
How to Explain
Probabilistic Bisimilarity Distances?

Franck van Breugel

York University, Toronto

1/54



Probabilistic bisimilarity is not robust

1
2

1
2

1 1

1 1

51
100

49
100

1 1

1 1

2/54



Probabilistic bisimilarity is not robust

Giacalone, Jou, and Smolka, PROCOMET 1990.
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Probabilistic bisimilarity is not robust

Fundamental problem
Probabilistic bisimilarity is not robust.

Robust alternative
Instead of an equivalence relation

∼ : S × S → {true, false}

use distances
d : S × S → [0,1].

Generalization
For all states s and t , s ∼ t iff d(s, t) = 0.
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Probabilistic bisimilarity distances
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Explainability

Question
How do we explain why states of a labelled transition system
are not bisimilar?

Game
Ehrenfeucht and Fraı̈ssé, 1950 and 1961.
Logic
Hennessy and Milner, 1980.
. . .
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Bisimulation game

Theorem
States s and t of a labelled transition system are bisimilar iff
duplicator has a winning strategy from (s, t).

Question
How do we explain that states of a labelled transition system
are not bisimilar?

Answer
Find a strategy for spoiler that is winning from (s, t).
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Hennessy-Milner theorem

Theorem
States of a labelled transition system are bisimilar iff they
satisfy the same formulas of the Hennessy-Milner logic.

Hennessy and Milner, ICALP 1980.
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Explainability

Question
How do we explain that states of a labelled transition system
are not bisimilar?

Answer
Find a formula of the Hennessy-Milner logic that is satisfied in
one of the states but not the other.

Cleaveland, CAV 1990.
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Bisimilarity

s t

State t satisfies ⃝((⃝ ) ∧ (⃝ )), but state s does not.
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Probabilistic bisimilarity distances

1 Game.
2 Logic.
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Matching probabilities
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Matching probabilities = couplings

The couplings form a convex polytope

Doeblin, 1938.

A convex polytope is fully determined by its vertices
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Probabilistic bisimilarity distance game

Labelled Markov chain ⟨S, . . .⟩
⇓

Markov decision process ⟨S × S, . . .⟩
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Markov decision process
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Probabilistic bisimilarity distances game

Theorem

d(s, t) = min
strategy

probability of reaching □

Chen, Worrell, and vB, FoSSaCS 2012.
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Explainability

Question
How do we explain the probabilistic bisimilarity distances?

Answer
Find a strategy that minimizes the probability of reaching □.
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Probabilistic bisimilarity distances

1 Game.
2 Logic.
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A quantitative Hennessy-Milner theorem

Theorem
For all states s, t,

d(s, t) = sup
f∈L

Jf K(s)− Jf K(t).

The logic L is defined by

f ::= a | ¬f | ⃝f | f ⊖ q | f ∧ f

where a is a label and q ∈ Q ∩ [0,1].
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A logical characterization

Theorem
For all states s, t,

d(s, t) = sup
f∈L

Jf K(s)− Jf K(t).

JaK(s) =

{
1 if a is label of s
0 otherwise

J¬f K(s) = 1 − Jf K(s)

J⃝f K(s) =
∑

t∈S P(s, t) Jf K(t)

Jf ⊖ qK(s) = Jf K(s)− q

Jf ∧ gK(s) = min(Jf K(s), JgK(s))
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Explainability

Question
How do we explain the probabilistic bisimilarity distances?

Attempt

Find a formula f of the logic L with d(s, t) = Jf K(s)− Jf K(t).
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Explainability
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⃝( ∧⃝ )
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Explainability

Question
How do we explain the probabilistic bisimilarity distances?

Attempt fails

Find a formula f of the logic L with d(s, t) = Jf K(s)− Jf K(t).

s t
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For every formula f , Jf K(s)− Jf K(t) < d(s, t) = 1.
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Explainability

Question
How do we explain the probabilistic bisimilarity distances?

Attempt succeeds

Find a sequence (fn)n of formulas of the logic L with
d(s, t) = limn JfnK(s)− JfnK(t).

Rady and vB, FoSSaCS 2023.
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Explainability
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sequence of formulas

false
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Explainability
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The distance of states t and s can be explained by the
sequence of formulas

false
(⃝ )⊖ 1

2

(⃝ ( ∧ ((⃝ )⊖ 1
2 ⊕ 1

2)))⊖
1
4

(⃝ ( ∧ ((⃝ ( ∧ ((⃝ )⊖ 1
2 ⊕ 1

2)))⊖
1
4 ⊕ 1

4)))⊖
1
8

. . .
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Some technical details

Objective

Construct a sequence (f n
st)n of formulas of the logic L with

d(s, t) = limn Jf n
stK(s)− Jf n

stK(t).

Kleene fixed point theorem
d = limn dn.

Objective

Construct a formula f n
st of the logic L with

dn(s, t) = Jf n
stK(s)− Jf n

stK(t).
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Some technical details

Objective

Construct a formula f n
st of the logic L with

dn(s, t) = Jf n
stK(s)− Jf n

stK(t).

Kantorovich-Rubinstein duality theorem

There exists F n
st : S → [0,1] such that

dn(s, t) =

(∑
u∈S

P(s,u)F n
st(u)

)
−

(∑
u∈S

P(t ,u)F n
st(u)

)
.

42/54



Some technical details
The formula gn

stuv is defined by

false ⊕ F n
st(u) if F n

st(u) = F n
st(v)

(f n
uv ⊖ (dn(u, v)− (F n

st(u)− F n
st(v)))⊕ F n

st(v) if F n
st(u) > F n

st(v)
(f n

vu ⊖ (dn(u, v)− (F n
st(v)− F n

st(u)))⊕ F n
st(u) otherwise.

Stone-Weierstrass approximation theorem

f n
st =

t∧
u∈S

∨
v∈S

gn
stuv

|
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Some technical details

The formula f n
st

If s and t have a different label then f n
st= label of s.

Otherwise,

f n
st =

(
⃝
∧
u∈S

∨
v∈S

gn
stuv

)
⊖

(∑
u∈S

P(t ,u)F n
st(u)

)
.
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Open problems

How to extend the logic L and, for states s and t , find a
formula fst ∈ L such that

d(s, t) = JfstK(s)− JfstK(t)?

How to extend the logic L and, for state s, find a formula
fs ∈ L such that for all states t

d(s, t) = JfsK(s)− JfsK(t)?

How to extend the logic L and, for state s, find a formula
fs ∈ L such that for all states t

d(s, t) = JfsK(t)?
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