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Scientific questions to be addressed and hypothesis

• Q1: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?

• Q2: How the loss of safety can be quantified in case of
perturbations ?
• A1: We propose the notions of

I quantitative forward safety, and
I quantitative backward safety (not discussed in the talk).

• A2: We propose the notions of
I forward robustness and
I backward robustness (not discussed in the talk).

• We work with:
I Platzer’s Hybrid Programs formalism,
I Platzer’s differential dynamic logic specification language

• Perturbations will be attacks on sensors.
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Qualitative safety

A program α is safe for φpost assuming φpre, if φpre→ [α]φpost holds.

φpre

φpre ≡ x > 5φpre ≡ x > 2

φpost

φpost ≡ x > 4φpost ≡ x > 7

α

x = x + 2

This definition does not provide any info about how “good” α is.
Two questions have no answer:
• Can we strenghten φpost? How much?
• Can we weaken φpre? How much?
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Forward quantitative safety
Assume a notion of distance between states.

Let φ〈α〉 denote the strongest postcondition after the execution of α in
states satisfying φ.
Then, α is forward u-safe for φpre and φpost, written
F-safeu(α, φpre, φpost), if u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈α〉K}.

φpre φpost

¬φpost

φpre〈α〉

φpost

α

≥u

• u estimates how strong φpre〈α〉 is with respect to φpost.
• u estimates how much φpost can be strengthened w.r.t. φpre〈α〉.
• The bigger u is, the safer the program α is.
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Forward robustness (w.r.t. some perturbation)
Assume a program α and a perturbation P s.t. φpre〈α〉 ⊆ φpre〈P(α)〉.
Then, α is forward δ-robust for φpre and φpost, under P , if
• F-safeu(α, φpre, φpost)
• F-safeu1(P(α), φpre, φpost)
• δ = u1/u.

φpre φpost¬φpost

φpre〈P(α)〉

φpre〈α〉

α

P(α)
≥u

≥u1

• δ is the percentage of forward safety that is maintained under P .
• The closer δ is to 1, the more robust the system is.
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An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost
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Vehicle’s safety

Given
• postcondition φpost ≡ dp > 0
• precondition φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0

the autonomous vehicle enjoys forward 2-safety:

F-safe2((ctrl ; plant)∗, φpre, φpost)

Notice that:
• safety is guaranteed since accel is guarded by ψ:

accel ≡ ?ψ ; a := A with
ψ ≡ 2Bds > (vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)
• without +2 there would be no room for perturbations.
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Graphical intuition of vehicle’s safety

Property F-safe2((ctrl ; plant)∗, φpre, φpost) can be represented as:

φS
pre dp > 0φS

pre〈α〉

φpost

¬φpost

α

≥2

where:
• φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0
• φpost ≡ dp > 0
• α = (ctrl ; plant)∗



Bounded attack on velocity sensor

Assume an attack deviating the readings of vs from vp up to 1 m/s:

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0

φpost ≡ dp > 0

ψ ≡ 2Bds > (vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A

brake ≡ a := −B

ctrlA ≡ ds := dp ; vs := ∗; ?vs ≤ vp + 1 ∧ vs ≥ vp − 1 ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrlA ; plant)∗]φpost

• The safety property F-safe2((ctrlA ; plant)∗, φpre, φpost) does not
hold anymore.
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Reasoning about robustness
We know that F-safe2((ctrl ; plant)∗, φpre, φpost).
What about the robustness of (ctrl ; plant)∗ under attack P?

According to the definition, (ctrl ; plant)∗ is forward δ-robust for
properties φpre and φpost, under that perturbation P , if
• F-safeu((ctrl ; plant)∗, φpre, φpost),
• F-safeu1(P((ctrl ; plant)∗), φpre, φpost)

• δ = u1/u.

Namely:
• u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈(ctrl ; plant)∗〉K}
• u1 = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈P((ctrl ; plant)∗)〉K}

Computing these inf may be difficult, in particular for u1, since P
replaces a real with an element in a set of reals.
Possible solution: provide a notion of simulation distance between
programs allowing us to give an upper bound to the loss of safety
u− u1.
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Forward simulation distance
Assume a set of variablesH and a distance over states ρH.

E.g., for states ω and ν: ρH(ω, ν) =
√∑

x∈H (ω(x)− ν(x))2.

Definition: Two programs α and β are at forward simulation distance d
w.r.t. a formula φpre andH, written

β vF
φpre,H,d α

if ∀ν1 ∈ Jφpre〈β〉K ∃ν2 ∈ Jφpre〈α〉K such that ρH(ν1, ν2) ≤ d.
Example, for β = P(α):

φpre φpre〈α〉

φpre〈P(α)〉

α

P(α)

≤d
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Upper bound to loss of safety
Theorem. Assume a hybrid program α and formulas φpre and φpost. If
• F-safeu(α, φpre, φpost) and
• P(α) vF

φpre,Var(φpost),d α

then: F-safeγ(P(α), φpre, φpost), with γ ≥ u− d

φpre φpre〈α〉

φpre〈P(α)〉

φpost

¬φpost

β

α = P(β)

≤ d

≥ u ≥u−d

In words, d is an upper bound of the loss of forward safety.
Notice that α is γ-robust for γ = (u− d)/u.
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Applying the theorem: An attempt

• By hand, we have computed

P((ctrl ; plant)∗) vF
φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5

• Now, from
F-safe2((ctrl ; plant)∗, φpre, φpost)

and

P((ctrl ; plant)∗) vF
φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5

we can conclude that:

F-safeγ(P((ctrl ; plant)∗), φpre, φpost) with γ ≥ 0.5



Open problem: How to compute forward simulation

Attempt 1: Encoding simulation distances with formulas
• Forward simulation distance is computed on states satisfying
φpre〈α〉 and φpre〈P(α)〉 and is encodable in a forall exists manner.

• More precisely:

(φpre〈P(α)〉 ∧ (y = x))→ ∃x. (φpre〈α〉 ∧ (ρH(y, x) ≤ d))

with x the variable in the formulae and y the fresh variables,
implicely quantified universally, used to store the value of x.
• Unfortunately, this formula cannot be verified by using KeYmaera

X.
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Attempt 1: Encoding simulation distances with formulas
• Forward simulation distance is computed on states satisfying
φpre〈α〉 and φpre〈P(α)〉 and is encodable in a forall exists manner.
• More precisely:

(φpre〈P(α)〉 ∧ (y = x))→ ∃x. (φpre〈α〉 ∧ (ρH(y, x) ≤ d))

with x the variable in the formulae and y the fresh variables,
implicely quantified universally, used to store the value of x.
• Unfortunately, this formula cannot be verified by using KeYmaera

X.



Open problem: How to compute forward simulation-II

Attempt 1: Encoding simulation distances with formulas-II
• In our example, working by hand works:
• Having φpre ≡ 2Bdp > (vp + 2)2 ∧ vp ≥ 0

we have
φpre〈P(α)〉 ≡ 2Bdp > (vp + 1)2 ∧ vp ≥ 0
by using KeYmaera X we have proved that

2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧ dp = fdp →

∃dp.(2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧
√

(dp − fdp)2 ≤ 1.5))

• From F-safe2((ctrl ; plant)∗, φpre, φpost) and
P((ctrl ; plant)∗) vF

φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5 we get
F-safeγ(P((ctrl ; plant)∗), φpre, φpost) with γ ≥ 0.5.
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• In our example, working by hand works:
• Having φpre ≡ 2Bdp > (vp + 2)2 ∧ vp ≥ 0

we have
φpre〈P(α)〉 ≡ 2Bdp > (vp + 1)2 ∧ vp ≥ 0
by using KeYmaera X we have proved that

2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧ dp = fdp →

∃dp.(2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧
√

(dp − fdp)2 ≤ 1.5))

• From F-safe2((ctrl ; plant)∗, φpre, φpost) and
P((ctrl ; plant)∗) vF

φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5 we get
F-safeγ(P((ctrl ; plant)∗), φpre, φpost) with γ ≥ 0.5.



Open problem: How to compute forward simulation-III

Attempt 2: Encoding simulation distances with modalities
• By using modalities we can directly encode program executions:

(φpre ∧ 〈P(α)〉(y = x))→
“for each state reachable from φpre by P(α)‘’

(∃x. φpre ∧ 〈α〉(ρH(y, x) ≤ d))

“there is an execution of α to a state at distance bounded by d.”

• This is admitted by KeYmaera X syntax, but, in general, we have
no answer
• What we need is a proof system allowing us to give some upper

bound to the simulation distance. We are on this but, presently,
we have no solution.
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no answer
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bound to the simulation distance. We are on this but, presently,
we have no solution.



Open problems - a more general view

• Developing a proof system for verifying properies encoding the
simulation distance between programs.
• Dealing with more sophisticated sensor attacks, e.g. periodic

attacks with several attack windows characterised by different
tamperings.
• Dealing with different attacks.


