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Stochastic Systems Modeling

Continuous Time Markov Chains and Process Algebra

▶ Continuous Time Markov Chains are the underlying semantics of many high-level
formalisms for modeling, analysing and verifying stochastic systems, such as
Stochastic Petri nets, Stochastic Automata Networks, Markovian process algebras

▶ High-level languages simplify the specification task thanks to compositionality and
hierarchical approach

▶ Even very compact specifications can generate very large stochastic systems that
are difficult/impossible to analyse
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Specification Languages: Markovian Process Algebra

MPA = PA + CTMC

activity (α, r) action α rate r

compositionality product forms

bisimulation lumpability

causal consistent reversibility time reversibility
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State Space Reduction Techniques

▶ In the non-deterministic setting bisimulation allows to quotient the state space
[Milner 1989]

▶ On Markov Chains lumpability [Kemeny-Snell 1976] plays the same role,
preserving stationary quantities [Buchholz 1994]

Problem

Lumpability is too demanding
As a consequence it usually provides poor reductions
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Approximations

Quasi Lumpability and ϵ-Bisimulation

▶ Quasi Lumpability relates states allowing ϵ perturbations of the outgoing
probabilities/rates [Franceschinis et al. 1994]

▶ Bounds on the stationary distributions have been proved

▶ Behavioural properties have been studied on ϵ-Bisimulation [Desharnais et al.
2008, Tracol et al. 2011, Abate et al. 2014, Abate et al. 2017]

▶ Algorithmic solutions have been proposed [Milios et al. 2012]

Unfortunately

It is not possible to exactly reconstruct the stationary distribution of the original system
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Proportional Lumpability

Motivation

We aim at relaxing the conditions of lumpability while allowing to derive the exact
stationary indices for the original system

Contribution

▶ We define the notion of Proportional Lumpability over Continuous Time Markov
Chains (CTMC)

▶ We show that this allows to exactly derive the original stationary distribution

▶ We introduce the notion of Proportional Bisimulation over the stochastic process
algebra PEPA and prove that it induces a proportional lumpability on the
underlying semantics
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Contionuous Time Markov Chains

CTMC

Let X (t) with t ∈ R+ be a stochastic process taking values in a discrete space S.

X (t) is a CTMC if it is stationary and markovian

We focus on finite, time-homogeneous, ergodic Markov Chains

Infinitesimal Generator Matric

A CTMC is given as a matrix Q of dim. |S| × |S| such that:

▶ q(i , j) ≥ 0 is the transition rate from i to j for i ̸= j

▶ q(i , i) = −
∑

j ̸=i q(i , j)
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Stationary Analysis

Stationary Distribution

A distribution π over S such that π(i) is the probability of being in i when time goes
to ∞
In our setting π is the unique distribution that solves

πQ = 0

Stationary Performances Indices

Stationary performances indices, such as throughput, expected response time, resource
utilization, can be computed from the steady state distribution π
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Lumpability in CTMCs - Intuitively

S S ′

i rib
b

i ria

a

rid
dj rjc

c

rjd

ria + rib + rid = rjc + rjd
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Lumpability

Strong Lumpability

The strong lumpability ∼ is the largest equivalence over S such that ∀S , S ′ ∈ S/∼ and
∀i , j ∈ S ∑

a∈S ′

q(i , a) =
∑
a∈S ′

q(j , a)

Properties

▶ There always exists a unique maximum lumpability

▶ The stationary distribution of the lumped chain is the aggregation of π
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Quasi Lumpability

Quasi Lumpability [Franceschinis et al. ’94, Milios et al. 2012]

An ϵ-quasi lumpability R is an equivalence over S such that ∀S , S ′ ∈ S/R and
∀i , j ∈ S

|
∑
a∈S ′

q(i , a)−
∑
a∈S ′

q(j , a)| ≤ ϵ

Properties

▶ It was originary defined splitting Q into Q− and Qϵ (perturbation)

▶ Bounds on the exact stationary distribution (indices) can be computed

▶ Algorithms for approximating an optimal aggregation have been proposed
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Quasi Lumpability – Example

S S ′

i rib
b

i ria

a

rid
dj rjc

c

rjd

ria + rib + rid = 10 rjc + rjd = 100

ϵ ≥ 90
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Proportional Lumpability

Proportional Lumpability

Given κ : S → R+, a κ-proportional lumpability R is an equivalence over S such that
∀S ,S ′ ∈ S/R and ∀i , j ∈ S ∑

a∈S ′ q(i , a)

κ(i)
=

∑
a∈S ′ q(j , a)

κ(j)

Properties

▶ There exists a unique maximum κ-proportional lumpability ∼κ

▶ It allows us to derive an exact solution of the original process
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Proportional Lumpability – Example

S S ′

i rib
b

i ria

a

rid
dj rjc

c

rjd

ria + rib + rid = 10 rjc + rjd = 100

κ(i) = 1 κ(j) = 10
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Perturbed System

Perturbed Systems

It is any CTMC X ′(t) over the state space S having generator Q ′ such that ∀i ∈ S

q′(i , a) =
q(i , a)

κ(i)
for any a ̸= i
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Stationary Distributions of Perturbed Systems

Proposition

The stationary distributions of X (t) and X ′(t) are related as follows

π(i) =
π′(i)

C κ(i)

where the normalization factor is C =
∑

i∈S π′(i)/κ(i)
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Performances Evaluation Process Algebra (PEPA)

PEPA Syntax

Let A be a set of actions with τ ∈ A
Let α ∈ A, A ⊆ A, and r ∈ R

S ::= (α, r).S | S + S | X

P ::= P ��
A
P | P/A | P \ A | S

Each variable X is associated to a definition X
def
= P

PEPA Semantics

It can be defined in terms of Labeled Continuous Time Markov Chains
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Performances Evaluation Process Algebra (PEPA)

P
(α,r)−−−→ P ′

P ��
A
Q

(α,r)−−−→ P ′ ��
A
Q

(α ̸∈ A)
Q

(α,r)−−−→ Q ′

P ��
A
Q

(α,r)−−−→ P ��
A
Q ′

(α ̸∈ A)

P
(α,r1)−−−→ P ′ Q

(α,r2)−−−→ Q ′

P ��
A
Q

(α,R)−−−→ P ′ ��
A
Q ′

(α ∈ A)

where R =
r1

rα(P)

r2
rα(Q)

min(rα(P), rα(Q))
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Strong Equivalence

Strong Equivalence [Hillston 1996]

A strong equivalence is an equivalence R such that for each action α, ∀S , S ′ ∈ C/R,
and ∀P,Q ∈ S ∑

P′∈S ′, P
(α,r)−−−→P′

r =
∑

Q′∈S ′, Q
(α,r)−−−→Q′

r

Properties

There exists a unique maximum lumpable bisimilarity ≈l , it is contextual, action
preserving, and induces a lumpability
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Approximate Strong Equivalence

Approximate Strong Equivalence [Gilmore et al. 2015]

A approximate strong equivalence w.r.t. ε ≥ 0 is an equivalence R such that for each
action α, ∀S , S ′ ∈ C/R, and ∀P,Q ∈ S∣∣∣ ∑

P′∈S ′, P
(α,r)−−−→P′

r −
∑

Q′∈S ′, Q
(α,r)−−−→Q′

r
∣∣∣ ≤ ε

Properties

It induces a quasi lumpability, however it is not preserved under union.
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Proportional Bisimilarity

Proportional bisimilarity

Given κ : C → R+ a κ-proportional bisimilarity is an equivalence R such that for each
action α, ∀S , S ′ ∈ C/R, and ∀P,Q ∈ S∑

P′∈S ′, P
(α,r)−−−→P′

r

κ(P)
=

∑
Q′∈S ′, Q

(α,r)−−−→Q′
r

κ(Q)

Properties

There exists a unique maximum proportional bisimilarity ≈κ
l , it induces a proportional

lumpability
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Example - A simple buffer system

PEPA specification

Bn = (τ, λ).Bn+1 0 ≤ n ≤ M − 1
Bn = (cl , µ/n).B0 0 ≤ n ≤ M

Original buffer system Reduced buffer system

B0 B1 · · · Bi · · · BM B′
0 B′

1

(τ, λ)

(cl, µ)

(τ, λ)

(cl, µ
2
)

(τ, λ)

(cl, µ
i
)

(τ, λ)

(cl, µ
M−1

)

(τ, λ)

(cl, µ
M

)

(τ, λ)

(cl, µ)
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Conclusions

▶ The notion of proportional lumpability has been introduced

▶ It “preserves” the stationary distribution

▶ It can be applied for PEPA components reduction

▶ We are looking at its compositionality properties

Open problems

▶ Computing Probabilistic Bisimilarity Distances
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