QUANTITATIVE ROBUSTNESS ANALYSIS OF SENSOR ATTACKS ON CYBER-PHYSICAL SYSTEMS

Stephen Chong¹

Ruggero Lanotte²

Massimo Merro³

Simone Tini²

Jian Xiang¹

¹Harvard University Boston, MA ²University of Insubria Como, IT ³University of Verona Verona, IT

Berinoro June 26, 2023

• Q1: How the safety of a CPS can be quantified in terms of preconditions/postconditions?

- Q1: How the safety of a CPS can be quantified in terms of preconditions/postconditions?
- Q2: How the loss of safety can be quantified in case of perturbations ?

- Q1: How the safety of a CPS can be quantified in terms of preconditions/postconditions?
- Q2: How the loss of safety can be quantified in case of perturbations ?
- A1: We propose the notions of
 - quantitative forward safety, and
 - quantitative backward safety (not discussed in the talk).

- Q1: How the safety of a CPS can be quantified in terms of preconditions/postconditions?
- Q2: How the loss of safety can be quantified in case of perturbations ?
- A1: We propose the notions of
 - quantitative forward safety, and
 - quantitative backward safety (not discussed in the talk).
- A2: We propose the notions of
 - forward robustness and
 - backward robustness (not discussed in the talk).

- Q1: How the safety of a CPS can be quantified in terms of preconditions/postconditions?
- Q2: How the loss of safety can be quantified in case of perturbations ?
- A1: We propose the notions of
 - quantitative forward safety, and
 - quantitative backward safety (not discussed in the talk).
- A2: We propose the notions of
 - forward robustness and
 - backward robustness (not discussed in the talk).
- We work with:
 - Platzer's Hybrid Programs formalism,
 - Platzer's differential dynamic logic specification language

- Q1: How the safety of a CPS can be quantified in terms of preconditions/postconditions?
- Q2: How the loss of safety can be quantified in case of perturbations ?
- A1: We propose the notions of
 - quantitative forward safety, and
 - quantitative backward safety (not discussed in the talk).
- A2: We propose the notions of
 - forward robustness and
 - backward robustness (not discussed in the talk).
- We work with:
 - Platzer's Hybrid Programs formalism,
 - Platzer's differential dynamic logic specification language
- Perturbations will be attacks on sensors.

A program α is safe for ϕ_{post} assuming ϕ_{pre} , if $\phi_{pre} \rightarrow [\alpha] \phi_{post}$ holds.

A program α is safe for ϕ_{post} assuming ϕ_{pre} , if $\phi_{pre} \rightarrow [\alpha]\phi_{post}$ holds.

This definition does not provide any info about how "good" α is.

A program α is safe for ϕ_{post} assuming ϕ_{pre} , if $\phi_{pre} \rightarrow [\alpha]\phi_{post}$ holds.

- Can we strenghten ϕ_{post} ? How much?
- Can we weaken ϕ_{pre} ? How much?

A program α is safe for ϕ_{post} assuming ϕ_{pre} , if $\phi_{pre} \rightarrow [\alpha]\phi_{post}$ holds.

- Can we strenghten ϕ_{post} ? How much?
- Can we weaken ϕ_{pre} ? How much?

A program α is safe for ϕ_{post} assuming ϕ_{pre} , if $\phi_{pre} \rightarrow [\alpha]\phi_{post}$ holds.

- Can we strenghten ϕ_{post} ? How much?
- Can we weaken ϕ_{pre} ? How much?

A program α is safe for ϕ_{post} assuming ϕ_{pre} , if $\phi_{\text{pre}} \rightarrow [\alpha] \phi_{\text{post}}$ holds.

 $\alpha \quad x = x + 2$ $\phi_{pre} \equiv x > 2$ $\phi_{post} \equiv x > 4$

- Can we strenghten ϕ_{post} ? How much?
- Can we weaken ϕ_{pre} ? How much?

Assume a notion of *distance* between states.

Assume a notion of *distance* between states.

Let $\phi \langle \alpha \rangle$ denote the *strongest postcondition* after the execution of α in states satisfying ϕ .

Assume a notion of *distance* between states.

Let $\phi \langle \alpha \rangle$ denote the strongest postcondition after the execution of α in states satisfying ϕ .

Then, α is forward *u*-safe for ϕ_{pre} and ϕ_{post} , written

 $\mathsf{F}\text{-}\mathsf{SAFE}_u(\alpha,\phi_{\mathsf{pre}},\phi_{\mathsf{post}})\text{, if } u = \inf\{\mathsf{Dist}(\nu,\llbracket\phi_{\mathsf{post}}\rrbracket) \mid \nu \in \llbracket\phi_{\mathsf{pre}}\langle\alpha\rangle\rrbracket\}.$

Assume a notion of *distance* between states.

Let $\phi \langle \alpha \rangle$ denote the strongest postcondition after the execution of α in states satisfying ϕ .

Then, α is forward *u*-safe for ϕ_{pre} and ϕ_{post} , written

 $\mathsf{F}\text{-}\mathsf{SAFE}_u(\alpha,\phi_{\mathsf{pre}},\phi_{\mathsf{post}})\text{, if } u = \inf\{\mathsf{Dist}(\nu,\llbracket\phi_{\mathsf{post}}\rrbracket) \mid \nu \in \llbracket\phi_{\mathsf{pre}}\langle\alpha\rangle\rrbracket\}.$

- *u* estimates how strong $\phi_{pre}\langle \alpha \rangle$ is with respect to ϕ_{post} .
- u estimates how much $\phi_{\it post}$ can be strengthened w.r.t. $\phi_{\it pre}\langle lpha
 angle.$
- The bigger u is, the safer the program α is.

Forward robustness (w.r.t. some perturbation)

Assume a program α and a perturbation \mathcal{P} s.t. $\phi_{pre} \langle \alpha \rangle \subseteq \phi_{pre} \langle \mathcal{P}(\alpha) \rangle$. Then, α is forward δ -robust for ϕ_{pre} and ϕ_{post} , under \mathcal{P} , if

- F-SAFE_u $(\alpha, \phi_{pre}, \phi_{post})$
- $\overline{\text{F-SAFE}_{u_1}}(\mathcal{P}(\alpha), \overline{\phi_{\text{pre}}, \phi_{\text{post}}})$
- $\delta = u_1/u$.

Forward robustness (w.r.t. some perturbation)

Assume a program α and a perturbation \mathcal{P} s.t. $\phi_{pre} \langle \alpha \rangle \subseteq \phi_{pre} \langle \mathcal{P}(\alpha) \rangle$. Then, α is forward δ -robust for ϕ_{pre} and ϕ_{post} , under \mathcal{P} , if

- F-SAFE_u($\alpha, \phi_{pre}, \phi_{post}$)
- F-SAFE_{*u*1}($\mathcal{P}(\alpha), \phi_{\text{pre}}, \phi_{\text{post}}$)
- $\delta = u_1/u$.

Forward robustness (w.r.t. some perturbation)

Assume a program α and a perturbation \mathcal{P} s.t. $\phi_{pre} \langle \alpha \rangle \subseteq \phi_{pre} \langle \mathcal{P}(\alpha) \rangle$. Then, α is forward δ -robust for ϕ_{pre} and ϕ_{post} , under \mathcal{P} , if

- F-SAFE_u $(\alpha, \phi_{pre}, \phi_{post})$
- $\overline{\text{F-SAFE}_{u_1}}(\mathcal{P}(\alpha), \overline{\phi_{\text{pre}}, \phi_{\text{post}}})$
- $\delta = u_1/u$.

- δ is the percentage of forward safety that is maintained under \mathcal{P} .
- The closer δ is to 1, the more robust the system is.

 $\phi_{pre} \equiv 2Bd_p > (v_p+2)^2 \land v_p \ge 0 \parallel$ no crash if we break immediately $\phi_{post} \equiv d_p > 0 \parallel$ there is no crash!

 $\phi_{pre} \equiv 2Bd_p > (v_p+2)^2 \land v_p \ge 0 \parallel$ no crash if we break immediately $\phi_{post} \equiv d_p > 0 \parallel$ there is no crash!

 $\phi_{pre} \equiv 2Bd_p > (v_p+2)^2 \land v_p \ge 0 \parallel$ no crash if we break immediately $\phi_{post} \equiv d_p > 0 \parallel$ there is no crash!

$$ctrl \equiv d_s := d_p$$
; $v_s := v_p$; (accel \cup brake)

 $\phi_{pre} \equiv 2Bd_p > (v_p+2)^2 \land v_p \ge 0 \parallel$ no crash if we break immediately $\phi_{post} \equiv d_p > 0 \parallel$ there is no crash!

 $brake \equiv a := -B$ $ctrl \equiv d_s := d_p; v_s := v_p; (accel \cup brake)$

$$\begin{split} \phi_{pre} &\equiv 2Bd_p > (v_p + 2)^2 \land v_p \geq 0 \ || \text{ no crash if we break immediately} \\ \phi_{post} &\equiv d_p > 0 \ || \text{ there is no crash!} \\ \psi &\equiv 2Bd_s > ((v_s + 2)^2 + (A + B)(A\epsilon^2 + 2(v_s + 2)\epsilon) \\ accel &\equiv ?\psi ; \ a := A \ || \text{ acceleration guarded by } \psi \\ brake &\equiv a := -B \\ ctrl &\equiv d_s := d_p ; \ v_s := v_p ; (accel \cup brake) \end{split}$$

$$\begin{split} \phi_{pre} &\equiv 2Bd_p > (v_p + 2)^2 \land v_p \ge 0 \ || \text{ no crash if we break immediately} \\ \phi_{post} &\equiv d_p > 0 \ || \text{ there is no crash!} \\ \psi &\equiv 2Bd_s > ((v_s + 2)^2 + (A + B)(A\epsilon^2 + 2(v_s + 2)\epsilon) \\ accel &\equiv ?\psi ; a := A \ || \text{ acceleration guarded by } \psi \\ brake &\equiv a := -B \\ ctrl &\equiv d_s := d_p ; v_s := v_p ; (accel \cup brake) \\ plant &\equiv d_p' = -v_p, v_p' = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon) \\ \phi_{safety} &\equiv \phi_{pre} \rightarrow [(ctrl; plant)^*]\phi_{post} \end{split}$$

Vehicle's safety

Given

- postcondition $\phi_{post} \equiv d_p > 0$
- precondition $\phi_{pre} \equiv 2Bd_p > (v_p + 2)^2 \land v_p \ge 0$

the autonomous vehicle enjoys forward 2-safety:

 $F-SAFE_2((ctrl; plant)^*, \phi_{pre}, \phi_{post})$

Vehicle's safety

Given

- postcondition $\phi_{post} \equiv d_p > 0$
- precondition $\phi_{pre} \equiv 2Bd_p > (v_p + 2)^2 \land v_p \ge 0$

the autonomous vehicle enjoys forward 2-safety:

F-SAFE₂((ctrl; plant)*, ϕ_{pre} , ϕ_{post})

Notice that:

• safety is guaranteed since *accel* is guarded by ψ : *accel* $\equiv ?\psi$; *a* := A with $\psi \equiv 2Bd_s > (v_s+2)^2 + (A+B)(A\epsilon^2 + 2(v_s+2)\epsilon)$

• without +2 there would be no room for perturbations.

Graphical intuition of vehicle's safety

Property F-SAFE₂((*ctrl*; *plant*)^{*}, ϕ_{pre} , ϕ_{post}) can be represented as:

where:

- $\phi_{pre} \equiv 2Bd_p > (v_p + 2)^2 \land v_p \ge 0$
- $\phi_{post} \equiv d_p > 0$
- $\alpha = (\operatorname{ctrl}; \operatorname{plant})^*$

Bounded attack on velocity sensor

Assume an attack deviating the readings of v_s from v_p up to 1 m/s:

 $\phi_{pre} \equiv 2Bd_p > (v_p + 2)^2 \wedge v_p > 0$ $\phi_{\text{nost}} \equiv d_n > 0$ $\psi \equiv 2Bd_{\rm s} > (v_{\rm s}+2)^2 + (A+B)(A\epsilon^2 + 2(v_{\rm s}+2)\epsilon)$ accel $\equiv ?\psi$: a := A brake $\equiv a := -B$ $\mathsf{ctrl}_A \equiv \mathsf{d}_s := \mathsf{d}_p$; $v_s := *$; $v_s \leq v_p + 1 \land v_s \geq v_p - 1$; (accel \cup brake) $plant \equiv d_p' = -v_p, v_p' = a, t' = 1 \& (v_p \ge 0 \land t \le \epsilon)$ $\phi_{\text{safety}} \equiv \phi_{\text{pre}} \rightarrow [(\text{ctrl}_{A}; \text{ plant})^*]\phi_{\text{post}}$

Bounded attack on velocity sensor

Assume an attack deviating the readings of v_s from v_p up to 1 m/s:

 $\phi_{pre} \equiv 2Bd_p > (v_p + 2)^2 \wedge v_p > 0$ $\phi_{\text{nost}} \equiv d_n > 0$ $\psi \equiv 2Bd_{\rm s} > (v_{\rm s}+2)^2 + (A+B)(A\epsilon^2 + 2(v_{\rm s}+2)\epsilon)$ accel $\equiv ?\psi$: a := A brake $\equiv a := -B$ $\mathsf{ctrl}_A \equiv \mathsf{d}_s := \mathsf{d}_p$; $v_s := *$; $v_s \leq v_p + 1 \land v_s \geq v_p - 1$; (accel \cup brake) $plant \equiv d_{n}' = -v_{n}, v_{n}' = a, t' = 1 \& (v_{n} > 0 \land t < \epsilon)$ $\phi_{\text{safety}} \equiv \phi_{\text{pre}} \rightarrow [(\text{ctrl}_{A}; \text{ plant})^*]\phi_{\text{post}}$

• The safety property F-SAFE₂(($ctrl_A$; plant)*, ϕ_{pre} , ϕ_{post}) does not hold anymore.

We know that F-SAFE₂((*ctrl*; *plant*)^{*}, ϕ_{pre} , ϕ_{post}). What about the robustness of (*ctrl*; *plant*)^{*} under attack \mathcal{P} ?

We know that F-SAFE₂((ctrl; plant)^{*}, ϕ_{pre} , ϕ_{post}). What about the robustness of (ctrl; plant)^{*} under attack \mathcal{P} ? According to the definition, (ctrl; plant)^{*} is forward δ -robust for properties ϕ_{pre} and ϕ_{post} , under that perturbation \mathcal{P} , if

- F-SAFE_u((ctrl; plant)*, ϕ_{pre} , ϕ_{post}),
- $\mathsf{F}\text{-}\mathsf{SAFE}_{u_1}(\mathcal{P}((\mathsf{ctrl}\,;\,\mathsf{plant})^*),\phi_{\mathsf{pre}},\phi_{\mathsf{post}})$
- $\delta = u_1/u$.

We know that F-SAFE₂((*ctrl*; *plant*)^{*}, ϕ_{pre} , ϕ_{post}). What about the robustness of (*ctrl*; *plant*)^{*} under attack \mathcal{P} ? According to the definition, (*ctrl*; *plant*)^{*} is forward δ -robust for properties ϕ_{pre} and ϕ_{post} , under that perturbation \mathcal{P} , if

- F-SAFE_u((ctrl; plant)*, $\phi_{\text{pre}}, \phi_{\text{post}}$),
- F -SAFE_{u_1}($\mathcal{P}((\mathsf{ctrl}; \mathsf{plant})^*), \phi_{\mathsf{pre}}, \phi_{\mathsf{post}})$
- $\delta = u_1/u$.

Namely:

- $u = \inf\{\text{Dist}(\nu, \llbracket \phi_{\text{post}} \rrbracket) \mid \nu \in \llbracket \phi_{\text{pre}} \langle (\text{ctrl}; \text{plant})^* \rangle \rrbracket\}$
- $u_1 = \inf\{\text{Dist}(\nu, \llbracket \phi_{\text{post}} \rrbracket) \mid \nu \in \llbracket \phi_{\text{pre}} \langle \mathcal{P}((\text{ctrl}; \text{plant})^*) \rangle \rrbracket\}$

We know that F-SAFE₂((*ctrl*; *plant*)^{*}, ϕ_{pre} , ϕ_{post}). What about the robustness of (*ctrl*; *plant*)^{*} under attack \mathcal{P} ? According to the definition, (*ctrl*; *plant*)^{*} is forward δ -robust for properties ϕ_{pre} and ϕ_{post} , under that perturbation \mathcal{P} , if

- F-SAFE_u((ctrl; plant)^{*}, ϕ_{pre} , ϕ_{post}),
- F-SAFE_{u_1}($\mathcal{P}((ctrl; plant)^*), \phi_{pre}, \phi_{post}$)
- $\delta = u_1/u$.

Namely:

• $u = \inf\{\text{Dist}(\nu, \llbracket \phi_{\text{post}} \rrbracket) \mid \nu \in \llbracket \phi_{\text{pre}} \langle (\text{ctrl}; \text{plant})^* \rangle \rrbracket\}$

• $u_1 = \inf\{\text{Dist}(\nu, \llbracket \phi_{\text{post}} \rrbracket) \mid \nu \in \llbracket \phi_{\text{pre}} \langle \mathcal{P}((\text{ctrl}; \text{plant})^*) \rangle \rrbracket\}$

Computing these inf may be difficult, in particular for u_1 , since \mathcal{P} replaces a real with an element in a set of reals.

We know that F-SAFE₂((*ctrl*; *plant*)^{*}, ϕ_{pre} , ϕ_{post}). What about the robustness of (*ctrl*; *plant*)^{*} under attack \mathcal{P} ? According to the definition, (*ctrl*; *plant*)^{*} is forward δ -robust for properties ϕ_{pre} and ϕ_{post} , under that perturbation \mathcal{P} , if

- F-SAFE_u((ctrl; plant)^{*}, ϕ_{pre} , ϕ_{post}),
- F-SAFE_{u_1}($\mathcal{P}((ctrl; plant)^*), \phi_{pre}, \phi_{post}$)
- $\delta = u_1/u$.

Namely:

• $u = \inf\{\text{Dist}(\nu, \llbracket \phi_{\text{post}} \rrbracket) \mid \nu \in \llbracket \phi_{\text{pre}} \langle (\text{ctrl}; \text{plant})^* \rangle \rrbracket\}$

• $u_1 = \inf\{\text{Dist}(\nu, \llbracket \phi_{\text{post}} \rrbracket) \mid \nu \in \llbracket \phi_{\text{pre}} \langle \mathcal{P}((\text{ctrl}; \text{plant})^*) \rangle \rrbracket\}$

Computing these inf may be difficult, in particular for u_1 , since \mathcal{P} replaces a real with an element in a set of reals. Possible solution: provide a notion of simulation distance between programs allowing us to give an upper bound to the loss of safety $u - u_1$.

Forward simulation distance

Assume a set of variables \mathcal{H} and a distance over states $\rho_{\mathcal{H}}$.

E.g., for states
$$\omega$$
 and u : $ho_{\scriptscriptstyle\mathcal{H}}(\omega,
u) = \sqrt{\sum_{\mathsf{x} \in \mathcal{H}} \left(\omega(\mathsf{x}) -
u(\mathsf{x})\right)^2}.$

Forward simulation distance

Assume a set of variables \mathcal{H} and a **distance** over states $\rho_{\mathcal{H}}$.

E.g., for states ω and ν : $\rho_{\mathcal{H}}(\omega, \nu) = \sqrt{\sum_{x \in \mathcal{H}} (\omega(x) - \nu(x))^2}$. **Definition**: Two programs α and β are at forward simulation distance *d* w.r.t. a formula ϕ_{pre} and \mathcal{H} , written

$$\beta \sqsubseteq^{\mathrm{F}}_{\phi_{\mathrm{pre}},\mathcal{H},\mathrm{d}} \alpha$$

 $\text{if }\forall \nu_1 \in \llbracket \phi_{\textit{pre}} \langle \beta \rangle \rrbracket \exists \nu_2 \in \llbracket \phi_{\textit{pre}} \langle \alpha \rangle \rrbracket \text{ such that } \rho_{\mathcal{H}}(\nu_1, \nu_2) \leq d.$

Forward simulation distance

Assume a set of variables \mathcal{H} and a **distance** over states $\rho_{\mathcal{H}}$.

E.g., for states ω and ν : $\rho_{\mathcal{H}}(\omega, \nu) = \sqrt{\sum_{x \in \mathcal{H}} (\omega(x) - \nu(x))^2}$. **Definition**: Two programs α and β are at forward simulation distance dw.r.t. a formula ϕ_{pre} and \mathcal{H} , written

 $\beta \sqsubseteq^{\mathrm{F}}_{\phi_{\mathrm{pre}},\mathcal{H},\mathrm{d}} \alpha$

if $\forall \nu_1 \in \llbracket \phi_{pre} \langle \beta \rangle \rrbracket \exists \nu_2 \in \llbracket \phi_{pre} \langle \alpha \rangle \rrbracket$ such that $\rho_{\mathcal{H}}(\nu_1, \nu_2) \leq d$. Example, for $\beta = \mathcal{P}(\alpha)$:

Upper bound to loss of safety

Theorem. Assume a hybrid program α and formulas ϕ_{pre} and ϕ_{post} . If

- F-SAFE_u($\underline{\alpha}, \phi_{pre}, \phi_{post}$) and
- $\mathcal{P}(\alpha) \sqsubseteq^{\mathrm{F}}_{\phi_{\mathrm{pre}}, \mathrm{Var}(\phi_{\mathrm{post}}), d} \alpha$

then: F-SAFE $_{\gamma}(\mathcal{P}(\alpha), \phi_{pre}, \phi_{post})$, with $\gamma \geq u - d$

Upper bound to loss of safety

Theorem. Assume a hybrid program α and formulas ϕ_{pre} and ϕ_{post} . If

- F-SAFE_u $(\alpha, \phi_{pre}, \phi_{post})$ and
- $\mathcal{P}(\alpha) \sqsubseteq_{\phi_{pre}, \mathsf{VAR}(\phi_{post}), d}^{\mathsf{F}} \alpha$

then: F-SAFE $_{\gamma}(\mathcal{P}(\alpha), \phi_{\text{pre}}, \phi_{\text{post}})$, with $\gamma \geq u - d$

In words, *d* is an upper bound of the loss of forward safety. Notice that α is γ -robust for $\gamma = (u - d)/u$.

Applying the theorem: An attempt

• By hand, we have computed

 $\mathcal{P}((\mathsf{ctrl} \ ; \ \mathsf{plant})^*) \sqsubseteq^{\mathrm{F}}_{\phi_{\mathsf{pre}}, \{d_p\}, \mathsf{d}} (\mathsf{ctrl} \ ; \ \mathsf{plant})^* \text{ with } \mathsf{d} \leq 1.5$

• Now, from F-SAFE₂((ctrl; plant)^{*}, ϕ_{pre} , ϕ_{post}) and

 $\mathcal{P}((\mathsf{ctrl}\ ;\ \mathsf{plant})^*) \sqsubseteq^{\mathrm{F}}_{\phi_{\mathsf{pre}},\{d_p\},\mathsf{d}} (\mathsf{ctrl}\ ;\ \mathsf{plant})^* \ \mathsf{with} \ \mathsf{d} \leq 1.5$

we can conclude that:

 $\mathsf{F}\text{-}\mathsf{SAFE}_{\gamma}(\mathcal{P}((\mathit{ctrl}\,;\,\mathit{plant})^*),\phi_{\mathit{pre}},\phi_{\mathit{post}}) ext{ with } \gamma \geq 0.5$

Open problem: How to compute forward simulation

Attempt 1: Encoding simulation distances with formulas

• Forward simulation distance is computed on states satisfying $\phi_{pre}\langle \alpha \rangle$ and $\phi_{pre}\langle \mathcal{P}(\alpha) \rangle$ and is encodable in a *forall exists* manner.

Open problem: How to compute forward simulation

Attempt 1: Encoding simulation distances with formulas

- Forward simulation distance is computed on states satisfying $\phi_{pre} \langle \alpha \rangle$ and $\phi_{pre} \langle \mathcal{P}(\alpha) \rangle$ and is encodable in a *forall exists* manner.
- More precisely:

 $(\phi_{pre} \langle \mathcal{P}(\alpha) \rangle \land (\overline{\mathbf{y}} = \overline{\mathbf{x}})) \to \exists \overline{\mathbf{x}}. \ (\phi_{pre} \langle \alpha \rangle \land (\rho_{\mathcal{H}}(\overline{\mathbf{y}}, \overline{\mathbf{x}}) \leq \mathbf{d}))$

with \overline{x} the variable in the formulae and \overline{y} the fresh variables, implicely quantified universally, used to store the value of \overline{x} .

Open problem: How to compute forward simulation

Attempt 1: Encoding simulation distances with formulas

- Forward simulation distance is computed on states satisfying $\phi_{pre}\langle \alpha \rangle$ and $\phi_{pre}\langle \mathcal{P}(\alpha) \rangle$ and is encodable in a *forall exists* manner.
- More precisely:

 $(\phi_{pre} \langle \mathcal{P}(\alpha) \rangle \land (\overline{\mathbf{y}} = \overline{\mathbf{x}})) \to \exists \overline{\mathbf{x}}. \ (\phi_{pre} \langle \alpha \rangle \land (\rho_{\mathcal{H}}(\overline{\mathbf{y}}, \overline{\mathbf{x}}) \leq \mathbf{d}))$

with \overline{x} the variable in the formulae and \overline{y} the fresh variables, implicely quantified universally, used to store the value of \overline{x} .

Unfortunately, this formula cannot be verified by using KeYmaera X.

Open problem: How to compute forward simulation-II

Attempt 1: Encoding simulation distances with formulas-II

- In our example, working by hand works:
- Having $\phi_{pre}\equiv 2Bd_p>(v_p+2)^2\wedge v_p\geq 0$ we have

 $\phi_{pre} \langle \mathcal{P}(\alpha) \rangle \equiv 2Bd_p > (v_p + 1)^2 \land v_p \ge 0$ by using KeYmaera X we have proved that

 $\begin{aligned} & 2\mathcal{B}d_p > (v_p + 2)^2 \wedge v_p \geq 0 \wedge d_p = \mathbf{fd}_p \rightarrow \\ & \exists d_p.(2\mathcal{B}d_p > (v_p + 2)^2 \wedge v_p \geq 0 \wedge \sqrt{(d_p - \mathbf{fd}_p)^2} \leq 1.5)) \end{aligned}$

Open problem: How to compute forward simulation-II

Attempt 1: Encoding simulation distances with formulas-II

- In our example, working by hand works:
- Having $\phi_{pre}\equiv 2Bd_p>(v_p+2)^2\wedge v_p\geq 0$ we have

 $\phi_{pre} \langle \mathcal{P}(\alpha) \rangle \equiv 2Bd_p > (v_p + 1)^2 \land v_p \ge 0$ by using KeYmaera X we have proved that

 $\begin{aligned} & 2Bd_p > (v_p + 2)^2 \wedge v_p \geq 0 \wedge d_p = \textit{fd}_p \rightarrow \\ & \exists d_p.(2Bd_p > (v_p + 2)^2 \wedge v_p \geq 0 \wedge \sqrt{(d_p - \textit{fd}_p)^2} \leq 1.5)) \end{aligned}$

• From F-SAFE₂((ctrl; plant)*, ϕ_{pre} , ϕ_{post}) and $\mathcal{P}((ctrl; plant)^*) \sqsubseteq_{\phi_{pre}, \{d_p\}, d}^{\mathrm{F}} (ctrl; plant)^*$ with $d \leq 1.5$ we get F-SAFE_{γ}($\mathcal{P}((ctrl; plant)^*)$, ϕ_{pre} , ϕ_{post}) with $\gamma \geq 0.5$.

Open problem: How to compute forward simulation-III

Attempt 2: Encoding simulation distances with modalities

• By using modalities we can directly encode program executions:

 $(\phi_{pre} \land \langle \mathcal{P}(\alpha) \rangle (\overline{\mathbf{y}} = \overline{\mathbf{x}})) \rightarrow$

"for each state reachable from ϕ_{pre} by $\mathcal{P}(\alpha)$ "

 $(\exists \bar{\mathbf{x}}. \ \phi_{pre} \land \langle \alpha \rangle (\rho_{\mathcal{H}}(\bar{\mathbf{y}}, \bar{\mathbf{x}}) \leq d))$

"there is an execution of α to a state at distance bounded by *d*."

Open problem: How to compute forward simulation-III

Attempt 2: Encoding simulation distances with modalities

• By using modalities we can directly encode program executions:

 $(\phi_{pre} \land \langle \mathcal{P}(\alpha) \rangle (\overline{\mathbf{y}} = \overline{\mathbf{x}})) \rightarrow$

"for each state reachable from ϕ_{pre} by $\mathcal{P}(\alpha)$ "

 $(\exists \bar{\mathbf{x}}. \ \phi_{pre} \land \langle \alpha \rangle (\rho_{\mathcal{H}}(\bar{\mathbf{y}}, \bar{\mathbf{x}}) \leq d))$

"there is an execution of α to a state at distance bounded by *d*."

• This is admitted by KeYmaera X syntax, but, in general, we have no answer

Open problem: How to compute forward simulation-III

Attempt 2: Encoding simulation distances with modalities

• By using modalities we can directly encode program executions:

 $(\phi_{pre} \land \langle \mathcal{P}(\alpha) \rangle (\overline{\mathbf{y}} = \overline{\mathbf{x}})) \rightarrow$

"for each state reachable from ϕ_{pre} by $\mathcal{P}(\alpha)$ "

 $(\exists \overline{\mathbf{x}}. \phi_{pre} \land \langle \alpha \rangle (\rho_{\mathcal{H}}(\overline{\mathbf{y}}, \overline{\mathbf{x}}) \leq d))$

"there is an execution of α to a state at distance bounded by *d*."

- This is admitted by KeYmaera X syntax, but, in general, we have no answer
- What we need is a proof system allowing us to give some upper bound to the simulation distance. We are on this but, presently, we have no solution.

Open problems - a more general view

- Developing a proof system for verifying properies encoding the simulation distance between programs.
- Dealing with more sophisticated sensor attacks, e.g. periodic attacks with several attack windows characterised by different tamperings.
- Dealing with different attacks.