Probabilistic Timed Automata:
 Current Challenges and Future Directions

Jeremy Sproston

Dipartimento di Informatica
University of Turin
Italy

OPCT 2023
29th June 2023

Reachability in probabilistic timed systems

- Reachability problems in systems exhibiting probabilistic and timed (and nondeterministic) behaviour.
- Modelling formalism: balance between expressivity of formalism and decidability of reachability properties.

Reachability in probabilistic timed systems

- Modelling formalism: classical starting points

Markov decision processes (MDPs)
Timed automata

Reachability: given $\lambda \in(0,1]$, does there exist a way to resolve nondeterministic choice such that \odot is reached with probability at least λ ? (maximum reachability)

Reachability: does there exist a way to resolve nondeterministic choice such that () is reached?

Probabilistic timed automata

- Probabilistic timed automata (PTAs) [Gregersen \& Jensen 1995; Kwiatkowska et al. 2002]: timed automata with (discrete) probabilistic choice over edges.
- PTA extend conservatively:
- MDPs (presence of nondeterministic and probabilistic choice over transitions);
- timed automata (clock variables, constraints and resets).
- Example:

Probabilistic timed automata

- Semantics of a PTA: an infinite-state MDP.
- State: pair (location, valuation), where location is the current node (circle) and valuation assigns to the clocks their current value.
- Time elapses: choose nondeterministically a time delay, then the value of all clocks increase by that amount (must satisfy the invariant of the current location).
- Discrete transition: choose enabled \square nondeterministically, then make a probabilistic choice according to chosen (e.g., with probability $\frac{9}{10}$ go to \odot, with probability $\frac{1}{10}$ go to O and reset x to 0 (reset annotation $\{x\}$).
Time elapse transitions

Reachability for probabilistic timed automata

Maximum reachability for PTAs

Given an initial state and a threshold $\lambda \in(0,1]$, does there exists a way to resolve nondeterminism such that the probability that the PTA reaches a set of final locations equal to or greater than λ ?

Complexity results on maximum reachability for MDPs and PTAs:

MDPs (PTAs with no clocks)	PTIME-c	[Courcoubetis \& Yannakakis 1990, 1998] [Papadimitriou \& Tsitsiklis 1987]
PTAs with one clock	PTIME-c	[Jurdzinski et al. 2008]
PTAs with at least two clocks	EXPTIME-c	[Kwiatkowska et al. 2002]
[Jurdzinski et al. 2008]		

Region equivalence applied to PTAs

- Region equivalence [Alur \& Dill 1994]: partition the clock valuation space into a finite number of classes.
- Induces a finite (probabilistic) bisimulation on the PTA's state space.
- Solve reachability problem on the finite-state MDP resulting from region equivalence.

Region equivalence applied to PTAs

Time transitions (from $\left(\bigcirc, R_{0}\right)$, where R_{0} is defined by
 $x=y=0$, with invariant $x<2 \wedge y \leq 3$)

R_{1} is defined by $0<x=y<1$,
R_{2} is defined by $x=y=1$,
R_{3} is defined by $1<x=y<2$

Region equivalence applied to PTAs

Example of discrete transition
 (from $\left(\bigcirc, R_{3}\right)$, where R_{3} is defined by $1<x=y<2$)

$R_{3}[x:=0]$ is defined by $x=0,1<y<2$

Beyond region-graph-based reachability

- Beyond the region graph:
- Digital clocks [Kwiatkowska et al. 2006] (no strict constraints).
- Zones [Kwiatkowska et al. 2007, 2009].
- Statistical model checking [D'Argenio et al. 2016; Hartmanns at al. 2017].
- ... future challenge (generic!): making analysis for PTAs applicable to larger models.
- Beyond reachability:
- Model checking for probabilistic temporal logics [Kwiatkowska et al. 2002].
- Reachability properties with prices/costs [Kwiatkowska et al. 2006, 2017].
- Timed probabilistic bisimulation [Troina \& S 2010] and timed bisimilarity metrics [Lanotte \& Tini 2019].
- ... future challenge: linear temporal logics, ...
- Beyond PTAs:
- Parametric (over probabilities) PTA [Hartmanns et al. 2021].
- ... future challenge: extend PTAs while maintaining decidability ...

Clock-dependent probabilistic timed automata

- Probabilities may depend on time: e.g., success of task completion may increase with the amount of time dedicated to the task attempt.
- Clock-dependent probabilistic timed automata (cdPTAs) [S 2021a]: label edges with affine expressions over clock values, defining distributions for each valuation of the clocks.

Reachability problems for cdPTA

Undecidability of reachability for cdPTAs [S 2021a]

The maximum reachability problem is undecidable for cdPTAs with ≥ 3 clocks.

- Inspired by the undecidability result for stochastic timed automata of [Akshay et al. 2016].
- Can approximate the maximum probability to reach target locations by:
- using an adaptation of the region-equivalence MDP construction (based on the "corner-point abstraction" [Bouyer et al. 2008]);
- refining the granularity of timing constants of region equivalence to obtain an improved (no worse) approximation of the maximum reachability probability.
- Question: is the maximum reachability problem decidable for cdPTAs with one clock?

Results for PTAs with one clock

- Construct an equivalent finite-state MDP [Jurdzinski et al. 2008] (use concepts from non-probabilistic case [Laroussine et al. 2004]), analyse the MDP (in polynomial time).
- Principle: obtain a finite partition of the set of possible clock values (i.e., $\mathbb{R}_{\geq 0}$), endpoints of intervals are constants from the PTA (and 0).
- Example: partition $[0,0],(0,1),[1,1],(1,2),[2,2],(2, \infty)$.

- Intuition: in the MDP, take the transition from $(O,[0,0])$ when x is in $(1,2)$.

IMC construction for cdPTAs with one clock

- Use (open) interval Markov chains (IMCs) [Jonsson \& Larsen 1991; Chakraborty \& Katoen 2015]:
- Label edges with intervals on probabilities; make nondeterministic choice between distributions allowed by the intervals.
- E.g., for transition from $(O,[0,0])$: choose nondeterministically a pair $\left(\lambda, \lambda^{\prime}\right)$ of probabilities, where $\lambda \in\left(\frac{4}{5}, \frac{9}{10}\right), \lambda^{\prime} \in\left(\frac{1}{10}, \frac{1}{5}\right)$ and $\lambda+\lambda^{\prime}=1$.
- This nondeterministic choice of $\left(\lambda, \lambda^{\prime}\right)$ mimics the nondeterministic choice of time delay in $(1,2)$ in \bigcirc.

IMC construction for cdPTAs with one clock

- General case (if squares have ≥ 3 outgoing edges):

- X : incorrect! The IMC allows the distribution assigning:

$$
\frac{17}{20} \text { to }(\odot,(1,2)), \frac{7}{80} \text { to }(\otimes,(1,2)) \text {, and } \frac{1}{16} \text { to }(\bigcirc,[0,0]) .
$$

- Probabilities of going to $\left({ }^{\star},(1,2)\right)$ and $(\bigcirc,[0,0])$ must be equal.
- Solution: split a single cdPTA transition into a sequence of two transitions in the IMC (first simulates the choice of value of x in the interval $(1,2)$, second is a purely probabilistic choice).

IMC construction for cdPTAs with one clock

- Maximum probability strategy to reach $($:
- Leave location A when x is equal to $\frac{1}{2}$, then leave location B instantly.
- Probability of reaching location © for this strategy is $\frac{1}{4}$.

- X: incorrect! In the IMC, © can be reached with probability 1.

Results for cdPTAs with one clock

- Problem: optimal choices in different cdPTA locations may not be independent, yet dependencies between choices in different states of IMCs cannot be represented.
- Initialisation: between any probabilistic choices depending on the clock x (i.e., that are not constant functions), the clock must pass through a closed interval of the partition (either by letting time elapse or by resetting the clock).

Reachability for initialised cdPTAs with one clock

Maximum reachability problems are Ptime-complete for initialised cdPTAs with one clock.

- Also minimum reachability problems and qualitative reachability problems can be decided in polynomial time for initialised cdPTAs with one clock.
- Results rely on polynomial-time algorithms for (open) IMCs (for max./min. problems [Chen et al. 2013; Pugelli et al. 2013; Chakraborty \& Katoen 2015], for qualitative problems [S 2018]).

Beyond initialised one-clock cdPTAs

- Lifting "one clock" restriction: multiple clocks, only one of which is used to determine probabilities and which is initialised.
- X : maximum reachability problem is undecidable.
- Lifting initialisation in one-clock cdPTAs: connection with parametric MDPs?
- Qualitative $(\lambda=1)$ maximum reachability for cdPTAs?
- Beyond affine clock dependencies: X, maximum reachability problem is undecidable for cdPTAs with the dependencies of probabilities on clock described by quartic functions even when $\lambda=1$.

