracy,
it is required that the very first transition in an execution randomly chooses the
trusted immortal among the set of available location names.

– (Introduce configurations F Itrim L)
– (Talk about the reuse of structural equivalence: from processes to locations)
– (Motivate two-level semantics with “global store” for 7�!)
– (Define the initial transition, first)
– (Define the rule for crashes)

– (Discuss the rules in Tables 4 and 5.)
– (Should rule Susp include the other conditions of rule Rcv, too?)



Locations

Named Processes

Store Locally, Prove Globally 11

4 Location Failures and Their Detection

In the so-called fail-stop model of distributed systems, processes may crash; and
when they do so, they do not recover from this state. A process that crashes in a
run does no longer contribute to the system evolution in that run; it does neither
send nor receive messages. A process that does not crash in a run, is called correct
in that run. Failure detection provides processes with the permission to suspect
other processes to have crashed and, thus, to no longer wait for their messages
to arrive. Perfect (i.e., always reliable) failure detection is not implementable in
purely asynchronous systems, since it is impossible to distinguish the processes
that are crashed from those that are just slow. Here, Chandra and Toueg [6]
proposed the concept of unreliable failure detection, whose degree of reliability is
expressed by means of temporal constraints on runs. For the Consensus algorithm
that we study later on in this paper, a property called Weak Accuracy suffices:
“Some correct process is never suspected by any correct process.”

We follow the approach of [19] and introduce a set L ⇢ V of location names.
In our calculus, we then let processes [M /T ] evolve into locations `[M /T ], where
` 2 L, so locations are simply located processes [11]. In case of location failure,
we will allow—for verification purposes—that the associated memory may silll
be inspected in spite of the location no longer contributing.

We adapt communication actions to become “location-aware”:

– Output c@lhei adds the name of the intended target;
– Input c@l(x) adds the name of the intended source;

where l represents an expression that is expected to be evaluated to a location
name, so we should require that evalM (l) 2 L. This has two concrete advan-
tages: (i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions.

In order to track the failures of locations, and also to identify the trusted-
immortal process/location that is required by Weak Accuracy, we use (i) a cen-
tralized component F ✓ L of location names that indicates which locations have
failed (crashed); (ii) the notion of a “trusted immortal” (a dynamically deter-
mined location name, abstractly denoted as trim 2 L), which will never crash
and will never be suspected to have crashed in a given run. For Weak Accuracy,
it is required that the very first transition in an execution randomly chooses the
trusted immortal among the set of available location names.

– (Introduce configurations F Itrim L)
– (Talk about the reuse of structural equivalence: from processes to locations)
– (Motivate two-level semantics with “global store” for 7�!)
– (Define the initial transition, first)
– (Define the rule for crashes)

– (Discuss the rules in Tables 4 and 5.)
– (Should rule Susp include the other conditions of rule Rcv, too?)



Location-Aware Communication

Store Locally, Prove Globally 11

4 Location Failures and Their Detection

In the so-called fail-stop model of distributed systems, processes may crash; and
when they do so, they do not recover from this state. A process that crashes in a
run does no longer contribute to the system evolution in that run; it does neither
send nor receive messages. A process that does not crash in a run, is called correct
in that run. Failure detection provides processes with the permission to suspect
other processes to have crashed and, thus, to no longer wait for their messages
to arrive. Perfect (i.e., always reliable) failure detection is not implementable in
purely asynchronous systems, since it is impossible to distinguish the processes
that are crashed from those that are just slow. Here, Chandra and Toueg [6]
proposed the concept of unreliable failure detection, whose degree of reliability is
expressed by means of temporal constraints on runs. For the Consensus algorithm
that we study later on in this paper, a property called Weak Accuracy suffices:
“Some correct process is never suspected by any correct process.”

We follow the approach of [19] and introduce a set L ⇢ V of location names.
In our calculus, we then let processes [M /T ] evolve into locations `[M /T ], where
` 2 L, so locations are simply located processes [11]. In case of location failure,
we will allow—for verification purposes—that the associated memory may silll
be inspected in spite of the location no longer contributing.

We adapt communication actions to become “location-aware”:

– Output c@lhei adds the name of the intended target;
– Input c@l(x) adds the name of the intended source;

where l represents an expression that is expected to be evaluated to a location
name, so we should require that evalM (l) 2 L. This has two concrete advan-
tages: (i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions.

In order to track the failures of locations, and also to identify the trusted-
immortal process/location that is required by Weak Accuracy, we use (i) a cen-
tralized component F ✓ L of location names that indicates which locations have
failed (crashed); (ii) the notion of a “trusted immortal” (a dynamically deter-
mined location name, abstractly denoted as trim 2 L), which will never crash
and will never be suspected to have crashed in a given run. For Weak Accuracy,
it is required that the very first transition in an execution randomly chooses the
trusted immortal among the set of available location names.

– (Introduce configurations F Itrim L)
– (Talk about the reuse of structural equivalence: from processes to locations)
– (Motivate two-level semantics with “global store” for 7�!)
– (Define the initial transition, first)
– (Define the rule for crashes)

– (Discuss the rules in Tables 4 and 5.)
– (Should rule Susp include the other conditions of rule Rcv, too?)

Store Locally, Prove Globally 11

4 Location Failures and Their Detection

In the so-called fail-stop model of distributed systems, processes may crash; and
when they do so, they do not recover from this state. A process that crashes in a
run does no longer contribute to the system evolution in that run; it does neither
send nor receive messages. A process that does not crash in a run, is called correct
in that run. Failure detection provides processes with the permission to suspect
other processes to have crashed and, thus, to no longer wait for their messages
to arrive. Perfect (i.e., always reliable) failure detection is not implementable in
purely asynchronous systems, since it is impossible to distinguish the processes
that are crashed from those that are just slow. Here, Chandra and Toueg [6]
proposed the concept of unreliable failure detection, whose degree of reliability is
expressed by means of temporal constraints on runs. For the Consensus algorithm
that we study later on in this paper, a property called Weak Accuracy suffices:
“Some correct process is never suspected by any correct process.”

We follow the approach of [19] and introduce a set L ⇢ V of location names.
In our calculus, we then let processes [M /T ] evolve into locations `[M /T ], where
` 2 L, so locations are simply located processes [11]. In case of location failure,
we will allow—for verification purposes—that the associated memory may silll
be inspected in spite of the location no longer contributing.

We adapt communication actions to become “location-aware”:

– Output c@lhei adds the name of the intended target;
– Input c@l(x) adds the name of the intended source;

where l represents an expression that is expected to be evaluated to a location
name, so we should require that evalM (l) 2 L. This has two concrete advan-
tages: (i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions.

In order to track the failures of locations, and also to identify the trusted-
immortal process/location that is required by Weak Accuracy, we use (i) a cen-
tralized component F ✓ L of location names that indicates which locations have
failed (crashed); (ii) the notion of a “trusted immortal” (a dynamically deter-
mined location name, abstractly denoted as trim 2 L), which will never crash
and will never be suspected to have crashed in a given run. For Weak Accuracy,
it is required that the very first transition in an execution randomly chooses the
trusted immortal among the set of available location names.

– (Introduce configurations F Itrim L)
– (Talk about the reuse of structural equivalence: from processes to locations)
– (Motivate two-level semantics with “global store” for 7�!)
– (Define the initial transition, first)
– (Define the rule for crashes)

– (Discuss the rules in Tables 4 and 5.)
– (Should rule Susp include the other conditions of rule Rcv, too?)

Store Locally, Prove Globally 11

4 Location Failures and Their Detection

In the so-called fail-stop model of distributed systems, processes may crash; and
when they do so, they do not recover from this state. A process that crashes in a
run does no longer contribute to the system evolution in that run; it does neither
send nor receive messages. A process that does not crash in a run, is called correct
in that run. Failure detection provides processes with the permission to suspect
other processes to have crashed and, thus, to no longer wait for their messages
to arrive. Perfect (i.e., always reliable) failure detection is not implementable in
purely asynchronous systems, since it is impossible to distinguish the processes
that are crashed from those that are just slow. Here, Chandra and Toueg [6]
proposed the concept of unreliable failure detection, whose degree of reliability is
expressed by means of temporal constraints on runs. For the Consensus algorithm
that we study later on in this paper, a property called Weak Accuracy suffices:
“Some correct process is never suspected by any correct process.”

We follow the approach of [19] and introduce a set L ⇢ V of location names.
In our calculus, we then let processes [M /T ] evolve into locations `[M /T ], where
` 2 L, so locations are simply located processes [11]. In case of location failure,
we will allow—for verification purposes—that the associated memory may silll
be inspected in spite of the location no longer contributing.

We adapt communication actions to become “location-aware”:

– Output c@lhei adds the name of the intended target;
– Input c@l(x) adds the name of the intended source;

where l represents an expression that is expected to be evaluated to a location
name, so we should require that evalM (l) 2 L. This has two concrete advan-
tages: (i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions.

In order to track the failures of locations, and also to identify the trusted-
immortal process/location that is required by Weak Accuracy, we use (i) a cen-
tralized component F ✓ L of location names that indicates which locations have
failed (crashed); (ii) the notion of a “trusted immortal” (a dynamically deter-
mined location name, abstractly denoted as trim 2 L), which will never crash
and will never be suspected to have crashed in a given run. For Weak Accuracy,
it is required that the very first transition in an execution randomly chooses the
trusted immortal among the set of available location names.

– (Introduce configurations F Itrim L)
– (Talk about the reuse of structural equivalence: from processes to locations)
– (Motivate two-level semantics with “global store” for 7�!)
– (Define the initial transition, first)
– (Define the rule for crashes)

– (Discuss the rules in Tables 4 and 5.)
– (Should rule Susp include the other conditions of rule Rcv, too?)



Explicit States in  
Distributed Process Calculi 

— 
Semantics



Configurations

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Configurations

Networks N  
running with failed locations in F  
with trusted immortal trim

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Location-Aware Semantics

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Location-Aware Semantics

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Location-Aware Semantics

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Location-Aware Semantics

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (I)
12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)



Located Steps (I)
12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)



Located Steps (I)
12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)

12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)



Located Steps (I)
12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)

12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)



Located Steps (I)
12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)

12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)



Located Steps (II)
Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (II)
Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (II)
Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (II)
Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (II)
12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (II)
12 Nadine Karsten & Uwe Nestmann

(Decl)
x 62 dom(M) [ fv( bT )

`[ M / var x.T | bT ]
mem@`�����! `[ Mhx 7! >i / T | bT ]

(Assign)
x 2 dom(M) evalM (e) = v 2 V

`[ M / hx := ei.T | bT ]
mem@`�����! `[ Mhx 7! vi / T | bT ]

(Rcv)
evalM (e) = c 2 C evalM (l) = src 2 L x 2 dom(M)

`[ M / e@l(x).T | bT ] k Ë c(src!`)v È rcv @`����! `[ Mhx 7! vi / T | bT ]

Table 4. Located Memory-Changing Steps

– (Discuss the rules in Table 6)

– (Discuss the rules in Table 7.)

– (Discuss the rules in Table 8. If we just use the label @` from the outset,
things get much easier, visibly, at least.)

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (III)

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (III)

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (III)

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (III)

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Located Steps (III)

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps

Store Locally, Prove Globally 13

(Snd)

c@lhei 2 O O
0 = O\{c@lhei}

evalM (c) = c 2 C evalM (l) = trg 2 L evalM (e) = v 2 V

`[ M / O.T | bT ]
snd@`����! `[ M / O

0
.T | bT ] k Ë c(`!trg)v È

(Susp)
evalM (l) = src 2 L

`[ M / e@l(x).T | bT ]
susp(src)@`�������! `[ M / T | bT ]

(Ident)
I
x1,...,xn def

= G fv(G) ✓ {x1, . . . , xn} {x1, . . . , xn} ✓ dom(M)

`[ M / I
x1,...,xn | bT ]

local @`�����! `[ M / G | bT ]

(True)
evalM (e) = t

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T1 | bT ]

(False)
evalM (e) = f

`[ M / if e then T1 else T2 | bT ]
local @`�����! `[ M / T2 | bT ]

Table 5. Located Non-Memory-Changing Steps

(Str)
N ⌘ bN bN ⌘�! cN 0 cN 0 ⌘ N

0

N
⌘�! N

0
(Par)

N
⌘�! N

0 bN 2 N
N k bN ⌘�! N

0 k bN

Table 6. Structure II

(TrIm)
trim 2 L

; I N 7�! ; Itrim N
(N-Fail)

trim 6= k 62 F

F Itrim N 7�! F [ k Itrim N

Table 7. Failures

(N-Step)
N

step@`����! N
0 step 2 {mem, local, snd, rcv} ` 62 F

F Itrim N 7�! F Itrim N
0

(N-Susp)
N

susp(k)@`������! N
0

k 6= trim ` 62 F

F Itrim N 7�! F Itrim N
0

Table 8. Located Steps



Back to the Case Study …



Algorithm & …
Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6

14 Nadine Karsten & Uwe Nestmann

Consensus(input1,...,inputn)
def
=Y

`2{1,...,n}
`

h

M? hchan 7! (c1, . . . , cn)i
hx 7! input`i
hr 7! 0i
houtput 7! >i

/

  Lchan,x,r,output
`i

Lchan,x,r,output
`

def
=

À hr := r + 1i.
Ã if r  n

then Õ if r = n

then Œ
⇣U

` 6=j2{1,...,n} chan#r@jhxi
⌘
.   Lchan,x,r,output

`

else œ
⇣
chan#r@r(x)

⌘
.   Lchan,x,r,output

`

else – houtput :=xi. — 0
Table 9. Algorithm

5 Case Study: Distributed Consensus

(

– fix the expression language
– C , {c1, . . . , cn} for n 2 N being the number of participants
– L , {1, . . . , n}
– explain the code in Table 9
– execution starts with ; I Consensus(input1,...,inputn)

)
(

– motivate and formalize the invariant
– sketch the preservation proof
– conclude correctness

)



… & Environment14 Nadine Karsten & Uwe Nestmann

Consensus(input1,...,inputn)
def
=Y

`2{1,...,n}
`

h

M? hchan 7! (c1, . . . , cn)i
hx 7! input`i
hr 7! 0i
houtput 7! >i

/

  Lchan,x,r,output
`i

Lchan,x,r,output
`

def
=

À hr := r + 1i.
Ã if r  n

then Õ if r = n

then Œ
⇣U

` 6=j2{1,...,n} chan#r@jhxi
⌘
.   Lchan,x,r,output

`

else œ
⇣
chan#r@r(x)

⌘
.   Lchan,x,r,output

`

else – houtput :=xi
Table 9. Algorithm

5 Case Study: Distributed Consensus

(

– fix the expression language
– C , {c1, . . . , cn} for n 2 N being the number of participants
– L , {1, . . . , n}
– explain the code in Table 9
– execution starts with ; I Consensus(input1,...,inputn)

)
(

– motivate and formalize the invariant
– sketch the preservation proof
– conclude correctness

)

14 Nadine Karsten & Uwe Nestmann

Consensus(input1,...,inputn)
def
=Y

`2{1,...,n}
`

h

M? hchan 7! (c1, . . . , cn)i
hx 7! input`i
hr 7! 0i
houtput 7! >i

/

  Lchan,x,r,output
`i

Lchan,x,r,output
`

def
=

À hr := r + 1i.
Ã if r  n

then Õ if r = n

then Œ
⇣U

` 6=j2{1,...,n} chan#r@jhxi
⌘
.   Lchan,x,r,output

`

else œ
⇣
chan#r@r(x)

⌘
.   Lchan,x,r,output

`

else – houtput :=xi
Table 9. Algorithm

5 Case Study: Distributed Consensus

(

– fix the expression language
– C , {c1, . . . , cn} for n 2 N being the number of participants
– L , {1, . . . , n}
– explain the code in Table 9
– execution starts with ; I Consensus(input1,...,inputn)

)
(

– motivate and formalize the invariant
– sketch the preservation proof
– conclude correctness

)



Informal Correctness Argument

Before round ti, “anything goes”.

In such a round, any process may receive the value proposed by any  
coordinator of the rounds until then. Or not. No guarantees …

In round ti, in which ti is coordinator,  
no process can suspect it to have failed, so all with adopt ti’s proposal.

Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;
2 for r := 1 to n do { if r = i then broadcast xi;
3 if alive(pr) then xi := input from broadcast };
4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm

[16], solving a specific instance of consensus using strong failure detectors (S [2]); the

pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,

independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v✏ ⇣ V . Each participant

executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and

changing the broadcasting co-ordinator to participant i for round r = i. The correctness

criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.

Agreement: No two participants decide on di�erent values.

Validity: If all participants are given the same value v ⇣ V as input, then v is the only

possible decision value
3
.

To attain consensus with n�1 dynamic failures, the algorithm needs to be fault-tolerant

with respect to two error conditions, namely Decision Blocking (when a participant

may be waiting forever for a value to be broadcast from a crashed co-ordinator) and

Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the

participants before crashing). The code in Table 4 overcomes decision blocking by using

a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes

the possibility of (n � 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system

C, given in Table 5. Without loss of generality, we assume that the decision set is sim-

ply V = {true, f alse} and have n participants located at independently failing locations

l1 . . . ln. The process Px
i,r, for x ⇣ {true, f alse}, denotes the ith participant, at round r,

with current estimate x. It is defined in terms of two parallel processes, Bx
i,r for broad-

casting the current value at round r, and Rx
i,r for receiving the new value at round r. As

in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.

On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and

updates the estimate for round (r+1) accordingly. At the same time, the receiver guards

this distributed synchronisation with susp lr.Px
i,r+1

to prevent decision blocking in case

lr, the location of the participant currently broadcasting, fails. Estimates for round r can

only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in

C. Every participant can be arbitrarily initialised as Ptrue
i,1 or Pfalse

i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)

to either report true, executing dectrue
i , or report false, executing decfalse

i .

We can also give a precise description of the consensus correctness requirements

in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3
When |V | = 2 this implies a stronger notion of validity: any decision value for any participant

is the initial value of some process.

6



Formal Correctness Argument
Store Locally, Prove Globally 15

If Init 7�!⇤
F Itrim Æ k

Q
`2[1,n] `[M` / pc T` ],

then 8` 2 [1, n].⇣
Mi(r) < trim ! Mi(x) 2 Undecided

Mi(r) = trim ^ i 6= trim !
⇣ �

pc = {Õ,Œ,œ} ! Mi(x) 2 Undecided
�

^
�
pc = {–, ,À} ! Mi(x) = Mtrim(x)

�⌘

Mi(r) > trim ! Mi(x) = Mtrim(x)
Mi(r) < n ^ pc = {—} ! Mi(output) = Mi(x

⌘

Init , Consensus(input1,...,inputn)

Undecided , {input1, . . . , inputn}

Store Locally, Prove Globally 15

If Consensus(input1,...,inputn) 7�!
⇤
F Itrim Æ k

Q
`2[1,n] `[M` / pc T` ],

then 8` 2 [1, n].⇣
Mi(r) < trim ! Mi(x) 2 Undecided

Mi(r) = trim ^ i 6= trim !
⇣ �

pc = {Õ,Œ,œ} ! Mi(x) 2 Undecided
�

^
�
pc = {–, ,À} ! Mi(x) = Mtrim(x)

�⌘

Mi(r) > trim ! Mi(x) = Mtrim(x)
Mi(r) < n ^ pc = {—} ! Mi(output) = Mi(x

⌘

Init , Consensus(input1,...,inputn)

Undecided , {input1, . . . , inputn}

16 Nadine Karsten & Uwe Nestmann

If Consensus(input1,...,inputn) 7�!
⇤
F Itrim Æ k

Q
`2[1,n] `[M` / pc T` ],

then 8` 2 [1, n].⇣
M`(r) < trim ! M`(x) 2 Undecided

M`(r) = trim ^ i 6= trim !
⇣ �

pc 2 {Õ,Œ,œ} ! M`(x) 2 Undecided
�

^
�
pc 2 {–, ,À} ! M`(x) = Mtrim(x)

�⌘

M`(r) > trim ! M`(x) = Mtrim(x)
M`(r) > n ^ pc = {—} ! M`(output) = M`(x)

⌘

Init , Consensus(input1,...,inputn)

Undecided , {input1, . . . , inputn}



Conclusions



Open Problems

Does it work in sufficiently many cases?

What about the meta theory of such calculi?

What about mechanization support?

Do such calculi still qualify as process calculi?

Is it useful to extend them with session types?


