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Scientific questions to be addressed and hypothesis

® Q1I: How the safety of a CPS can be quantified in terms of
preconditions/postconditions?

® Q2: How the loss of safety can be quantified in case of
perturbations ?
Al: We propose the notions of

» quantitative forward safety, and
» quantitative backward safety (not discussed in the talk).

A2: We propose the notions of

» forward robustness and

» backward robustness (not discussed in the talk).
We work with:

» Platzer’s Hybrid Programs formalism,
» Platzer’s differential dynamic logic specification language

Perturbations will be attacks on sensors.
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Forward quantitative safety

Assume a notion of distance between states.

Let ¢(«v) denote the strongest postcondition after the execution of « in
states satisfying ¢.

Then, « is forward u-safe for ¢, and ¢, Written

F-SAFE, (v, Opre, Ppost), If U = Inf{Dist(v, [Dpost]) | ¥ € [pre ()]}

® u estimates how strong ¢ () is with respect to ¢
® u estimates how much ¢, can be strengthened w.r.t. ¢,. ().
® The bigger u is, the safer the program « is.
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Forward robustness (w.r.t. some perturbation)
Assume a program « and a perturbation P s.t. ¢ () € @pre(P()).
Then, « is forward d-robust for ¢, and ¢, under P, if

® F-sAFg, (o, Dpre, qﬁpost)

® F-SAFE, (P(@), Opres Ppost)

® J is the percentage of forward safety that is maintained under P.
e The closer 0 is to 1, the more robust the system is.
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An example: Platzer’s autonomous vehicle

sensed distance d. J
! . System constants:

accel. rate A=1

sensed velocity Us braking rate B — 1

time constant ¢ =1

physical velocity U

physical distance d),

Ppre = 2Bd), > (Up+2)2 AUy, > 0 no crash if we break immediately
Gpost = d, > O there is no crash!
¥ = 2Bd; > ((vs+2)* + (A + B)(Ae* + 2(us+2)e)
accel = 71 ; a := A | acceleration guarded by 1
brake = a := —B
ctrl =d; :=d,; vs := v, ; (accel U brake)
plant =d,’ = —vp, v, =a,t' =1&(v, > 0Nt <€)

Duafiry = Dpre — [(ctrl; plant) ] s
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Vehicle’s safety

Given

® postcondition ¢y = d, > 0

* precondition ¢, = 2Bd, > (v,+2)* Au, > 0
the autonomous vehicle enjoys forward 2-safety:

F-saFe, ((ctrl; plant)”, dpre, Gpost)

Notice that:

e safety is guaranteed since accel is guarded by ¢:
accel = 71 a := Awith
Y = 2Bds > (vs+2)% + (A + B)(Ae® + 2(vs+2)e)
¢ without +2 there would be no room for perturbations.



Graphical intuition of vehicle’s safety

Property F-SAFE ((ctrl; plant)*, ¢pre, Opost) €an be represented as:

where:
® Ppre = 2Bdy, > (Upy+2)* Aup >0
® Opost =dp >0
e o = (ctrl; plant)*
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Bounded attack on velocity sensor

Assume an attack deviating the readings of v from v, up to 1 m/s:

Gpre = 2Bdy, > (v,+2)* Aup, >0
Ppost = dp >0
Y = 2Bd; > (us+2)* + (A + B)(Ae® + 2(vs+2)e)

accel =7 a:=A
brake =a := —B

ctrly = ds :=dy; vs :=*; s <vp+ 1 Aus > v, — 1; (accel U brake)
plant =d,’ = —vp, v, =a,' =1&(v, > 0Nt <€)
Dsafety = Ppre — [(Ctrla; plant)*|dpost

* The safety property F-SAFE, ((ctrly ; plant)*, dpre, dpost) does not
hold anymore.
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Reasoning about robustness

We know that F-sAFE, ((ctrl; plant)*, dpre, Gpost)-
What about the robustness of (ctrl; plant)* under attack P?
According to the definition, (ctrl; plant)* is forward J-robust for
properties ¢, and ¢, under that perturbation P, if

® F-sarE,((ctrl; plant)*, dpre, Gpost)s

® F-saFE,, (P((ctrl; plant)*), dpre, Gpost)

® j=u/u.
Namely:

o u = inf{Dist(v, [Opos]) | v € [dpre((ctrl; plant)*)]}

® uy = inf{Dist(v, [dpost]) | ¥ € [Opre(P((ctrl; plant)*))]}
Computing these inf may be difficult, in particular for u;, since P
replaces a real with an element in a set of reals.
Possible solution: provide a notion of simulation distance between

programs allowing us to give an upper bound to the loss of safety
u—uj.
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Forward simulation distance
Assume a set of variables  and a distance over states p4.

E.g., for states w and v: p;(w, V) \/erH —v(x))%.

Definition: Two programs « and /3 are at forward snmulation distance d
w.r.t. a formula ¢, and H, written

e F
“‘d EOpre H,d o

if Vin € [dpre(B)] T1a € [dpre ()] such that py (11, 12) < d.
Example, for 5 = P(«):
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Upper bound to loss of safety
Theorem. Assume a hybrid program « and formulas ¢, and ¢pes. If
® F-SAFE, (0, Qpre, Dpost) and
F
* Pla) e VAR(G0s).d
then: F-SAFE. (P (), Gpre, Dpost ), With v > u —d

In words, d is an upper bound of the loss of forward safety.
Notice that «v is y-robust for o = (4~ d) /..,



Applying the theorem: An attempt

® By hand, we have computed

P((ctrl; plant)*) C ¢, {d}.a (ctrl; plant)” withd < 1.5

e Now, from
F-saFE, ((ctrl; plant)*, ¢pre, Ppost)

and
P((ctrl; plant)*) C ¢, {d}.a (ctrl; plant)” withd < 1.5
we can conclude that:

F-sare, (P((ctrl; plant)™), dpre, Gpost) With v > 0.5
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Attempt 1: Encoding simulation distances with formulas

e Forward simulation distance is computed on states satisfying
Opre(v) and ¢ (P(r)) and is encodable in a forall exists manner.
® More precisely:

(Gpre(P () A (7 = X)) = K. (dpre() A (pi(7,X) < d))

with X the variable in the formulae and y the fresh variables,
implicely quantified universally, used to store the value of x.

e Unfortunately, this formula cannot be verified by using KeYmaera
X.
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Attempt 1: Encoding simulation distances with formulas-Il
® In our example, working by hand works:
* Having ¢p. = 2Bd, > (v, +2)* Au, > 0
we have
Gpre(P(c)) = 2Bd, > (v, + 1)> Av, >0
by using KeYmaera X we have proved that

2Bd, > (v, +2)* Avp > OAd, = fd, —

3d,.(2Bd, > (v +2)> A, > 0 A 4/ (d, — fd,)? < 1.5))

® From F-sAFE; ((ctrl; plant)*, dpre, dpost) and

P((ctrl; plant)*) Egm,{dp},d (ctrl; plant)* with d < 1.5 we get

F-sare., (P((ctrl; plant)*), dpre, Gpost) With v > 0.5.
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Open problem: How to compute forward simulation-IlI

Attempt 2: Encoding simulation distances with modalities

¢ By using modalities we can directly encode program executions:

(pre A (P()) () =%)) =
“for each state reachable from ¢, by P(a)®
(3% Bpre A () (pu(,X) < d))

“there is an execution of « to a state at distance bounded by d.”

e This is admitted by KeYmaera X syntax, but, in general, we have
no answer

® What we need is a proof system allowing us to give some upper

bound to the simulation distance. We are on this but, presently,
we have no solution.



Open problems - a more general view

¢ Developing a proof system for verifying properies encoding the
simulation distance between programs.

e Dealing with more sophisticated sensor attacks, e.g. periodic
attacks with several attack windows characterised by different
tamperings.

¢ Dealing with different attacks.



