
Quantitative Robustness Analysis of Sensor

Attacks on Cyber-Physical Systems

Stephen Chong1 Ruggero Lanotte2 Massimo Merro3

Simone Tini2 Jian Xiang1

1Harvard University
Boston, MA

2University of Insubria
Como, IT

3University of Verona
Verona, IT

Berinoro
June 26, 2023



Scientific questions to be addressed and hypothesis

• Q1: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?

• Q2: How the loss of safety can be quantified in case of
perturbations ?
• A1: We propose the notions of

I quantitative forward safety, and
I quantitative backward safety (not discussed in the talk).

• A2: We propose the notions of
I forward robustness and
I backward robustness (not discussed in the talk).

• We work with:
I Platzer’s Hybrid Programs formalism,
I Platzer’s differential dynamic logic specification language

• Perturbations will be attacks on sensors.



Scientific questions to be addressed and hypothesis

• Q1: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?
• Q2: How the loss of safety can be quantified in case of

perturbations ?

• A1: We propose the notions of
I quantitative forward safety, and
I quantitative backward safety (not discussed in the talk).

• A2: We propose the notions of
I forward robustness and
I backward robustness (not discussed in the talk).

• We work with:
I Platzer’s Hybrid Programs formalism,
I Platzer’s differential dynamic logic specification language

• Perturbations will be attacks on sensors.



Scientific questions to be addressed and hypothesis

• Q1: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?
• Q2: How the loss of safety can be quantified in case of

perturbations ?
• A1: We propose the notions of

I quantitative forward safety, and
I quantitative backward safety (not discussed in the talk).

• A2: We propose the notions of
I forward robustness and
I backward robustness (not discussed in the talk).

• We work with:
I Platzer’s Hybrid Programs formalism,
I Platzer’s differential dynamic logic specification language

• Perturbations will be attacks on sensors.



Scientific questions to be addressed and hypothesis

• Q1: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?
• Q2: How the loss of safety can be quantified in case of

perturbations ?
• A1: We propose the notions of

I quantitative forward safety, and
I quantitative backward safety (not discussed in the talk).

• A2: We propose the notions of
I forward robustness and
I backward robustness (not discussed in the talk).

• We work with:
I Platzer’s Hybrid Programs formalism,
I Platzer’s differential dynamic logic specification language

• Perturbations will be attacks on sensors.



Scientific questions to be addressed and hypothesis

• Q1: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?
• Q2: How the loss of safety can be quantified in case of

perturbations ?
• A1: We propose the notions of

I quantitative forward safety, and
I quantitative backward safety (not discussed in the talk).

• A2: We propose the notions of
I forward robustness and
I backward robustness (not discussed in the talk).

• We work with:
I Platzer’s Hybrid Programs formalism,
I Platzer’s differential dynamic logic specification language

• Perturbations will be attacks on sensors.



Scientific questions to be addressed and hypothesis

• Q1: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?
• Q2: How the loss of safety can be quantified in case of

perturbations ?
• A1: We propose the notions of

I quantitative forward safety, and
I quantitative backward safety (not discussed in the talk).

• A2: We propose the notions of
I forward robustness and
I backward robustness (not discussed in the talk).

• We work with:
I Platzer’s Hybrid Programs formalism,
I Platzer’s differential dynamic logic specification language

• Perturbations will be attacks on sensors.



Qualitative safety

A program α is safe for φpost assuming φpre, if φpre→ [α]φpost holds.

φpre

φpre ≡ x > 5φpre ≡ x > 2

φpost

φpost ≡ x > 4φpost ≡ x > 7

α

x = x + 2

This definition does not provide any info about how “good” α is.
Two questions have no answer:
• Can we strenghten φpost? How much?
• Can we weaken φpre? How much?



Qualitative safety

A program α is safe for φpost assuming φpre, if φpre→ [α]φpost holds.

φpre

φpre ≡ x > 5φpre ≡ x > 2

φpost

φpost ≡ x > 4φpost ≡ x > 7

α

x = x + 2

This definition does not provide any info about how “good” α is.

Two questions have no answer:
• Can we strenghten φpost? How much?
• Can we weaken φpre? How much?



Qualitative safety

A program α is safe for φpost assuming φpre, if φpre→ [α]φpost holds.

φpre

φpre ≡ x > 5φpre ≡ x > 2

φpost

φpost ≡ x > 4φpost ≡ x > 7

α

x = x + 2

This definition does not provide any info about how “good” α is.
Two questions have no answer:
• Can we strenghten φpost? How much?
• Can we weaken φpre? How much?



Qualitative safety

A program α is safe for φpost assuming φpre, if φpre→ [α]φpost holds.

φpre

φpre ≡ x > 5

φpre ≡ x > 2 φpost

φpost ≡ x > 4

φpost ≡ x > 7

α x = x + 2

This definition does not provide any info about how “good” α is.
Two questions have no answer:
• Can we strenghten φpost? How much?
• Can we weaken φpre? How much?



Qualitative safety

A program α is safe for φpost assuming φpre, if φpre→ [α]φpost holds.

φpre

φpre ≡ x > 5

φpre ≡ x > 2 φpostφpost ≡ x > 4

φpost ≡ x > 7

α x = x + 2

This definition does not provide any info about how “good” α is.
Two questions have no answer:
• Can we strenghten φpost? How much?
• Can we weaken φpre? How much?



Qualitative safety

A program α is safe for φpost assuming φpre, if φpre→ [α]φpost holds.

φpreφpre ≡ x > 5

φpre ≡ x > 2

φpost

φpost ≡ x > 4

φpost ≡ x > 7

α x = x + 2

This definition does not provide any info about how “good” α is.
Two questions have no answer:
• Can we strenghten φpost? How much?
• Can we weaken φpre? How much?



Forward quantitative safety
Assume a notion of distance between states.

Let φ〈α〉 denote the strongest postcondition after the execution of α in
states satisfying φ.
Then, α is forward u-safe for φpre and φpost, written
F-safeu(α, φpre, φpost), if u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈α〉K}.

φpre φpost

¬φpost

φpre〈α〉

φpost

α

≥u

• u estimates how strong φpre〈α〉 is with respect to φpost.
• u estimates how much φpost can be strengthened w.r.t. φpre〈α〉.
• The bigger u is, the safer the program α is.



Forward quantitative safety
Assume a notion of distance between states.
Let φ〈α〉 denote the strongest postcondition after the execution of α in
states satisfying φ.

Then, α is forward u-safe for φpre and φpost, written
F-safeu(α, φpre, φpost), if u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈α〉K}.

φpre φpost

¬φpost

φpre〈α〉

φpost

α

≥u

• u estimates how strong φpre〈α〉 is with respect to φpost.
• u estimates how much φpost can be strengthened w.r.t. φpre〈α〉.
• The bigger u is, the safer the program α is.



Forward quantitative safety
Assume a notion of distance between states.
Let φ〈α〉 denote the strongest postcondition after the execution of α in
states satisfying φ.
Then, α is forward u-safe for φpre and φpost, written
F-safeu(α, φpre, φpost), if u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈α〉K}.

φpre φpost

¬φpost

φpre〈α〉

φpost

α

≥u

• u estimates how strong φpre〈α〉 is with respect to φpost.
• u estimates how much φpost can be strengthened w.r.t. φpre〈α〉.
• The bigger u is, the safer the program α is.



Forward quantitative safety
Assume a notion of distance between states.
Let φ〈α〉 denote the strongest postcondition after the execution of α in
states satisfying φ.
Then, α is forward u-safe for φpre and φpost, written
F-safeu(α, φpre, φpost), if u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈α〉K}.

φpre φpost

¬φpost

φpre〈α〉

φpost

α

≥u

• u estimates how strong φpre〈α〉 is with respect to φpost.
• u estimates how much φpost can be strengthened w.r.t. φpre〈α〉.
• The bigger u is, the safer the program α is.



Forward robustness (w.r.t. some perturbation)
Assume a program α and a perturbation P s.t. φpre〈α〉 ⊆ φpre〈P(α)〉.
Then, α is forward δ-robust for φpre and φpost, under P , if
• F-safeu(α, φpre, φpost)
• F-safeu1(P(α), φpre, φpost)
• δ = u1/u.

φpre φpost¬φpost

φpre〈P(α)〉

φpre〈α〉

α

P(α)
≥u

≥u1

• δ is the percentage of forward safety that is maintained under P .
• The closer δ is to 1, the more robust the system is.



Forward robustness (w.r.t. some perturbation)
Assume a program α and a perturbation P s.t. φpre〈α〉 ⊆ φpre〈P(α)〉.
Then, α is forward δ-robust for φpre and φpost, under P , if
• F-safeu(α, φpre, φpost)
• F-safeu1(P(α), φpre, φpost)
• δ = u1/u.

φpre φpost¬φpost

φpre〈P(α)〉

φpre〈α〉

α

P(α)
≥u

≥u1

• δ is the percentage of forward safety that is maintained under P .
• The closer δ is to 1, the more robust the system is.



Forward robustness (w.r.t. some perturbation)
Assume a program α and a perturbation P s.t. φpre〈α〉 ⊆ φpre〈P(α)〉.
Then, α is forward δ-robust for φpre and φpost, under P , if
• F-safeu(α, φpre, φpost)
• F-safeu1(P(α), φpre, φpost)
• δ = u1/u.

φpre φpost¬φpost

φpre〈P(α)〉

φpre〈α〉

α

P(α)
≥u

≥u1

• δ is the percentage of forward safety that is maintained under P .
• The closer δ is to 1, the more robust the system is.



An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost



An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost



An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost



An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost



An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost



An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost



An example: Platzer’s autonomous vehicle

AC

static
obstacle

physical distance dp

physical velocity vp

sensed distance ds

sensed velocity vs

System constants:

accel. rate A = 1
braking rate B = 1

time constant ε = 1

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0 // no crash if we break immediately

φpost ≡ dp > 0 // there is no crash!

ψ ≡ 2Bds > ((vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A // acceleration guarded by ψ

brake ≡ a := −B

ctrl ≡ ds := dp ; vs := vp ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrl ; plant)∗]φpost



Vehicle’s safety

Given
• postcondition φpost ≡ dp > 0
• precondition φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0

the autonomous vehicle enjoys forward 2-safety:

F-safe2((ctrl ; plant)∗, φpre, φpost)

Notice that:
• safety is guaranteed since accel is guarded by ψ:

accel ≡ ?ψ ; a := A with
ψ ≡ 2Bds > (vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)
• without +2 there would be no room for perturbations.



Vehicle’s safety

Given
• postcondition φpost ≡ dp > 0
• precondition φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0

the autonomous vehicle enjoys forward 2-safety:

F-safe2((ctrl ; plant)∗, φpre, φpost)

Notice that:
• safety is guaranteed since accel is guarded by ψ:

accel ≡ ?ψ ; a := A with
ψ ≡ 2Bds > (vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)
• without +2 there would be no room for perturbations.



Graphical intuition of vehicle’s safety

Property F-safe2((ctrl ; plant)∗, φpre, φpost) can be represented as:

φS
pre dp > 0φS

pre〈α〉

φpost

¬φpost

α

≥2

where:
• φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0
• φpost ≡ dp > 0
• α = (ctrl ; plant)∗



Bounded attack on velocity sensor

Assume an attack deviating the readings of vs from vp up to 1 m/s:

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0

φpost ≡ dp > 0

ψ ≡ 2Bds > (vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A

brake ≡ a := −B

ctrlA ≡ ds := dp ; vs := ∗; ?vs ≤ vp + 1 ∧ vs ≥ vp − 1 ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrlA ; plant)∗]φpost

• The safety property F-safe2((ctrlA ; plant)∗, φpre, φpost) does not
hold anymore.



Bounded attack on velocity sensor

Assume an attack deviating the readings of vs from vp up to 1 m/s:

φpre ≡ 2Bdp > (vp+2)2 ∧ vp ≥ 0

φpost ≡ dp > 0

ψ ≡ 2Bds > (vs+2)2 + (A + B)(Aε2 + 2(vs+2)ε)

accel ≡ ?ψ ; a := A

brake ≡ a := −B

ctrlA ≡ ds := dp ; vs := ∗; ?vs ≤ vp + 1 ∧ vs ≥ vp − 1 ; (accel ∪ brake)

plant ≡ dp
′ = −vp, vp

′ = a, t′ = 1&(vp ≥ 0 ∧ t ≤ ε)

φsafety ≡ φpre → [(ctrlA ; plant)∗]φpost

• The safety property F-safe2((ctrlA ; plant)∗, φpre, φpost) does not
hold anymore.



Reasoning about robustness
We know that F-safe2((ctrl ; plant)∗, φpre, φpost).
What about the robustness of (ctrl ; plant)∗ under attack P?

According to the definition, (ctrl ; plant)∗ is forward δ-robust for
properties φpre and φpost, under that perturbation P , if
• F-safeu((ctrl ; plant)∗, φpre, φpost),
• F-safeu1(P((ctrl ; plant)∗), φpre, φpost)

• δ = u1/u.

Namely:
• u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈(ctrl ; plant)∗〉K}
• u1 = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈P((ctrl ; plant)∗)〉K}

Computing these inf may be difficult, in particular for u1, since P
replaces a real with an element in a set of reals.
Possible solution: provide a notion of simulation distance between
programs allowing us to give an upper bound to the loss of safety
u− u1.



Reasoning about robustness
We know that F-safe2((ctrl ; plant)∗, φpre, φpost).
What about the robustness of (ctrl ; plant)∗ under attack P?
According to the definition, (ctrl ; plant)∗ is forward δ-robust for
properties φpre and φpost, under that perturbation P , if
• F-safeu((ctrl ; plant)∗, φpre, φpost),
• F-safeu1(P((ctrl ; plant)∗), φpre, φpost)

• δ = u1/u.

Namely:
• u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈(ctrl ; plant)∗〉K}
• u1 = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈P((ctrl ; plant)∗)〉K}

Computing these inf may be difficult, in particular for u1, since P
replaces a real with an element in a set of reals.
Possible solution: provide a notion of simulation distance between
programs allowing us to give an upper bound to the loss of safety
u− u1.



Reasoning about robustness
We know that F-safe2((ctrl ; plant)∗, φpre, φpost).
What about the robustness of (ctrl ; plant)∗ under attack P?
According to the definition, (ctrl ; plant)∗ is forward δ-robust for
properties φpre and φpost, under that perturbation P , if
• F-safeu((ctrl ; plant)∗, φpre, φpost),
• F-safeu1(P((ctrl ; plant)∗), φpre, φpost)

• δ = u1/u.

Namely:
• u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈(ctrl ; plant)∗〉K}
• u1 = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈P((ctrl ; plant)∗)〉K}

Computing these inf may be difficult, in particular for u1, since P
replaces a real with an element in a set of reals.
Possible solution: provide a notion of simulation distance between
programs allowing us to give an upper bound to the loss of safety
u− u1.



Reasoning about robustness
We know that F-safe2((ctrl ; plant)∗, φpre, φpost).
What about the robustness of (ctrl ; plant)∗ under attack P?
According to the definition, (ctrl ; plant)∗ is forward δ-robust for
properties φpre and φpost, under that perturbation P , if
• F-safeu((ctrl ; plant)∗, φpre, φpost),
• F-safeu1(P((ctrl ; plant)∗), φpre, φpost)

• δ = u1/u.

Namely:
• u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈(ctrl ; plant)∗〉K}
• u1 = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈P((ctrl ; plant)∗)〉K}

Computing these inf may be difficult, in particular for u1, since P
replaces a real with an element in a set of reals.

Possible solution: provide a notion of simulation distance between
programs allowing us to give an upper bound to the loss of safety
u− u1.



Reasoning about robustness
We know that F-safe2((ctrl ; plant)∗, φpre, φpost).
What about the robustness of (ctrl ; plant)∗ under attack P?
According to the definition, (ctrl ; plant)∗ is forward δ-robust for
properties φpre and φpost, under that perturbation P , if
• F-safeu((ctrl ; plant)∗, φpre, φpost),
• F-safeu1(P((ctrl ; plant)∗), φpre, φpost)

• δ = u1/u.

Namely:
• u = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈(ctrl ; plant)∗〉K}
• u1 = inf{Dist(ν, JφpostK) | ν ∈ Jφpre〈P((ctrl ; plant)∗)〉K}

Computing these inf may be difficult, in particular for u1, since P
replaces a real with an element in a set of reals.
Possible solution: provide a notion of simulation distance between
programs allowing us to give an upper bound to the loss of safety
u− u1.



Forward simulation distance
Assume a set of variablesH and a distance over states ρH.

E.g., for states ω and ν: ρH(ω, ν) =
√∑

x∈H (ω(x)− ν(x))2.

Definition: Two programs α and β are at forward simulation distance d
w.r.t. a formula φpre andH, written

β vF
φpre,H,d α

if ∀ν1 ∈ Jφpre〈β〉K ∃ν2 ∈ Jφpre〈α〉K such that ρH(ν1, ν2) ≤ d.
Example, for β = P(α):

φpre φpre〈α〉

φpre〈P(α)〉

α

P(α)

≤d



Forward simulation distance
Assume a set of variablesH and a distance over states ρH.

E.g., for states ω and ν: ρH(ω, ν) =
√∑

x∈H (ω(x)− ν(x))2.
Definition: Two programs α and β are at forward simulation distance d
w.r.t. a formula φpre andH, written

β vF
φpre,H,d α

if ∀ν1 ∈ Jφpre〈β〉K ∃ν2 ∈ Jφpre〈α〉K such that ρH(ν1, ν2) ≤ d.

Example, for β = P(α):

φpre φpre〈α〉

φpre〈P(α)〉

α

P(α)

≤d



Forward simulation distance
Assume a set of variablesH and a distance over states ρH.

E.g., for states ω and ν: ρH(ω, ν) =
√∑

x∈H (ω(x)− ν(x))2.
Definition: Two programs α and β are at forward simulation distance d
w.r.t. a formula φpre andH, written

β vF
φpre,H,d α

if ∀ν1 ∈ Jφpre〈β〉K ∃ν2 ∈ Jφpre〈α〉K such that ρH(ν1, ν2) ≤ d.
Example, for β = P(α):

φpre φpre〈α〉

φpre〈P(α)〉

α

P(α)

≤d



Upper bound to loss of safety
Theorem. Assume a hybrid program α and formulas φpre and φpost. If
• F-safeu(α, φpre, φpost) and
• P(α) vF

φpre,Var(φpost),d α

then: F-safeγ(P(α), φpre, φpost), with γ ≥ u− d

φpre φpre〈α〉

φpre〈P(α)〉

φpost

¬φpost

β

α = P(β)

≤ d

≥ u ≥u−d

In words, d is an upper bound of the loss of forward safety.
Notice that α is γ-robust for γ = (u− d)/u.



Upper bound to loss of safety
Theorem. Assume a hybrid program α and formulas φpre and φpost. If
• F-safeu(α, φpre, φpost) and
• P(α) vF

φpre,Var(φpost),d α

then: F-safeγ(P(α), φpre, φpost), with γ ≥ u− d

φpre φpre〈α〉

φpre〈P(α)〉

φpost

¬φpost

β

α = P(β)

≤ d

≥ u ≥u−d

In words, d is an upper bound of the loss of forward safety.
Notice that α is γ-robust for γ = (u− d)/u.



Applying the theorem: An attempt

• By hand, we have computed

P((ctrl ; plant)∗) vF
φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5

• Now, from
F-safe2((ctrl ; plant)∗, φpre, φpost)

and

P((ctrl ; plant)∗) vF
φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5

we can conclude that:

F-safeγ(P((ctrl ; plant)∗), φpre, φpost) with γ ≥ 0.5



Open problem: How to compute forward simulation

Attempt 1: Encoding simulation distances with formulas
• Forward simulation distance is computed on states satisfying
φpre〈α〉 and φpre〈P(α)〉 and is encodable in a forall exists manner.

• More precisely:

(φpre〈P(α)〉 ∧ (y = x))→ ∃x. (φpre〈α〉 ∧ (ρH(y, x) ≤ d))

with x the variable in the formulae and y the fresh variables,
implicely quantified universally, used to store the value of x.
• Unfortunately, this formula cannot be verified by using KeYmaera

X.



Open problem: How to compute forward simulation

Attempt 1: Encoding simulation distances with formulas
• Forward simulation distance is computed on states satisfying
φpre〈α〉 and φpre〈P(α)〉 and is encodable in a forall exists manner.
• More precisely:

(φpre〈P(α)〉 ∧ (y = x))→ ∃x. (φpre〈α〉 ∧ (ρH(y, x) ≤ d))

with x the variable in the formulae and y the fresh variables,
implicely quantified universally, used to store the value of x.

• Unfortunately, this formula cannot be verified by using KeYmaera
X.



Open problem: How to compute forward simulation

Attempt 1: Encoding simulation distances with formulas
• Forward simulation distance is computed on states satisfying
φpre〈α〉 and φpre〈P(α)〉 and is encodable in a forall exists manner.
• More precisely:

(φpre〈P(α)〉 ∧ (y = x))→ ∃x. (φpre〈α〉 ∧ (ρH(y, x) ≤ d))

with x the variable in the formulae and y the fresh variables,
implicely quantified universally, used to store the value of x.
• Unfortunately, this formula cannot be verified by using KeYmaera

X.



Open problem: How to compute forward simulation-II

Attempt 1: Encoding simulation distances with formulas-II
• In our example, working by hand works:
• Having φpre ≡ 2Bdp > (vp + 2)2 ∧ vp ≥ 0

we have
φpre〈P(α)〉 ≡ 2Bdp > (vp + 1)2 ∧ vp ≥ 0
by using KeYmaera X we have proved that

2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧ dp = fdp →

∃dp.(2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧
√

(dp − fdp)2 ≤ 1.5))

• From F-safe2((ctrl ; plant)∗, φpre, φpost) and
P((ctrl ; plant)∗) vF

φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5 we get
F-safeγ(P((ctrl ; plant)∗), φpre, φpost) with γ ≥ 0.5.



Open problem: How to compute forward simulation-II

Attempt 1: Encoding simulation distances with formulas-II
• In our example, working by hand works:
• Having φpre ≡ 2Bdp > (vp + 2)2 ∧ vp ≥ 0

we have
φpre〈P(α)〉 ≡ 2Bdp > (vp + 1)2 ∧ vp ≥ 0
by using KeYmaera X we have proved that

2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧ dp = fdp →

∃dp.(2Bdp > (vp + 2)2 ∧ vp ≥ 0 ∧
√

(dp − fdp)2 ≤ 1.5))

• From F-safe2((ctrl ; plant)∗, φpre, φpost) and
P((ctrl ; plant)∗) vF

φpre,{dp},d (ctrl ; plant)∗ with d ≤ 1.5 we get
F-safeγ(P((ctrl ; plant)∗), φpre, φpost) with γ ≥ 0.5.



Open problem: How to compute forward simulation-III

Attempt 2: Encoding simulation distances with modalities
• By using modalities we can directly encode program executions:

(φpre ∧ 〈P(α)〉(y = x))→
“for each state reachable from φpre by P(α)‘’

(∃x. φpre ∧ 〈α〉(ρH(y, x) ≤ d))

“there is an execution of α to a state at distance bounded by d.”

• This is admitted by KeYmaera X syntax, but, in general, we have
no answer
• What we need is a proof system allowing us to give some upper

bound to the simulation distance. We are on this but, presently,
we have no solution.



Open problem: How to compute forward simulation-III

Attempt 2: Encoding simulation distances with modalities
• By using modalities we can directly encode program executions:

(φpre ∧ 〈P(α)〉(y = x))→
“for each state reachable from φpre by P(α)‘’

(∃x. φpre ∧ 〈α〉(ρH(y, x) ≤ d))

“there is an execution of α to a state at distance bounded by d.”

• This is admitted by KeYmaera X syntax, but, in general, we have
no answer

• What we need is a proof system allowing us to give some upper
bound to the simulation distance. We are on this but, presently,
we have no solution.



Open problem: How to compute forward simulation-III

Attempt 2: Encoding simulation distances with modalities
• By using modalities we can directly encode program executions:

(φpre ∧ 〈P(α)〉(y = x))→
“for each state reachable from φpre by P(α)‘’

(∃x. φpre ∧ 〈α〉(ρH(y, x) ≤ d))

“there is an execution of α to a state at distance bounded by d.”

• This is admitted by KeYmaera X syntax, but, in general, we have
no answer
• What we need is a proof system allowing us to give some upper

bound to the simulation distance. We are on this but, presently,
we have no solution.



Open problems - a more general view

• Developing a proof system for verifying properies encoding the
simulation distance between programs.
• Dealing with more sophisticated sensor attacks, e.g. periodic

attacks with several attack windows characterised by different
tamperings.
• Dealing with different attacks.


