"'Observing States"

Nadine Karsten
Uwe Nestmann

Motivation

Distributed Consensus

Table 4. The Rotating Co-ordinator Algorithm for Participant i

```
1 }\mp@subsup{x}{i}{}:= input
2 for r:= 1 to n do { if r=i then broadcast }\mp@subsup{x}{i}{}\mathrm{ ;
3
output }\mp@subsup{x}{i}{}\mathrm{ ;
```

"pseudo" code
incomplete informal
shows "code" for just one participant
underlying communication mechanism by textual explanation
"pseudo" proofs !
handwaving
"intuitive"

Distributed Consensus

Table 4. The Rotating Co-ordinator Algorithm for Participant i
$1 \quad x_{i}:=$ input;

2 for $r:=1$ to n do \{ if $r=i$ then broadcast x_{i};
output x_{i};

A Fault Tolerance Bisimulation Proof For Consensus (Extended Abstract)

Adrian Francalanza ${ }^{1}$ and Matthew Hennessy ${ }^{2}$
${ }^{1}$ Imperial College, London SW7 2BZ, England, adrianf@doc.ic.ac.uk
${ }^{2}$ University of Sussex, Brighton BN1 9RH, England, matthewh@sussex. ac.uk

Distributed Consensus

Table 4. The Rotating Co-ordinator Algorithm for Participant i
$1 \quad x_{i}:=$ input;

```
for r := 1 to }n\mathrm{ do { if r=i then broadcast }\mp@subsup{x}{i}{}\mathrm{ ;
    if alive( }\mp@subsup{p}{r}{}\mathrm{ ) then }\mp@subsup{x}{i}{}:= input_from_broadcast }
```

 output \(x_{i} ;\)

Distributed Consensus

Table 4. The Rotating Co-ordinator Algorithm for Participant i
$1 \quad x_{i}:=$ input;

2 for $r:=1$ to n do $\left\{\right.$ if $r=i$ then broadcast x_{i};

Validity

every decision value must have been proposed by one of them

Agreement

no two (correct) processes decide differently
Termination
every correct process eventually decides

Distributed Consensus

Table 4. The Rotating Co-ordinator Algorithm for Participant i
$1 \quad x_{i}:=$ input;

```
for r := 1 to }n\mathrm{ do { if r=i then broadcast }\mp@subsup{x}{i}{}\mathrm{ ;
    if alive( }\mp@subsup{p}{r}{}\mathrm{ ) then }\mp@subsup{x}{i}{}:= input_from_broadcast }
```

 output \(x_{i}\);

Distributed Consensus

Table 4. The Rotating Co-ordinator Algorithm for Participant i
$1 \quad x_{i}:=$ input;
2 for $r:=1$ to n do \{ if $r=i$ then broadcast x_{i};
3
4 output x_{i};

For this algorithm, Agreement requires sufficiently reliable failure detection.
Weak Accuracy (Chandra/Toueg):
Some correct process will never be suspected.

Distributed Consensus

Table 4. The Rotating Co-ordinator Algorithm for Participant i
$1 \quad x_{i}:=$ input;

2 for $r:=1$ to n do \{ if $r=i$ then broadcast x_{i};
if alive $\left(p_{r}\right)$ then $x_{i}:=$ input_from_broadcast \};
4 output x_{i};

For this algorithm, Agreement requires sufficiently reliable failure detection.

Weak Accuracy (Chandra/Toueg):
Some correct process will never be suspected.
Fuzzati/N. call this process "trusted immortal". Let ti refer to it.

Informal Correctness Argument

Table 4. The Rotating Co-ordinator Algorithm for Participant i

```
1 x := input;
2 for r:= 1 to }n\mathrm{ do { if r=i then broadcast }\mp@subsup{x}{i}{}\mathrm{ ;
3
4
    output }\mp@subsup{x}{i}{}\mathrm{ ;
```

Before round ti,"anything goes".
In such a round, any process may receive the value proposed by any coordinator of the rounds until then. Or not. No guarantees ...

Informal Correctness Argument

Table 4. The Rotating Co-ordinator Algorithm for Participant i

```
1 }\mp@subsup{x}{i}{}:= input
2 for r:= 1 to }n\mathrm{ do { if r=i then broadcast }\mp@subsup{x}{i}{}\mathrm{ ;
3
output }\mp@subsup{x}{i}{
```

Before round ti,"anything goes".
In such a round, any process may receive the value proposed by any coordinator of the rounds until then. Or not. No guarantees ...

In round ti, in which ti is coordinator, no process can suspect it to have failed, so all with adopt ti's proposal.

Formal Methods

Why Process Calculi ?

- precisely capture concurrent computation models
- rich algebraic theories (behavioural \& logical)
- action-based proof technique

Why Process Calculi ?

- precisely capture concurrent computation models
- rich algebraic theories (behavioural \& logical)
- action-based proof technique
choose an "expressive enough" PC of your liking (define a domain-specific one yourself)
model the algorithm as a process term
model the specification
also as a process term? (requires equational reasoning) as a logical formula? (requires model-checking)

Why Process Calculi ?

- precisely capture concurrent computation models
- rich algebraic theories (behavioural \& logical)
- action-based proof technique
choose an "expressive enough" PC of your liking (define a domain-specific one yourself)
model the algorithm as a process term
model the specification
also as a process term? (requires equational reasoning) as a logical formula? (requires model-checking)
"executable" code
complete formal

CONCUR 2003

Consensus in a Process Calculus

CONCUR 2003

Consensus in a Process Calculus
reasoning is the key:

CONCUR 2003

APC 2005

Much Ado About Nothing
Acta Informatica 2007 Consensus as a "State Machine"

TCS 2012 / PhD 2013 From Pseudo Code to Checked Proofs

CONCUR 2003

Consensus in a Process Calculus

APC 2005

Much Ado About Nothing
Acta Informatica 2007 Consensus as a "State Machine"

TCS 2012 / PhD 2013 From Pseudo Code to Checked Proofs

FORTE 2009 / Diploma Thesis 20 I2
Consensus in a Process Calculus, Again ...

CONCUR 2003

Consensus in a Process Calculus

APC 2005

Much Ado About Nothing
Acta Informatica 2007 Consensus as a "State Machine"

TCS 2012 / PhD 2013
From Pseudo Code to Checked Proofs
FORTE 2009 / DiplomaThesis 20 I2
Consensus in a Process Calculus, Again ...
EXPRESS 2014:
States in Process Calculi

CONCUR 2003

Consensus in a Process Calculus

APC 2005

Much Ado About Nothing
Acta Informatica 2007 Consensus as a "State Machine"

TCS 2012 / PhD 2013
From Pseudo Code to Checked Proofs
FORTE 2009 / DiplomaThesis 20 I2
Consensus in a Process Calculus, Again ...
EXPRESS 2014:
States in Process Calculi

state-based reasoning is the key !

More precisely:

- Most of the correctness reasoning requires invariants about the global state of the system.
(TLA-style ...)
- Global state is composed of local states plus "messages in travel".
- Local state is not present in Process Calculi ...

Explicit States in Distributed Process Galculi Syntax

Memories

Memories

$$
\begin{aligned}
& w \in \mathbb{V} \cup\{T\} \\
& M\langle x \mapsto \mathrm{w}\rangle(y) \triangleq \begin{cases}\mathrm{w} & \text { if } x=y \\
M(y) & \text { if } x \neq y\end{cases}
\end{aligned}
$$

Expressions \& Evaluation

$$
e::=\mathrm{v}|x|(e, \ldots, e) \mid \mathrm{f}(e)
$$

Expressions \& Evaluation

$$
e::=\mathrm{v}|x|(e, \ldots, e) \mid \mathrm{f}(e)
$$

Expressions \& Evaluation

$$
e::=\mathrm{v}|x|(e, \ldots, e) \mid \mathrm{f}(e)
$$

$\operatorname{fetch}_{M}(e) \triangleq \begin{cases}e & \text { if } e \in \mathbb{V} \\ M(e) & \text { if } e \in \mathcal{X} \wedge M(e) \in \mathbb{V} \\ \left(\operatorname{fetch}_{M}\left(e_{1}\right), \ldots, \operatorname{fetch}_{M}\left(e_{n}\right)\right) & \text { if } e=\left(e_{1}, \ldots, e_{n}\right) \\ \mathrm{f}\left(\operatorname{fetch}_{M}\left(e^{\prime}\right)\right) & \text { if } e=\mathrm{f}\left(e^{\prime}\right) \\ \perp & \text { else }\end{cases}$
$\operatorname{eval}_{M}(e) \triangleq \operatorname{eval}\left(\operatorname{fetch}_{M}(e)\right)$

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$c(x) . P \xrightarrow{c ? v}\{v / x\} P$

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$c(x) . P \xrightarrow{c ? v} \quad\{v / x\} P \quad$ for any value $v \in \mathscr{V}$

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$c(x) . P \xrightarrow{c ? v}\{v / x\} P$

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$c(x) . P \xrightarrow{c ? v}\{v / x\} P$
\uparrow binding

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$c(x) . P \xrightarrow{c ? v}\{v / x\} P$
$\uparrow_{\text {binding }} \quad$ replaces all (free) occurrences of x in P with v

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$c(x) . P \xrightarrow{c ? v}\{v / x\} P$
个binding replaces all (free) occurrences of x in P with v
With local states (e.g. [Garavel]):
$c(x) . P \xrightarrow{c ? v}$?

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$\underset{\uparrow_{\text {binding }}}{c(x) . P \xrightarrow{c ? v}} \underset{\text { replaces all (free) occurrences of } x \text { in } P \text { with } v}{\{v / x\} P}$
With local states (e.g. [Garavel]):
$c(x) . P \xrightarrow{c ? v}$?
update the "associated" memory M by $M\langle x \mapsto v\rangle$

Message Reception

$a, b, c \in \mathscr{C} \quad$ (Channels)
$c(x) . P \quad\left\{\begin{array}{l}\text { (1) input some value } v \text { from channel } c \\ \text { (2) use } x \text { to "remember" } v \text { afterwards } \\ \text { (3) continue with/as } P\end{array}\right.$
Classically (e.g. [Milner]):
$c(x) . P \xrightarrow{c ? v}\{v / x\} P$
Tbinding replaces all (free) occurrences of x in P with v
With local states (e.g. [Garavel]):

?
update the "associated" memory M by $M\langle x \mapsto v\rangle$

Threads, Processes, Networks

$$
\begin{array}{lll}
\mu & ::=\operatorname{var} x|\langle x:=e\rangle| a(x) \mid O & \text { actions } \\
G::=\mathbf{0}|\mu \cdot T| G+G & \text { selections } & \mathcal{G} \\
T::=G\left|I^{x_{1}, \ldots, x_{n}}\right| \text { if } e \text { then } T \text { else } T|T| T & \text { threads } & \mathcal{T} \\
P::=[M \triangleleft T] & \text { processes } & \mathcal{P}
\end{array}
$$

Threads, Processes, Networks

$$
\begin{array}{lll}
\mu::=\operatorname{var} x|\langle x:=e\rangle| a(x) \mid O & \text { actions } & \mathcal{A} \\
G::=\mathbf{0}|\mu \cdot T| G+G & \text { selections } & \mathcal{G} \\
T::=G\left|I^{x_{1}, \ldots, x_{n}}\right| \text { if } e \text { then } T \text { else } T|T| T & \text { threads } & \mathcal{T} \\
P::=[M \triangleleft T] & \text { processes } & \mathcal{P} \\
N::=P|Æ| N \| N & & \\
& \text { networks } & \mathcal{N}
\end{array}
$$

Threads, Processes, Networks

$$
\begin{gathered}
O::=\emptyset|\{\bar{e}\langle e\rangle\}| O \uplus O \\
Æ::=\emptyset|\{\overline{\mathrm{c}}\langle v\rangle\}| \text { Æ } \uplus Æ
\end{gathered}
$$

$$
\mu::=\operatorname{var} x|\langle x:=e\rangle| a(x) \mid O
$$

$$
G::=\mathbf{0}|\mu \cdot T| G+G
$$

$$
T::=G\left|I^{x_{1}, \ldots, x_{n}}\right| \text { if } e \text { then } T \text { else } T|T| T
$$

$$
P::=[M \triangleleft T]
$$

$$
N::=P|\nsubseteq| N \| N
$$

outgoing bag
message aether \mathcal{A}
actions
\mathcal{A}
selections \mathcal{G}
threads
processes
\mathcal{P}
networks

Processes

$$
[M \triangleleft T]
$$

Processes

$$
[M \triangleleft T]
$$

All free variables of a thread T must be "bound" by M.

Binders ...

$$
[M \triangleleft T]={ }_{\alpha}[\{y / x\} M \triangleleft\{y / x\} T]
$$

Binders ...

$$
[M \triangleleft T]={ }_{\alpha}[\{y / x\} M \triangleleft\{y / x\} T]
$$

This is good. And bad.

Locations

$$
\ell[M \triangleleft T]
$$

Locations

$$
\ell[M \triangleleft T]
$$

Named Processes

Location-Aware Communication

Output $\bar{c} @ l\langle e\rangle$ adds the name of the intended target; Input $c @ l(x)$ adds the name of the intended source;
(i) Location-aware send actions fit to the intended application domain.
(ii) Location-aware receive actions conveniently support suspicions.

Explicit States in Distributed Process Galeuli Semanties

Configurations

$$
F>_{\text {trim }} N
$$

Configurations

$F>\operatorname{trim} N$

Networks \mathbf{N}
running with failed locations in \boldsymbol{F} with trusted immortal trim

Location-Aware Semantics

$$
(\text { N-FAIL }) \frac{\operatorname{trim} \neq k \notin F}{F \triangleright_{\text {trim }} N \longmapsto F \cup k \text { trim } N}
$$

Location-Aware Semantics

$($ TrIm $) \frac{\text { trim } \in \mathcal{L}}{\emptyset \longmapsto N \longmapsto \emptyset \text { trim } N}$

$$
(\mathrm{N}-\text { FAIL }) \frac{\operatorname{trim} \neq k \notin F}{F ص_{\text {trim }} N \longmapsto F \cup k \text { trim } N}
$$

Location-Aware Semantics

$($ TRIm $) \frac{\text { trim } \in \mathcal{L}}{\emptyset \longmapsto N \longmapsto \emptyset \text { trim } N}$

$$
(\text { N-FAIL }) \frac{\operatorname{trim} \neq k \notin F}{F \triangleright_{\text {trim }} N \longmapsto F \cup k \text { trim } N}
$$

$(\mathrm{N}-\mathrm{STEP}) \xrightarrow{N \xrightarrow{\text { step } @ \ell} N^{\prime} \quad \text { step } \in\{\mathrm{mem}, \text { local, } \mathrm{snd}, \mathrm{rcv}\}} \quad \ell \notin F$

Location-Aware Semantics

$$
\begin{aligned}
& (\text { TRIm }) \frac{\operatorname{trim} \in \mathcal{L}}{\emptyset \longmapsto N \longmapsto \emptyset \rrbracket_{\text {trim }} N} \\
& (\text { N-FAIL }) \frac{\operatorname{trim} \neq k \notin F}{F \triangleright_{\text {trim }} N \longmapsto F \cup k \text { trim } N} \\
& (\mathrm{~N}-\mathrm{STEP}) \frac{N \xrightarrow{\text { step } @ \ell} N^{\prime} \quad \text { step } \in\{\text { mem, local, snd, } \mathrm{rcv}\} \quad \ell \notin F}{F{ }_{\text {trim }} N \longmapsto F N^{\prime}} \\
& (\mathrm{N}-\mathrm{SuSP}) \frac{N \xrightarrow{\operatorname{susp}(k) @ \ell} N^{\prime} \quad k \neq \operatorname{trim} \quad \ell \notin F}{F \longrightarrow_{\text {trim }} N \longmapsto N^{\prime}}
\end{aligned}
$$

Located Steps (I)

(Decl)

$$
\ell[M \triangleleft \operatorname{var} x . T \mid \widehat{T}] \xrightarrow{\text { mem@ } @} \ell[M\langle x \mapsto T\rangle \triangleleft T \mid \widehat{T}]
$$

Located Steps (I)

$(\mathrm{DECL}) \frac{x \notin \operatorname{dom}(M) \cup \mathrm{fv}(\widehat{T})}{\ell[M \triangleleft \operatorname{var} x . T \mid \widehat{T}] \xrightarrow{\operatorname{mem} @ \ell} \ell[M\langle x \mapsto \mathrm{~T}\rangle \triangleleft T \mid \widehat{T}]}$

Located Steps (I)

$(\mathrm{DECL}) \frac{x \notin \operatorname{dom}(M) \cup \mathrm{fv}(\widehat{T})}{\ell[M \triangleleft \operatorname{var} x \cdot T \mid \widehat{T}] \xrightarrow{\text { mem @ } \ell[M\langle x \mapsto \mathrm{~T}\rangle \triangleleft T \mid \widehat{T}]}}$

Located Steps (I)

$(\mathrm{DECL}) \frac{x \notin \operatorname{dom}(M) \cup \mathrm{fv}(\widehat{T})}{\ell[M \triangleleft \operatorname{var} x \cdot T \mid \widehat{T}] \xrightarrow{\text { mem @ } \ell[M\langle x \mapsto \mathrm{~T}\rangle \triangleleft T \mid \widehat{T}]}}$
$(\mathrm{Assign}) \frac{x \in \operatorname{dom}(M)}{\ell[M \triangleleft\langle x:=e\rangle \cdot T \mid \widehat{T}] \xrightarrow{\mathrm{mem} @ \ell} \ell[M\langle x \mapsto \mathrm{v}\rangle \triangleleft T \mid \widehat{T}]}$

Located Steps (I)

$(\mathrm{DECL}) \frac{x \notin \operatorname{dom}(M) \cup \mathrm{fv}(\widehat{T})}{\ell[M \triangleleft \operatorname{var} x \cdot T \mid \widehat{T}] \xrightarrow{\text { mem @ } \ell[M\langle x \mapsto \mathrm{~T}\rangle \triangleleft T \mid \widehat{T}]}}$
$($ Assign $) \frac{x \in \operatorname{dom}(M) \quad \operatorname{eval}_{M}(e)=\mathrm{v} \in \mathbb{V}}{\ell[M \triangleleft\langle x:=e\rangle \cdot T \mid \widehat{T}] \xrightarrow{\operatorname{mem} @ \ell} \ell[M\langle x \mapsto \mathrm{v}\rangle \triangleleft T \mid \widehat{T}]}$

Located Steps (II)

$$
(\mathrm{SND}) \frac{\bar{c} @ l\langle e\rangle \in O}{} \frac{O^{\prime}=O \backslash\{\bar{c} @ l\langle e\rangle\}}{\left.\ell[M \triangleleft O . T \mid \widehat{T}] \xrightarrow{\text { snd } @ \ell} \ell\left[M \triangleleft O^{\prime} . T \mid \widehat{T}\right] \|\left\{\mathrm{c}_{(\ell \rightarrow \mathrm{trg})}\right)\right\}}
$$

Located Steps (II)

$$
\begin{array}{cl}
\bar{c} @ l\langle e\rangle \in O & O^{\prime}=O \backslash\{\bar{c} @ l\langle e\rangle\} \\
(\mathrm{SND}) \frac{\operatorname{eval}_{M}(c)=\mathrm{c} \in \mathbb{C}}{\ell[M \triangleleft O . T \mid \widehat{T}] \xrightarrow{\text { snd } @ \ell} \ell\left[M \triangleleft O^{\prime} . T \mid \widehat{T}\right] \|\left\{\mathrm{c}_{(\ell \rightarrow \mathrm{trg})} \vee\right\}}
\end{array}
$$

Located Steps (II)

$$
\bar{c} @ l\langle e\rangle \in O \quad O^{\prime}=O \backslash\{\bar{c} @ l\langle e\rangle\}
$$

$(\mathrm{SND}) \frac{\operatorname{eval}_{M}(c)=\mathrm{c} \in \mathbb{C} \quad \operatorname{eval}_{M}(l)=\operatorname{trg} \in \mathbb{L}}{\ell[M \triangleleft O . T \mid \widehat{T}] \xrightarrow{\operatorname{snd} @ \ell} \ell\left[M \triangleleft O^{\prime} . T \mid \widehat{T}\right] \|\left\{\mathrm{c}_{(\ell \rightarrow \operatorname{trg})} \vee\right\}}$

Located Steps (II)

$$
(\mathrm{SND}) \frac{\bar{c} @ l\langle e\rangle \in O}{\operatorname{eval}_{M}(c)=\mathrm{c} \in \mathbb{C} \quad \mathrm{O}^{\prime}=O \backslash\{\bar{c} @ l\langle e\rangle\}} \begin{gathered}
\operatorname{eval}_{M}(l)=\operatorname{trg} \in \mathbb{L} \\
\ell[M \triangleleft O . T \mid \widehat{T}] \xrightarrow{\operatorname{eval}_{M}(e)=\mathrm{v} @ \in \mathbb{V}} \ell\left[M \triangleleft O^{\prime} . T \mid \widehat{T}\right] \|\left\{\mathrm{c}_{(\ell \rightarrow \operatorname{trg})} \vee \|\right\}
\end{gathered}
$$

Located Steps (II)

$$
\bar{c} @ l\langle e\rangle \in O
$$

$$
O^{\prime}=O \backslash\{\bar{c} @ l\langle e\rangle\}
$$

$\left(\mathrm{SND}_{\mathrm{ND}}\right) \frac{\operatorname{eval}_{M}(c)=\mathrm{c} \in \mathbb{C} \quad \operatorname{eval}_{M}(l)=\operatorname{trg} \in \mathbb{L} \quad \operatorname{eval}_{M}(e)=\mathrm{v} \in \mathbb{V}}{\ell[M \triangleleft O . T \mid \widehat{T}] \xrightarrow{\text { snd } @ \ell} \ell\left[M \triangleleft O^{\prime} . T \mid \widehat{T}\right] \|\left\{\mathrm{c}_{(\ell \rightarrow \operatorname{trg})} \mathrm{v} \|\right.}$
$(\mathrm{RCv}) \frac{\operatorname{eval}_{M}(e)=\mathrm{c} \in \mathbb{C} \quad \operatorname{eval}_{M}(l)=\operatorname{src} \in \mathbb{L} \quad x \in \operatorname{dom}(M)}{\ell[M \triangleleft e @ l(x) \cdot T \mid \widehat{T}] \|\left\{\left\{\mathrm{c}_{(\operatorname{src} \rightarrow \ell)} \mathrm{v}\right\} \xrightarrow{\mathrm{rcv} @ \ell} \ell[M\langle x \mapsto \mathrm{v}\rangle \triangleleft T \mid \widehat{T}]\right.}$

Located Steps (II)

$$
\bar{c} @ l\langle e\rangle \in O
$$

$$
O^{\prime}=O \backslash\{\bar{c} @ l\langle e\rangle\}
$$

$\left(\mathrm{SND}_{\mathrm{ND}}\right) \frac{\operatorname{eval}_{M}(c)=\mathrm{c} \in \mathbb{C} \quad \operatorname{eval}_{M}(l)=\operatorname{trg} \in \mathbb{L} \quad \operatorname{eval}_{M}(e)=\mathrm{v} \in \mathbb{V}}{\ell[M \triangleleft O \cdot T \mid \widehat{T}] \xrightarrow{\text { sud @ } \ell} \ell\left[M \triangleleft O^{\prime} . T \mid \widehat{T}\right] \|\left\{\mathrm{c}_{(\ell \rightarrow \operatorname{trg})} \mathrm{v} \|\right.}$
$(\mathrm{Rcv}) \frac{\operatorname{eval}_{M}(e)=\mathrm{c} \in \mathbb{C} \quad \operatorname{eval}_{M}(l)=\operatorname{src} \in \mathbb{L} \quad x \in \operatorname{dom}(M)}{\ell[M \triangleleft e @ l(x) . T \mid \widehat{T}] \|\left\{\| \mathrm{c}_{(\operatorname{src} \rightarrow \ell)} \mathrm{v}\right\} \xrightarrow{\mathrm{rcv} @ \ell} \ell[M\langle x \mapsto \mathrm{v}\rangle \triangleleft T \mid \widehat{T}]}$
$(\mathrm{SuSP}) \frac{\operatorname{eval}_{M}(l)=\operatorname{src} \in \mathbb{L}}{\ell[M \triangleleft e @ l(x) \cdot T \mid \widehat{T}] \xrightarrow{\operatorname{susp}(\operatorname{src}) @ \ell} \ell[M \triangleleft T \mid \widehat{T}]}$

Located Steps (III)

(True) $\frac{\operatorname{eval}_{M}(e)=\mathrm{t}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{1} \mid \widehat{T}\right]}$

$$
(\text { FALSE }) \frac{\operatorname{eval}_{M}(e)=\mathrm{f}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{2} \mid \widehat{T}\right]}
$$

Located Steps (III)

(TRUE) $\frac{\operatorname{eval}_{M}(e)=\mathrm{t}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{1} \mid \widehat{T}\right]}$

$$
(\text { FALSE }) \frac{\operatorname{eval}_{M}(e)=\mathrm{f}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{2} \mid \widehat{T}\right]}
$$

Located Steps (III)

(IDENT) $\frac{I^{x_{1}, \ldots, x_{n}} \stackrel{\text { def }}{=} G}{\ell\left[M \triangleleft I^{x_{1}, \ldots, x_{n}} \mid \widehat{T}\right] \xrightarrow{\text { local@ } \ell} \ell[M \triangleleft G \mid \widehat{T}]}$

Located Steps (III)

(TRUE) $\frac{\operatorname{eval}_{M}(e)=\mathrm{t}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{1} \mid \widehat{T}\right]}$

$$
(\text { FALSE }) \frac{\operatorname{eval}_{M}(e)=\mathrm{f}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{2} \mid \widehat{T}\right]}
$$

$(\operatorname{IdENT}) \frac{I^{x_{1}, \ldots, x_{n}} \stackrel{\text { def }}{=} G \quad \mathrm{fv}(G) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}}{\ell\left[M \triangleleft I^{x_{1}, \ldots, x_{n}} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell[M \triangleleft G \mid \widehat{T}]}$

Located Steps (III)

(True) $\frac{\operatorname{eval}_{M}(e)=\mathrm{t}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{1} \mid \widehat{T}\right]}$

$$
(\text { FALSE }) \frac{\operatorname{eval}_{M}(e)=\mathrm{f}}{\ell\left[M \triangleleft \text { if } e \text { then } T_{1} \text { else } T_{2} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell\left[M \triangleleft T_{2} \mid \widehat{T}\right]}
$$

$(\operatorname{IdENT}) \frac{I^{x_{1}, \ldots, x_{n}} \stackrel{\text { def }}{=} G \quad \operatorname{fv}(G) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}}{\ell\left[M \triangleleft I^{x_{1}, \ldots, x_{n}} \mid \widehat{T}\right] \xrightarrow{\text { local @ } \ell} \ell[M \triangleleft G \mid \widehat{T}]}$

Back to the Gase Study ...

Algorithm \&

Table 4. The Rotating Co-ordinator Algorithm for Participant i

1	x_{i} : = input;
2	for $r:=1$ to n do \{ if $r=i$ then broadcast x_{i};
3	if alive $\left(p_{r}\right)$ then $x_{i}:=$ input_from_broadcast \};
4	output x_{i};
	$\mathrm{L}_{\ell}^{\text {chan, } \mathrm{x}, \mathrm{r}, \text { output }} \stackrel{\text { def }}{=}$
	(2) $\langle r:=r+1\rangle$.
	(3) if $r \leq n$ then 4 if $r=n$

... \& Environment

$\emptyset-$ Consensus $_{\left(\text {input }_{1}, \ldots, \text { input }_{n}\right)}$

Informal Correctness Argument

Table 4. The Rotating Co-ordinator Algorithm for Participant i

```
1 }\mp@subsup{x}{i}{}:= input
2 for r:= 1 to }n\mathrm{ do { if r=i then broadcast }\mp@subsup{x}{i}{}\mathrm{ ;
3
output }\mp@subsup{x}{i}{
```

Before round ti,"anything goes".
In such a round, any process may receive the value proposed by any coordinator of the rounds until then. Or not. No guarantees ...

In round ti, in which ti is coordinator, no process can suspect it to have failed, so all with adopt ti's proposal.

Formal Correctness Argument

If \quad Consensus $_{\left(\text {input }_{1}, \ldots, \text { input }_{n}\right)} \longmapsto^{*} F$ trim $\quad \nmid \quad \prod_{\ell \in[1, n]} \ell\left[M_{\ell} \triangleleft p c T_{\ell}\right]$, then $\forall \ell \in[1, n]$.

$$
\begin{aligned}
& \left(M_{\ell}(\mathrm{r})<\operatorname{trim} \quad \rightarrow M_{\ell}(\mathrm{x}) \in\right. \text { Undecided } \\
& M_{\ell}(\mathrm{r})=\operatorname{trim} \wedge i \neq \operatorname{trim} \rightarrow\left(\left(p c \in\{\boldsymbol{\varphi}, \boldsymbol{\Theta}, \boldsymbol{\oplus}\} \rightarrow M_{\ell}(\mathrm{x}) \in \text { Undecided }\right)\right. \\
& \left.\left.\wedge(p c \in\{\boldsymbol{0}, \boldsymbol{0}, \boldsymbol{(}\}\} \rightarrow M_{\ell}(\mathrm{x})=M_{\text {trim }}(\mathrm{x})\right)\right) \\
& M_{\ell}(\mathrm{r})>\operatorname{trim} \quad \rightarrow M_{\ell}(\mathrm{x})=M_{\text {trim }}(\mathrm{x}) \\
& \left.M_{\ell}(\mathrm{r})>n \wedge p c=\{\boldsymbol{\theta}\} \rightarrow M_{\ell}(\text { output })=M_{\ell}(\mathrm{x})\right)
\end{aligned}
$$

Gonelusions

Open Problems

Does it work in sufficiently many cases?
 What about mechanization support?

Do such calculi still qualify as process calculi? What about the meta theory of such calculi?

Is it useful to extend them with session types?

