
Ensuring Liveness Properties
of Distributed Systems

with Justness

Rob van Glabbeek

University of Edinburgh

June 2023



Liveness properties – an example
↑

Something good will eventually happen.

Task: insert an infinite pile of quarters in slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming progress.
↑

The assumption that a system will not stop without a reason.



Liveness properties – an example
↑

Something good will eventually happen.

Task: insert an infinite pile of quarters in slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming progress.

↑
The assumption that a system will not stop without a reason.



Liveness properties – an example
↑

Something good will eventually happen.

Task: insert an infinite pile of quarters in slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming progress.
↑

The assumption that a system will not stop without a reason.



Transition system of example

insert
quarter



Transition system with success state

insert
quarter

insert
quarter

three
quarters
inserted

insert
quarter

insert
quarter



Progress, Justness, Fairness and Liveness

Fairness

⇓
Justness

⇓
Progress

Liveness properties

a hierarchy of assumptions
somethings one want to obtain,

optionally
when making one such assumption



Liveness properties – a more interesting example

Tasks:
insert an infinite pile
of quarters in left slot

insert an infinite pile
of dimes in right slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming justness.
↑

Even a subsystem will not stop without a reason.



Liveness properties – a more interesting example

Tasks:
insert an infinite pile
of quarters in left slot

insert an infinite pile
of dimes in right slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming justness.

↑
Even a subsystem will not stop without a reason.



Liveness properties – a more interesting example

Tasks:
insert an infinite pile
of quarters in left slot

insert an infinite pile
of dimes in right slot

Liveness property: at least 3 quarters will be inserted.

Intuitively, this property holds, when assuming justness.
↑

Even a subsystem will not stop without a reason.



Transition system of example

insert
quarter

∥ insert
dime



Transition system of example

insert
quarter

∥ insert
dime

=
insert
quarter

insert
dime



Transition system with success states

q

q

three
quarters
inserted

q

q

∥
d

d

d

d



Transition system with success states

= q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

d q

d q

d q



Just paths

q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

The red path is not just, but the green one is.



Concurrency versus competition

Concurrency:

Competition:

Liveness property: at least 3 quarters will be inserted.

When assuming justness
this property holds for the concurrency example,
but not for the competition example.

When assuming fairness it holds for both examples.



Concurrency versus competition

Concurrency:

Competition:

Liveness property: at least 3 quarters will be inserted.

When assuming justness
this property holds for the concurrency example,
but not for the competition example.

When assuming fairness it holds for both examples.



Just paths
q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

In the concurrency example, the red path is not just, but the green one is.

In the competition example, all paths are just

and the liveness property is NOT met.



Just paths
q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

In the concurrency example, the red path is not just, but the green one is.
In the competition example, all paths are just

and the liveness property is NOT met.



Just paths
q

q

three
quarters
inserted

q

q

d

d q

d q

d q

d q

d

d q

d q

d q

d q

d

d q

qd

d q

d q

d

d q

d q

d q

d q

In the concurrency example, the red path is not just, but the green one is.
In the competition example, all paths are just and the liveness property is NOT met.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems

when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Fairness

If you try something often enough, it will eventually succeed.

Fairness holds for many useful systems
when there is an underlying protocol that implements fairness.

When implementing such a protocol, it is not reasonable to assume
fairness. It is typically not justified.

But assuming justness (no component stops without reason) usually is.

Much contemporary research fails to distinguish justness and fairness.
This can lead to unwarranted conclusions and system failures.



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda

To develop a theory of concurrency that is equipped to ensure
liveness properties without making fairness assumptions.

Problem: in standard models of concurrency my concurrency and
competition examples have the very same representation!
(e.g. in labelled transition systems).

They are semantically equivalent (e.g. when using bisimulation).

So we need different models of concurrency, in which these
systems have a different representations.
We also need different semantic equivalences.

More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

▶ Induction principles ← requires new ideas

▶ Syntactic formats to ensure compositionality



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)

↑
Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.

▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas

Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality

Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality
Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.

A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality
Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.

Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Research agenda
More importantly, we need new technologies to perform efficient
verifications in this revised setting.

▶ Model checking (based on temporal logic)
↑

Powerful automatic verification tool.
▶ Default forms based on progress, not justness or fairness.
▶ There exists (less efficient) variants that work with fairness.

But we need new forms that work with justness.

▶ Induction principles ← requires new ideas
Infer properties of infinite systems from their finite approximations

▶ Syntactic formats to ensure compositionality
Next to abstraction from internal activity, compositionality is
the most powerful tool to attack the state-space explosion.
A complex system is verified, by verifying its parts, and
composing the verified parts in a black-box manner.
Syntactic checks on code are known that guarantee that
forms of compositional reasoning are warranted. But such
work needs to be redone when factoring in justness.



Transition systems with successors

Transition systems inserting a dime
plus a ternary relation does not interfere
between transitions with inserting a quarter

q d

qd

⌣•

⌣•



Formalising Justness

Transition systems inserting a dime
plus a ternary relation does not interfere
between transitions with inserting a quarter

q d

qd

⌣•

⌣•

Justness: The system never follows a →-path
that induces an infinite ⇝-sequence.



Petri nets

In a Petri net, a run is just if for each transition that becomes enabled,
either it occurs in the run further on,
or a token necessary to fire that transition is used by another transition.

This is a default assumption in Petri nets
[Reisig 2013: Understanding Petri nets],
not in need of any name like “justness”.

Write t ⌣• u if transition t does not need any resource that is
consumed by u. Write t ⌣ u if t ⌣• u and u ⌣• t.



Petri nets

In a Petri net, a run is just if for each transition that becomes enabled,
either it occurs in the run further on,
or a token necessary to fire that transition is used by another transition.

This is a default assumption in Petri nets
[Reisig 2013: Understanding Petri nets],
not in need of any name like “justness”.

Write t ⌣• u if transition t does not need any resource that is
consumed by u. Write t ⌣ u if t ⌣• u and u ⌣• t.



Petri nets

In a Petri net, a run is just if for each transition that becomes enabled,
either it occurs in the run further on,
or a token necessary to fire that transition is used by another transition.

This is a default assumption in Petri nets
[Reisig 2013: Understanding Petri nets],
not in need of any name like “justness”.

Write t ⌣• u if transition t does not need any resource that is
consumed by u.

Write t ⌣ u if t ⌣• u and u ⌣• t.



Petri nets

In a Petri net, a run is just if for each transition that becomes enabled,
either it occurs in the run further on,
or a token necessary to fire that transition is used by another transition.

This is a default assumption in Petri nets
[Reisig 2013: Understanding Petri nets],
not in need of any name like “justness”.

Write t ⌣• u if transition t does not need any resource that is
consumed by u. Write t ⌣ u if t ⌣• u and u ⌣• t.



Concurrency versus competition

Concurrency:

q

t

• d

u

•

t ⌣ u

•q

t

• d

u

•

t ̸⌣ u

Competition:

Liveness property: at least 3 quarters will be inserted.

When assuming justness
this property holds for the concurrency example,
but not for the competition example.

When assuming fairness it holds for both examples.
When assuming progress it holds for neither.



Concurrency versus competition

Concurrency:

q

t

• d

u

•

t ⌣ u

•q

t

• d

u

•

t ̸⌣ u

Competition:

Liveness property: at least 3 quarters will be inserted.

When assuming justness
this property holds for the concurrency example,
but not for the competition example.

When assuming fairness it holds for both examples.
When assuming progress it holds for neither.



Example of an asymmetric concurrency relation

obedient pedestrian approaching a green traffic light

light turns
red

pedestrian passes
intersection

⌣•

light
turns red

•ltr
t

ppi
u

•

t ⌣• u



Example of an asymmetric concurrency relation

obedient pedestrian approaching a green traffic light

light turns
red

pedestrian passes
intersection

⌣•

light
turns red

•ltr
t

ppi
u

•

t ⌣• u



Example of an asymmetric concurrency relation

obedient pedestrian approaching a green traffic light

light turns
red

pedestrian passes
intersection

⌣•

light
turns red

•ltr
t

ppi
u

•

t ⌣• u



Example of an asymmetric concurrency relation

obedient pedestrian approaching a green traffic light

light turns
red

pedestrian passes
intersection

⌣•

light
turns red

•ltr
t

ppi
u

•

t ⌣• u



Bisimulation equivalence

To show that two systems have the same properties, one
traditionally constructs a bisimulation between them. This is a
relation R between their states, such that
• The initial states are related:

• The transfer property holds:

a

a aa

To preserve justness we need a form of bisimulation that also
preserves ⇝.



Bisimulation equivalence

To show that two systems have the same properties, one
traditionally constructs a bisimulation between them. This is a
relation R between their states, such that
• The initial states are related:

• The transfer property holds:

a a

aa

To preserve justness we need a form of bisimulation that also
preserves ⇝.



Bisimulation equivalence

To show that two systems have the same properties, one
traditionally constructs a bisimulation between them. This is a
relation R between their states, such that
• The initial states are related:

• The transfer property holds:

a a a

a

To preserve justness we need a form of bisimulation that also
preserves ⇝.



Bisimulation equivalence

To show that two systems have the same properties, one
traditionally constructs a bisimulation between them. This is a
relation R between their states, such that
• The initial states are related:

• The transfer property holds:

a a aa

To preserve justness we need a form of bisimulation that also
preserves ⇝.



Bisimulation equivalence

To show that two systems have the same properties, one
traditionally constructs a bisimulation between them. This is a
relation R between their states, such that
• The initial states are related:

• The transfer property holds:

a a aa

To preserve justness we need a form of bisimulation that also
preserves ⇝.



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a

⌣•

a

⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a

⌣•

a

⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a
⌣•

a

⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a
⌣•

a

⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a
⌣•

a

⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a
⌣•

a
⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a
⌣•

a
⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a
⌣•

a
⌣•



Enabling preserving bisimulation equivalence

To show that two systems have the same liveness properties, one
constructs an enabling preserving bisimulation between them.

This is a relation R between their states, where each pair of
related states is equipped with a relation R between their enabled
transitions, such that

• The initial states are related:

• The transfer property holds:

a
⌣•

a
⌣•



EP bisimulation is useful

This notion of bisimulation has the properties we want:

▶ it preserves liveness properties
under the assumption of justness;

▶ it induces an equivalence relation,

▶ which is a congruence for parallel composition (and other
operators), thus allowing compositional reasoning.



EP bisimulation is useful

This new bisimulation can be used
to prove implementations equivalent to specifications
in such a way that – under the assumption of justness –

all liveness properties of the specification
also hold for the implementation.



Applications: packet delivery

Once a framework for formalising liveness properties,
and right tools for proving them, have been established,
I aim to to apply them to realistic verifications of distributed systems.

The packet delivery property for routing protocols in wireless networks.

“Under suitable conditions a data packet injected at a source node
will eventually be delivered at its destination node.”

Here fairness assumptions are not warranted:
they validate versions of packet delivery that do not hold.

Yet, without assuming justness no useful packet delivery property holds.



Applications: packet delivery

Once a framework for formalising liveness properties,
and right tools for proving them, have been established,
I aim to to apply them to realistic verifications of distributed systems.

The packet delivery property for routing protocols in wireless networks.

“Under suitable conditions a data packet injected at a source node
will eventually be delivered at its destination node.”

Here fairness assumptions are not warranted:
they validate versions of packet delivery that do not hold.

Yet, without assuming justness no useful packet delivery property holds.



Applications: packet delivery

Once a framework for formalising liveness properties,
and right tools for proving them, have been established,
I aim to to apply them to realistic verifications of distributed systems.

The packet delivery property for routing protocols in wireless networks.

“Under suitable conditions a data packet injected at a source node
will eventually be delivered at its destination node.”

Here fairness assumptions are not warranted:
they validate versions of packet delivery that do not hold.

Yet, without assuming justness no useful packet delivery property holds.



Applications: locks

Locks take the role of mutual exclusion protocols in efficient
implementations of distributed systems.

ticket lock Mellor-Crummey Scott lock Craig Landin Hagersten lock

As for mutex protocols, the correctness properties of such locks
require a justness assumption at the least, whereas fairness
assumptions can be demonstrated to assume too much.

Moreover, the proposed language extensions come into play.

Many semi-formal verifications apply the justness assumption implicitly.

I here strive for better reusability through a higher degree for
formalisation in which such an assumption becomes explicit.



Applications: locks

Locks take the role of mutual exclusion protocols in efficient
implementations of distributed systems.

ticket lock Mellor-Crummey Scott lock Craig Landin Hagersten lock

As for mutex protocols, the correctness properties of such locks
require a justness assumption at the least, whereas fairness
assumptions can be demonstrated to assume too much.

Moreover, the proposed language extensions come into play.

Many semi-formal verifications apply the justness assumption implicitly.

I here strive for better reusability through a higher degree for
formalisation in which such an assumption becomes explicit.



Applications: garbage collection

In celebrated verifications of garbage collection in software (see,
e.g., Gammie et al., PLDI 2015: 99-109), merely safety properties
are verified, stating that only garbage will be removed.

The authors apologise for not showing liveness properties, stating
that all garbage will be removed.

“formal treatment of liveness is likely to be complex [...],
given the need for dubious fairness hypotheses.”

This is exactly the type of problem that will be solved by my
proposed work.



Applications: garbage collection

In celebrated verifications of garbage collection in software (see,
e.g., Gammie et al., PLDI 2015: 99-109), merely safety properties
are verified, stating that only garbage will be removed.

The authors apologise for not showing liveness properties, stating
that all garbage will be removed.

“formal treatment of liveness is likely to be complex [...],
given the need for dubious fairness hypotheses.”

This is exactly the type of problem that will be solved by my
proposed work.



Applications: garbage collection

In celebrated verifications of garbage collection in software (see,
e.g., Gammie et al., PLDI 2015: 99-109), merely safety properties
are verified, stating that only garbage will be removed.

The authors apologise for not showing liveness properties, stating
that all garbage will be removed.

“formal treatment of liveness is likely to be complex [...],
given the need for dubious fairness hypotheses.”

This is exactly the type of problem that will be solved by my
proposed work.



Applications: garbage collection

In celebrated verifications of garbage collection in software (see,
e.g., Gammie et al., PLDI 2015: 99-109), merely safety properties
are verified, stating that only garbage will be removed.

The authors apologise for not showing liveness properties, stating
that all garbage will be removed.

“formal treatment of liveness is likely to be complex [...],
given the need for dubious fairness hypotheses.”

This is exactly the type of problem that will be solved by my
proposed work.


