How to Explain Probabilistic Bisimilarity Distances?

Franck van Breugel
York University, Toronto

Probabilistic bisimilarity is not robust

Giacalone, Jou, and Smolka, PROCOMET 1990.

Probabilistic bisimilarity is not robust

Fundamental problem
Probabilistic bisimilarity is not robust.

Probabilistic bisimilarity is not robust

Fundamental problem
Probabilistic bisimilarity is not robust.

Robust alternative

Instead of an equivalence relation

$$
\sim: S \times S \rightarrow\{\text { true, false }\}
$$

use distances

$$
d: S \times S \rightarrow[0,1]
$$

Probabilistic bisimilarity is not robust

Fundamental problem
Probabilistic bisimilarity is not robust.

Robust alternative

Instead of an equivalence relation

$$
\sim: S \times S \rightarrow\{\text { true, false }\}
$$

use distances

$$
d: S \times S \rightarrow[0,1]
$$

Generalization

For all states s and $t, s \sim t$ iff $d(s, t)=0$.

Probabilistic bisimilarity distances

Question

How do we explain that the distance of s and t is $\frac{1}{100}$?

Explainability

Question

How do we explain why states of a labelled transition system are not bisimilar?

Explainability

Question

How do we explain why states of a labelled transition system are not bisimilar?

- Game

Ehrenfeucht and Fraïssé, 1950 and 1961.

- Logic

Hennessy and Milner, 1980.

- ...

Bisimulation game

Theorem

States s and t of a labelled transition system are bisimilar iff duplicator has a winning strategy from (s, t).

Bisimulation game

Theorem

States s and t of a labelled transition system are bisimilar iff duplicator has a winning strategy from (s, t).

Question

How do we explain that states of a labelled transition system are not bisimilar?

Bisimulation game

Theorem

States s and t of a labelled transition system are bisimilar iff duplicator has a winning strategy from (s, t).

Question

How do we explain that states of a labelled transition system are not bisimilar?

Answer

Find a strategy for spoiler that is winning from (s, t).

Bisimilarity

Hennessy-Milner theorem

Theorem

States of a labelled transition system are bisimilar iff they satisfy the same formulas of the Hennessy-Milner logic.

Hennessy and Milner, ICALP 1980.

Explainability

Question

How do we explain that states of a labelled transition system are not bisimilar?

Explainability

Question

How do we explain that states of a labelled transition system are not bisimilar?

Answer

Find a formula of the Hennessy-Milner logic that is satisfied in one of the states but not the other.

Cleaveland, CAV 1990.

Bisimilarity

State t satisfies $\bigcirc((\bigcirc \square) \wedge(\bigcirc \square)$, but state s does not.

Probabilistic bisimilarity distances

Question

How do we explain that the distance of s and t is $\frac{1}{100}$?

Probabilistic bisimilarity distances

(1) Game.
(2) Logic.

Matching probabilities

Matching probabilities

Matching probabilities

Matching probabilities

Matching probabilities = couplings

The couplings form a convex polytope

Doeblin, 1938.
A convex polytope is fully determined by its vertices

Probabilistic bisimilarity distance game

Labelled Markov chain $\langle S, \ldots\rangle$ \Downarrow
 Markov decision process $\langle S \times S, \ldots\rangle$

Markov decision process

Markov decision process

Probabilistic bisimilarity distances game

Theorem

$$
d(s, t)=\min _{\text {strategy }} \text { probability of reaching } \square
$$

Chen, Worrell, and vB, FoSSaCS 2012.

Explainability

Question

How do we explain the probabilistic bisimilarity distances?

Explainability

Question

How do we explain the probabilistic bisimilarity distances?

Answer

Find a strategy that minimizes the probability of reaching \square.

Probabilistic bisimilarity distances

(1) Game.
(2) Logic.

A quantitative Hennessy-Milner theorem

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)
$$

A quantitative Hennessy-Milner theorem

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t) .
$$

The logic \mathcal{L} is defined by

$$
f::=a|\neg f| \bigcirc f|f \ominus q| f \wedge f
$$

where a is a label and $q \in \mathbb{Q} \cap[0,1]$.

A logical characterization

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)
$$

$$
\llbracket a \rrbracket(s)= \begin{cases}1 & \text { if } a \text { is label of } s \\ 0 & \text { otherwise }\end{cases}
$$

A logical characterization

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)
$$

$$
\begin{aligned}
\llbracket a \rrbracket(s) & = \begin{cases}1 & \text { if } a \text { is label of } s \\
0 & \text { otherwise }\end{cases} \\
\llbracket \neg f \rrbracket(s) & =1-\llbracket f \rrbracket(s)
\end{aligned}
$$

A logical characterization

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)
$$

$$
\begin{aligned}
\llbracket a \rrbracket(s) & = \begin{cases}1 & \text { if } a \text { is label of } s \\
0 & \text { otherwise }\end{cases} \\
\llbracket \neg f \rrbracket(s) & =1-\llbracket f \rrbracket(s) \\
\llbracket \bigcirc f \rrbracket(s) & =\sum_{t \in S} P(s, t) \llbracket f \rrbracket(t)
\end{aligned}
$$

A logical characterization

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t) .
$$

$$
\begin{aligned}
\llbracket a \rrbracket(s) & = \begin{cases}1 & \text { if } a \text { is label of } s \\
0 & \text { otherwise }\end{cases} \\
\llbracket \neg f \rrbracket(s) & =1-\llbracket f \rrbracket(s) \\
\llbracket \bigcirc f \rrbracket(s) & =\sum_{t \in S} P(s, t) \llbracket f \rrbracket(t) \\
\llbracket f \ominus q \rrbracket(s) & =\llbracket f \rrbracket(s)-q
\end{aligned}
$$

A logical characterization

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)
$$

$$
\begin{aligned}
\llbracket a \rrbracket(s) & = \begin{cases}1 & \text { if } a \text { is label of } s \\
0 & \text { otherwise }\end{cases} \\
\llbracket \neg f \rrbracket(s) & =1-\llbracket f \rrbracket(s) \\
\llbracket \bigcirc f \rrbracket(s) & =\sum_{t \in S} P(s, t) \llbracket f \rrbracket(t) \\
\llbracket f \ominus q \rrbracket(s) & =\max (\llbracket f \rrbracket(s)-q, 0)
\end{aligned}
$$

A logical characterization

Theorem

For all states s, t,

$$
d(s, t)=\sup _{f \in \mathcal{L}} \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)
$$

$$
\begin{aligned}
\llbracket a \rrbracket(s) & = \begin{cases}1 & \text { if } a \text { is label of } s \\
0 & \text { otherwise }\end{cases} \\
\llbracket \neg f \rrbracket(s) & =1-\llbracket f \rrbracket(s) \\
\llbracket \bigcirc f \rrbracket(s) & =\sum_{t \in S} P(s, t) \llbracket f \rrbracket(t) \\
\llbracket f \ominus q \rrbracket(s) & =\max (\llbracket f \rrbracket(s)-q, 0) \\
\llbracket f \wedge g \rrbracket(s) & =\min (\llbracket f \rrbracket(s), \llbracket g \rrbracket(s))
\end{aligned}
$$

A logical characterization

$$
\llbracket \backsim(\backsim) \rrbracket(t)
$$

A logical characterization

$$
\begin{aligned}
& \llbracket O(\square \wedge \circ \square) \rrbracket(t) \\
= & \frac{51}{100} \llbracket \square \wedge \circ \square \rrbracket(u)+\frac{49}{100} \llbracket \square \wedge \circ \square \rrbracket
\end{aligned}
$$

A logical characterization

$$
\begin{aligned}
& \llbracket \bigcirc(\square \wedge \bigcirc \square) \rrbracket(t) \\
= & \frac{51}{100} \llbracket \square \wedge \bigcirc \square \rrbracket(u)+\frac{49}{100} \llbracket \square \wedge \bigcirc \square \rrbracket \\
= & \frac{51}{100} \llbracket \bigcirc \square \rrbracket(u)+\frac{49}{100} \llbracket \bigcirc \square \rrbracket(v)
\end{aligned}
$$

A logical characterization

$$
\begin{aligned}
& \llbracket \bigcirc(\square \wedge \bigcirc \square) \rrbracket(t) \\
= & \frac{51}{100} \llbracket \square \wedge \bigcirc \square \rrbracket(u)+\frac{49}{100} \llbracket \square \wedge \bigcirc \square \rrbracket \rrbracket \\
= & \frac{51}{100} \llbracket \bigcirc \square \rrbracket(u)+\frac{49}{100} \llbracket \bigcirc \square \rrbracket(v) \\
= & \frac{51}{100} \llbracket \square \rrbracket(w)+\frac{49}{100} \llbracket \square \rrbracket(x)
\end{aligned}
$$

A logical characterization

$$
\begin{aligned}
& \llbracket ○(\square \wedge O \square) \rrbracket(t) \\
= & \frac{51}{100} \llbracket \square \wedge \bigcirc \square \rrbracket(u)+\frac{49}{100} \llbracket \square \wedge \bigcirc \square \rrbracket \\
= & \frac{51}{100} \llbracket \bigcirc \square \rrbracket(u)+\frac{49}{100} \llbracket \bigcirc \square \rrbracket(v) \\
= & \frac{51}{100} \llbracket \square \rrbracket(w)+\frac{49}{100} \llbracket \square \rrbracket(x) \\
= & \frac{49}{100}
\end{aligned}
$$

Explainability

Question

How do we explain the probabilistic bisimilarity distances?

Attempt

Find a formula f of the logic \mathcal{L} with $d(s, t)=\llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)$.

Explainability

The distance of states s and t can be explained by the formula $\bigcirc(\square \wedge \bigcirc \square)$

Explainability

Question

How do we explain the probabilistic bisimilarity distances?

Attempt fails

Find a formula f of the logic \mathcal{L} with $d(s, t)=\llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)$.

Explainability

Question

How do we explain the probabilistic bisimilarity distances?

Attempt fails

Find a formula f of the logic \mathcal{L} with $d(s, t)=\llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)$.

For every formula $f, \llbracket f \rrbracket(s)-\llbracket f \rrbracket(t)<d(s, t)=1$.

Explainability

Question

How do we explain the probabilistic bisimilarity distances?

Attempt succeeds

Find a sequence $\left(f_{n}\right)_{n}$ of formulas of the logic \mathcal{L} with $d(s, t)=\lim _{n} \llbracket f_{n} \rrbracket(s)-\llbracket f_{n} \rrbracket(t)$.

Rady and vB, FoSSaCS 2023.

Explainability

The distance of states s and t can be explained by the sequence of formulas

- false
- $\bigcirc \square$
- $\bigcirc(\square \vee \bigcirc \square)$
- $\bigcirc(\square \vee \bigcirc(\square \vee \bigcirc \square))$
- ...

Explainability

The distance of states t and s can be explained by the sequence of formulas

- false
- $(\bigcirc \checkmark) \ominus \frac{1}{2}$
- $\left(\bigcirc\left(\square \wedge\left((\bigcirc \square) \ominus \frac{1}{2} \oplus \frac{1}{2}\right)\right)\right) \ominus \frac{1}{4}$
- $\left(\bigcirc\left(\square \wedge\left(\left(\bigcirc\left(\square \wedge\left((\bigcirc \square) \ominus \frac{1}{2} \oplus \frac{1}{2}\right)\right)\right) \ominus \frac{1}{4} \oplus \frac{1}{4}\right)\right)\right) \ominus \frac{1}{8}$
- ...

Some technical details

Objective

Construct a sequence $\left(f_{s t}^{n}\right)_{n}$ of formulas of the logic \mathcal{L} with $d(s, t)=\lim _{n} \llbracket f_{s t}^{n} \rrbracket(s)-\llbracket f_{s t}^{n} \rrbracket(t)$.

Some technical details

Objective

Construct a sequence $\left(f_{s t}^{n}\right)_{n}$ of formulas of the logic \mathcal{L} with $d(s, t)=\lim _{n} \llbracket f_{s t}^{n} \rrbracket(s)-\llbracket f_{s t}^{n} \rrbracket(t)$.

Kleene fixed point theorem

$$
d=\lim _{n} d_{n} .
$$

Some technical details

Objective

Construct a sequence $\left(f_{s t}^{n}\right)_{n}$ of formulas of the logic \mathcal{L} with $d(s, t)=\lim _{n} \llbracket f_{s t}^{n} \rrbracket(s)-\llbracket f_{s t}^{n} \rrbracket(t)$.

Kleene fixed point theorem
$d=\lim _{n} d_{n}$.

Objective
Construct a formula $f_{s t}^{n}$ of the logic \mathcal{L} with
$d_{n}(s, t)=\llbracket f_{s t}^{n} \rrbracket(s)-\llbracket f_{s t}^{n} \rrbracket(t)$.

Some technical details

Objective

Construct a formula $f_{s t}^{n}$ of the logic \mathcal{L} with $d_{n}(s, t)=\llbracket f_{s t}^{n} \rrbracket(s)-\llbracket f_{s t}^{n} \rrbracket(t)$.

Kantorovich-Rubinstein duality theorem
There exists $F_{s t}^{n}: S \rightarrow[0,1]$ such that

$$
d_{n}(s, t)=\left(\sum_{u \in S} P(s, u) F_{s t}^{n}(u)\right)-\left(\sum_{u \in S} P(t, u) F_{s t}^{n}(u)\right)
$$

Some technical details

The formula $g_{\text {stuv }}^{n}$ is defined by

$$
\begin{aligned}
& \text { false } \oplus F_{s t}^{n}(u) \text { if } F_{s t}^{n}(u)=F_{s t}^{n}(v) \\
& \left(f_{u v}^{n} \ominus\left(d_{n}(u, v)-\left(F_{s t}^{n}(u)-F_{s t}^{n}(v)\right)\right) \oplus F_{s t}^{n}(v) \text { if } F_{s t}^{n}(u)>F_{s t}^{n}(v)\right. \\
& \left(f_{v u}^{n} \ominus\left(d_{n}(u, v)-\left(F_{s t}^{n}(v)-F_{s t}^{n}(u)\right)\right) \oplus F_{s t}^{n}(u)\right. \text { otherwise. }
\end{aligned}
$$

Stone-Weierstrass approximation theorem

Some technical details

The formula $f_{s t}^{n}$

Some technical details

The formula $f_{s t}^{n}$
If s and t have a different label then $f_{s t}^{n}=$ label of s.

Some technical details

The formula $f_{s t}^{n}$
If s and t have a different label then $f_{s t}^{n}=$ label of s.
Otherwise,

$$
f_{s t}^{n}=\left(\bigcirc \bigwedge_{u \in S} \bigvee_{v \in S} g_{s t u v}^{n}\right) \ominus\left(\sum_{u \in S} P(t, u) F_{s t}^{n}(u)\right) .
$$

Open problems

- How to extend the logic \mathcal{L} and, for states s and t, find a formula $f_{s t} \in \mathcal{L}$ such that

$$
d(s, t)=\llbracket f_{s t} \rrbracket(s)-\llbracket f_{s t} \rrbracket(t) ?
$$

- How to extend the logic \mathcal{L} and, for state s, find a formula $f_{s} \in \mathcal{L}$ such that for all states t

$$
d(s, t)=\llbracket f_{s} \rrbracket(s)-\llbracket f_{s} \rrbracket(t) ?
$$

- How to extend the logic \mathcal{L} and, for state s, find a formula $f_{s} \in \mathcal{L}$ such that for all states t

$$
d(s, t)=\llbracket f_{s} \rrbracket(t) ?
$$

Slide 3

- Photo of Smolka:
www.concur2016.ulaval.ca/fr/program/speakers_html/
- Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for probabilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, pages 443-458, Sea of Gallilee, Israel, April 1990. North-Holland.

References

Slide 16

- Photo of Hennessy: www.scss.tcd.ie/Matthew.Hennessy/
- Photo of Milner: www.cl.cam.ac.uk/archive/rm135/
- Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency. In Jaco de Bakker and Jan van Leeuwen, editors, Proceedings of the 7th Colloquium on Automata, Languages and Programming, volume 85 of Lecture Notes in Computer Science, pages 299-309, Noordwijkerhout, The Netherlands, July 1980. Springer-Verlag.

References

Slide 17

- Photo of Cleaveland: cmns.umd.edu/people/rance-cleaveland/
- Rance Cleaveland. On automatically distinguishing inequivalent processes. In Edmund Clarke and Robert Kurshan, editors, Proceedings of a DIMACS Workshop on Computer Aided Verification, volume 3 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 463-476, New Brunswick, NJ, USA, June 1990. DIMACS/AMS.

References

Slide 25

- Photo of Doeblin:
mathshistory.st-andrews.ac.uk/Biographies/Doeblin/
- Wolfgang Doeblin. Exposé de la théorie des chaînes simples constantes de Markoff à un nombre fini d'états. Revue Mathématiques de l'Union Interbalkanique, 2 : 77-105, 1938.
- Image of polytopes:
www.greatlittleminds.com/pages/maths/3d-platonicsolids.html

References

Slide 29

- Photo of Worrell: www.cs.ox.ac.uk/people/james.worrell/home.html
- Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabilistic bisimilarity. In Lars Birkedal, editor, Proceedings of the 15th International Conference on Foundations of Software Science and Computational Structures, volume 7213 of Lecture Notes in Computer Science, pages 437-451, Tallinn, Estonia, March/April 2012. Springer-Verlag.

Slide 38

- Amgad Rady and Franck van Breugel. Explainability of probabilistic bisimilarity distances for labelled Markov chains. In Orna Kupferman and Pawel Sobocinski, editors, Proceedings of the 26th International Conference on Foundations of Software Science and Computational Structures, volume 13992 of Lecture Notes in Computer Science, pages 285-307, Paris, France, April 2023. Springer-Verlag.

References

Slide 41

- Photo of Kleene:
www.computerhope.com/people/stephen_kleene.htm
- Stephen Kleene. Introduction to Metamathematics.

References

Slide 42

- Photo of Kantorovich: armstrongeconomics.wordpress.com/research/economic-thought/by-author/kantorovich-leonid/
- Leonid Kantorovich and Gennadi Rubinstein. On the space of completely additive functions (in Russian). Vestnik Leningradskogo Universiteta, 3(2):52-59, 1958.

References

Slide 43

- Photo of Stone:
wildpeaches.xyz/blog/curve-fitting-with-julia/
- Photo of Weierstrass: wildpeaches.xyz/blog/curve-fitting-with-julia/
- Marshall Stone. Applications of the theory of Boolean rings to general topology. Transactions of the American Mathematical Society, 41(3): 375-481, 1937.

