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IN THIS TALK

Computational effect Equational Theory (X, E)
(monad in Set) for ¥ a signature, E a set of equations

Effects: nondeterminism, probabilities, termination, combinations

m reasoning equationally on equivalences of systems

m what about reasoning equationally on distances?



IN THIS TALK

Computational effect Equational Theory (X, E)
(monad in Set) for ¥ a signature, E a set of equations
. '
Effect+distance Quantitative Equational Theory (X, Q)

(monad in Met) for ¥ a signature, Q quantitative inferences



MONADS AND EQUATIONAL THEORIES FOR
COMPUTATIONAL EFFECTS



MONADS AND EQUATIONAL THEORIES

Monad (M, 1, 1)
in Set

m functor M : X — M(X)
m unit 7y X — M(X)
m multiplication px : MM(X) — M(X)
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MONADS AND EQUATIONAL THEORIES

Monad (M, n, ) Equational Theory (X, E)
in Set for X a signature, E a set of equations

m termst := x|op(t,,...ty) forop €
m Easetof equations t=s
Deductive system: equational logic
(Reflexivity) @D -t=t
(Symmetry) {t=s}ts=t
(Transitivity) {t =u,u=s} Ft=s

Models: algebras (A, T*) satisfying E
Free model: (Terms(X, %) /¢, X)



MONADS AND EQUATIONAL THEORIES

Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations

(X, E) is a presentation of (M, 7, ;1)

The category EM(,M) of Eilenberg-Moore algebras for (M, n, u) is
isomorphic to the category A(X, E) of algebras (models) of (X, E)

Category EM(M) Category A(X%, E)
m objects: (A, : M(A) — A) m objects: models (A, X*) of (X, E)
with o commuting with 7, 14 m arrows: homomorphisms of

m arrows: algebra morphisms (X, E)-algebras



MONADS AND EQUATIONAL THEORIES

Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations

(X, E) is a presentation of (M, 7, ;1)
The category EM(,M) of Eilenberg-Moore algebras for (M, n, u) is
isomorphic to the category A(X, E) of algebras (models) of (X, E)
Corollary: equational reasoning on free objects

Free algebra for the monad = (Terms(X, X) /¢, )



Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations
p% T:X = P(X)
/ \ 7(x) = {x0, %2}
% *2 () = {x}



Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations

Equational theory of semilattices
Powerset (non-empty)

monad (P, 7, /1)
mP:X— {S]|Sisanon-

m Y = binary operation &

B axioms of E =

—
>
=

empty, finite subset of X}

xoy)oz = xo(yo2)
7 x— {x} X®y © Y& X
o {S,...,Sat = U;Si XD X () X



Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations

Equational theory of semilattices
Powerset (non-empty)

monad (P, 7, /1)
mP:X— {S]|Sisanon-

m Y = binary operation &

B axioms of E =

—
>
=

empty, finite subset of X}

xoy)oz = xo(yo2)
7 x— {x} X®y © Y& X
o {S,...,Sat = U;Si XD X () X

(P(X),U) = (Terms(X, X) /¢, ®)



EXAMPLE: NONDETERMINISM + TERMINATION

Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations
X T X = PO(X)
/ \ () = {30}
1 X2 T(X1) =0



EXAMPLE: NONDETERMINISM + TERMINATION

Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations

Equational theory of
semilattices with bottom

Powerset (possibly empty) BY=x0&
monad (P?, 7, 1) m axioms of E=
m P’ X {S|Sisafinite P m axioms of semilattices
subset of X} (A)
xoy)®z = x0(yd2)
m:x— {x} XDy © Y@ x
m o {Sh, .S} = Ui Si cox O .

m bottom axiom x@® x=x

(P@(X), U, 0) = (Terms(X, X) /e, ©, %) 5



EXAMPLE: PROBABILITY

Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations

T: X — D(X)

T(X) = 3% + 3 X2
T(X1) = 1%




EXAMPLE: PROBABILITY

Monad (M, n, ) PN Equational Theory (X, E)

in Set for X a signature, E a set of equations

Distribution monad (D, 7, 1) Equational theory of convex algebras

mD:X— {A|Aisa m > = binary operations +, for all
finitely supported pe(01)

probability distribution < ™ axioms OfE(= )
Ap

on X} (X+q¥)tpz = X+pg (V¥ +pu 2)
1=pq
B X—1X X+py (C:p) Y trp X
Wil Y pic A S (o) .

(D(X), CSp(-, -)) = (Terms(X, X) /¢, +p)



EXAMPLE: PROBABILITY+TERMINATION (SUBDISTRIBUTIONS)

Monad (M, n, ) PN Equational Theory (X, E)

in Set for X a signature, E a set of equations

Foein

b 4
2
-

1

X3

X

=
N

subdistribution = ) ", p; x; with >, p; <1



EXAMPLE: PROBABILITY+TERMINATION (SUBDISTRIBUTIONS)

Monad (M, n, ) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations

Equational theory of

Subdistribution monad pointed convex algebras
(D=,n, 1) m Y =xand+,forallp € (0,1)
I'DSZXI—>{A|Ai5a — m axioms of E =
finitely supported (X +q¥) +p2 (4p) X +pg (V + 500 2)
probability ©) 1—pq
subdistribution on X} X+py = Y +1-pX

X +p X = X



COMBINING NONDETERMINISM AND PROBABILITY

m a transition reaches a set of
probability distributions
{3x1 + 3xa, %X_v, + %Xz,}

m Problem: P o D is not a
monad
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m a transition reaches a set of
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m Problem: P o D is not a
monad
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Solution: use convex sets of probability distributions

1 1 1 1 1 1 1 2
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COMBINING NONDETERMINISM AND PROBABILITY

m a transition reaches a set of
probability distributions
{3x1 + 3xa, %X_v, + %Xz,}

m Problem: P o D is not a
monad

X6

Solution: use convex sets of probability distributions

1 1 1 1 1 1 1 2
{5X1+5X27-~-7ZX1+;X2+gx3+§xm---a§X3+§X4}

+ accounts for probabilistic schedulers



THE MONAD OF CONVEX SETS OF PROBABILITY DISTRIBUTIONS

The monad (C, 7, 1) in Set:

m C: X — {S | Sis anon-empty, convex-closed, finitely generated
set of finitely supported probability distributions over X}

m oy X — C(X)
nx o x— {1x}

m uy : CC(X) — C(X)
xc (J{Ai} = | Jwms(A))
i i
with WMS : DC(X) — C(X) the weighted Minkowski sum

n n
WMS(Z piSi) = {Z pi- Aj | foreach1 <i<n, A; €5}
i=1

i=1



EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

Monad (M, 7, 1) PN Equational Theory (X, E)
in Set for X a signature, E a set of equations
Conv?ex s‘ets '(non-empty) Equational theory of convex semilattices
of distributions monad
CX)={S|Sisa
non-empty, convex-closed,

m Y =dand+,forallp € (0,1)
m axiomsE :

finitely generated set of m axioms of semilattices

finitely supported
probability distributions

m axioms of convex algebras
m distributivity axiom (D)

(D)
XPy)+pz=(x+,2)P(y+,2
OVEI’X} ( y) +p (x+p2) @ (v +p2)

10
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in Set for X a signature, E a set of equations
Conv?ex s‘ets '(non-empty) Equational theory of convex semilattices
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CX)={S|Sisa
non-empty, convex-closed,

m Y =dand+,forallp € (0,1)
m axiomsE :

finitely generated set of m axioms of semilattices

finitely supported
probability distributions

m axioms of convex algebras
m distributivity axiom (D)

(D)
XPy)+pz=(x+,2)P(y+,2
OVEI’X} ( y) +p (x+p2) @ (v +p2)

(C(X), |, wms,(_,-)) = (Terms(X,X) /e, B, +p)

10



NONDETERMINISM + PROBABILITY + TERMINATION

Monad (M, 7, i) N Equational Theory (X, E)
in Set for X a signature, E a set of equations

Convex sets
(possibly empty)
of distributions

Equational theory of convex semilattices
= with bottom x @ % = x

409 and black-hole  x +, x =*
mona

1 -closed convex sets . o
L Equational theory of convex semilattices
of subdistributions

with bottom x@® x = x
monad C+

1"



APPLICATION: REASONING ON EQUIVALENCE OF TRANSITION SYSTEMS

For transition systems with nondeterminism, probabilities, termina-
tion, combinations...

m axiomatizations and equational reasoning for bisimulation
equivalence

x ~y iff x=yinthe equational theory

m proof techniques for trace equivalence (via powerset
construction)

12



WHAT ABOUT DISTANCES?

170 1i% 2 16 1 1. %2
27 i3 3003 2 3 €1 3T
v v v < v v M 4

13



MONADS ON METRIC SPACES AND QUANTITATIVE
EQUATIONAL THEORIES



FROM EQUIVALENCES TO DISTANCES

Computational effect Equational Theory (X, E)
(monad in Set) for ¥ a signature, E a set of equations
Effect+distance Quantitative Equational Theory (X, Q)

(monad in Met) for ¥ a signature, Q quantitative inferences

i



MONADS ON METRIC SPACES

Monad (M, 1, 1)
in Set

m functor M : X — M(X)
m unitny : X — M(X)
m multiplication pyx : M(M(X)) = M(X)

Monad (M, 7, i) Me:ri; zp:é:te (X, d)
in Met

m d: X xX— [0,1] a metricon X

m functor M : (X, d) — (M(X), lifta(d))
with lifty : metric on X — metric on M(X)

m unit and multiplication are non-expansive 5



THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (P, 7, 1) can be lifted to a monad (P, 4, /i) in
Met:

m P (X.d) = (P(X), H(d)) H(d) = Hausdorff lifting of d
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THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (P, 7, 1) can be lifted to a monad (P, 4, /i) in
Met:

m P (X.d) = (P(X), H(d)) H(d) = Hausdorff lifting of d

X4 # X3
| |
X2 Xy
\ |
X5

H(d)(S:,S,) = max { sup inf d(x,y) , sup inf d(x,
(@)1 %) {xes?yesz (6y) yesrzxe& ( y)}



THE POWERSET MONAD, ON METRIC SPACES

The powerset monad (P, 7, 1) can be lifted to a monad (P, 4, /i) in
Met:

m P (X.d) = (P(X), H(d)) H(d) = Hausdorff lifting of d

B Nixa) (X,d) — (P(X),H(d)) and

fix.ay : (PP(X), H(H(d))) — (P(X), H(d))
non-expansive



THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (D, 7, 1) can be lifted to a monad (D, 7, /i) in
Met:

mD: (X,d) — (D(X), K(d)) K(d) = Kantorovich
lifting of d
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The distribution monad (D, 7, 1) can be lifted to a monad (D, 7, /i) in
Met:
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THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (D, 7, 1) can be lifted to a monad (D, 7, /i) in
Met:

mD: (X,d) — (D(X), K(d)) K(d) = Kantorovich
lifting of d

b X33

o TF——F X435

K(d)(Ar, A,) = inf A)( 3 w(x1,x2)-d(x1,xz))

weCoup(A
P&, A (X1,%: ) EXXX

with Coup(A,, A,) the set of couplings of A, and A,, i.e., probability

distributions on X x X such that the marginals of w are A, and A,



THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (D, 7, 1) can be lifted to a monad (D, 7, /i) in
Met:

mD: (X,d) — (D(X), K(d)) K(d) = Kantorovich
lifting of d

m fxa) - (X, d) = (D(X)

fix.a) : (DD(X), K(K(d))) — (D(X),K(d))
non-expansive



THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (C, 7, u) of convex sets of distributions can be lifted to a

AN o

monad (C,#, /i) in Met:

m C:(X,d) — (C(X),HK(d)) HK(d) = Hausdorff-Kantorovich
lifting of d
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THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (C, 7, u) of convex sets of distributions can be lifted to a

monad (C,#, /i) in Met:

m C:(X,d) — (C(X),HK(d)) HK(d) = Hausdorff-Kantorovich
lifting of d

X1 X32

e %3



THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (C, 7, u) of convex sets of distributions can be lifted to a

AN o

monad (C,#, /i) in Met:

m C:(X,d) — (C(X),HK(d)) HK(d) = Hausdorff-Kantorovich
lifting of d



THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (C, 7, u) of convex sets of distributions can be lifted to a

AN o

monad (C,#, /i) in Met:
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lifting of d



THE MONAD OF CONVEX SETS OF DISTRIBUTIONS, ON METRIC SPACES

The monad (C, 7, u) of convex sets of distributions can be lifted to a

AN o

monad (C,#, /i) in Met:

m C:(X,d) — (C(X),HK(d)) HK(d) = Hausdorff-Kantorovich
lifting of d

B fxq) : (X,d) = (C(X),HK(d)) and
figx.a) = (CC(X), HK(HK(d))) — (C(X), HK(d))
non-expansive



FROM EQUIVALENCES TO DISTANCES

Computational effect Equational Theory (X, E)
(monad in Set) for ¥ a signature, E a set of equations
Effect+distance Quantitative Equational Theory (X, Q)

(monad in Met) for ¥ a signature, Q quantitative inferences

19



QUANTITATIVE EQUATIONAL THEORIES

Signature ¥ = set of operations op, each with its arity

m terms t:=x|op(t,...t;) VopE X
m quantitative equations t=.s
m Q a set of quantitative inferences  {t; =, si}ic/ -t =cs

Deductive system of quantitative equational logic

(Reflexivity) O Ft=¢t
(Symmetry) {t=.s}Fs=.t
(Triangular) {t=., u,u=,, s}tFt=.4cs

20



QUANTITATIVE EQUATIONAL THEORIES

Signature ¥ = set of operations op, each with its arity

m terms t:=x|op(t,...t;) VopE X
m quantitative equations t=.s
m Q a set of quantitative inferences  {t; =, si}ic/ -t =cs

Deductive system of quantitative equational logic

(Reflexivity) O Ft=¢t
(Symmetry) {t=.s}Fs=.t
(Triangular) {t=., u,u=,, s}tFt=.4cs

Models: quantitative algebras (A, ¥4, d,) satisfying Q
t=cs issatisfiedif Vi:X — A, da([t]a,[s]a) < e
Quantitative algebra of terms modulo (quantitative) equations:
(Terms(X, Z)/Q, Y, d(Z,O))
with d(z ) = (t,t') — inf{e |0 -t = t'}

. 20
[Mardare, Panangaden, Plotkin 2016...]



MONADS ON METRIC SPACES AND QUANTITATIVE EQUATIONAL THEORIES

Monad (M, 7, i) N Quantitative Equational Theory (X, Q)
in Met for X a signature, Q quantitative inferences

(X, Q) is a presentation of (M, 7, 1)
The category EM(M) of Eilenberg-Moore algebras for (M, M), i) is
isomorphic to the category QA(X, Q) of quantitative (X, Q)-algebras

Corollary: equational reasoning on free objects

Free quantitative algebra for the monad = (Terms(X, X ) o, X, d(5 q))

21



THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

Monad (M, 7, i) N Quantitative Equational Theory (X, Q)

in Met for X a signature, Q quantitative inferences

Quantitative equational theory of semilattices

mY=¢
Powerset . q q
( ) d m quantitative inferences Q =
non-empty) mona
in Met. with e axioms of semilattices,
Hausdorff lifting with t = t’ becoming ) -t =, t’

o{Xi =c, Y1, =¢, Y2} F Xa B X2 =max(er,er) V1 B V2

22



THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

Monad (M, 7, i) N Quantitative Equational Theory (X, Q)
in Met for X a signature, Q quantitative inferences

Quantitative equational theory of semilattices

mY=9
Powerset

m quantitative inferences Q =
(non-empty) monad

in Met. with e axioms of semilattices,
1

. o . 0
HausdorfF lifting with t = t’ becoming @ -t =, t
o{Xi =c, Y1, =¢, Y2} F Xa B X2 =max(er,er) V1 B V2

(P(x),U, H(d)) = (Terms(X, X) q, @, d(z,o))

22



THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX ALGEBRAS

Monad (M, 7, i) N Quantitative Equational Theory (X, Q)
in Met for X a signature, Q quantitative inferences

Quantitative equational theory
of convex algebras

m Y=+, forallp e (0,1)
Distribution monad

in Met. with P m quantitative inferences Q =
Kantorovich lifting e axioms of convex algebras,

with t = t’ becoming ) - t =, t’

.{X1 =e Y1, X2 =¢, Y2} F X, +p X2 =p-e+(1—p)-e; Y1 +p Y2

23



THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX ALGEBRAS

Monad (M, 7, i) N Quantitative Equational Theory (X, Q)

in Met for X a signature, Q quantitative inferences

Quantitative equational theory
of convex algebras

m Y=+, forallp e (0,1)
Distribution monad

in Met. with P m quantitative inferences Q =
Kantorovich lifting e axioms of convex algebras,

with t = t’ becoming ) - t =, t’

.{X1 =e Y1, X2 =¢, Y2} F X, +p X2 =p-e+(1—p)-e; Y1 +p Y2

(D(X)a CSp(,, *)v K(d)) = (Terms(X, Z)/Q? +ps d(lQ)) 2



THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

Monad (M, 7, i) N Quantitative Equational Theory (X, Q)

in Met for X a signature, Q quantitative inferences

Quantitative equational theory
of convex semilattices

Convex sets m Y =aand +, forallp € (0,1)

(non-empty) of

L m quantitative inferences Q =
distributions monad
in Met. with <~ e axioms of convex semilattices,
1
Ve with t = t’ becoming ) - t =, t’

Kantorovich lifting o= Vi, % =, Yo} F X ® X Zmax(er,e) Y1 D Vo

o{Xi =, V1, X =¢, Y2 } F X1 FpXa =p.crt(1-p)e; Y1tpVa

24



THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

Monad (M, 7, i) N Quantitative Equational Theory (X, Q)

in Met for X a signature, Q quantitative inferences

Quantitative equational theory
of convex semilattices

Convex sets m Y =aand +, forallp € (0,1)

(non-empty) of

L m quantitative inferences Q =
distributions monad

in Met, with < e axioms of convex semilattices,
1
Hausdorff- with t = t’ becoming ) - t =, t’
Kantorovich lifting o{Xi=c, y1,% =, V2 } F X0 © %o Zmax(erer) V1 D V2

o{Xi =, V1, X =¢, Y2 } F X1 FpXa =p.crt(1-p)e; Y1tpVa

(C(X), |, WMS,(_, ), HK(d)) = (Terms(X, X) jq, @, +p, d(x.q)) 5



RECAP: NONDETERMINISM + PROBABILITY + TERMINATION, IN SET

Monad (M, 7, i) N Equational Theory (X, E)
in Set for X a signature, E a set of equations

Convex sets
(possibly empty)
of distributions

Equational theory of convex semilattices
= with bottom x @ % = x

409 and black-hole  x +, x =*
mona

1 -closed convex sets . .
L Equational theory of convex semilattices
of subdistributions

with bottom x@® x = x
monad C+

25



NONDETERMINISM + PROBABILITY + TERMINATION, IN MET

Monad (M, 7, i) PN Quantitative Equational Theory (X, Q)
in Met for ¥ a signature, Q quantitative inferences

Convex sets
(possibly empty)
of distributions
monad C”

Equational theory of convex semilattices
= with bottom x @ % = x

NO in Met

and black-hole  x +, x =*

| -closed convex sets . .
Equational theory of convex semilattices

of subdistributions

dcb with bottom x@® x = x
mona

YES in Met

26



APPLICATION: BISIMULATION DISTANCES

10 12 1St 1 it
25 & 3 3 2 2 3 € 3+e
v M M 97 v ~ ~ 4

X5 X6 X5 X6

A sound and complete proof technique for bisimulation distance

X ~cy iff x =, yinthe quantitative equational theory

27



VARYING THE LIFTINGS



VARYING THE LIFTINGS

Different ways of lifting a metric d to probability distributions D(X)

m Kantorovich lifting on probability distributions

K(d)(Ay, D)) = inf A)( 3 w(xhxz)-d(xhxz))

weCoup(A
PB4 (X4,% ) EXXX

with Coup(A,, A,) the set of couplings of A, and A,, i.e., probability

distributions on X x X such that the marginals of w are A, and A,

m tukaszyk-Karmowski lifting on probability distributions

EK(d) (A, A0) = > > Ax) - As(y) - d(x,y)

xesupp(A.) yesupp(Az)

28



VARYING THE LIFTINGS

Different ways of lifting a metric d to probability distributions D(X)

m Kantorovich lifting on probability distributions

K(d)(Ay, D)) = inf A)( 3 w(xhxz)-d(xhxz))

weCoup(A
PB4 (X4,% ) EXXX

with Coup(A,, A,) the set of couplings of A, and A,, i.e., probability

distributions on X x X such that the marginals of w are A, and A,

m tukaszyk-Karmowski lifting on probability distributions

EK(d) (A, A0) = > > Ax) - As(y) - d(x,y)

xesupp(A.) yesupp(Az)

A metric? Presented by a quantitative equational theory ?

28



ISSUES WITH THE tK DISTANCE: METRIC CONSTRAINTS

(X,d : X x X — [0,1]) is a metric space iff
d(x,x) =0
d(x,y) = d(y,x)
d(x,z) <d(x,y) +d(y,2)
dx,y)=0 = x=y

For (X, d) a metric space, (D(X), tK(d)) is not a metric space

JA such that tK(d)(A, A) > o

29



ISSUES WITH THE tK DISTANCE: METRIC CONSTRAINTS

(X,d : X x X — [0,1]) is a metric space iff
d(x,x) =0
d(x,y) = d(y,x)
d(x,z) <d(x,y) +d(y,2)
dx,y)=0 = x=y

For (X, d) a metric space, (D(X), tK(d)) is not a metric space

JA such that tK(d)(A, A) > o

Solution: generalised metric spaces

29



GENERALISED METRIC SPACES

(X, d) with d a function d : X x X — [0, 1] (aka “fuzzy relation”)

d may satisfy:

. d(x X)=o0
d(x,y) = d(y,x)
d(x,z) < d(x,y) +d(y,2)
dix,y)=0 = x=y
d(x,2) < max{d(x,y),d(y, 2)}

Examples:

B Metric spaces:=1+2+3+4
m Ultrametric spaces:=1+2+3+4+5
m Pseudo-metric spaces:=1+2+3

m Diffuse metric spaces:=2 +3 .



ISSUES WITH THE £K DISTANCE: NONEXPANSIVENESS

In the deductive system of quantitative equational theories: opera-
tions are required to be nonexpansive wrt the product metric

S1 =, ty - Sn =¢, tn I OP(S1, -+, Sn) =max{es,....cn} OP(t1s - tn)

i.e., in all quantitative algebras (A, ¥, d,), operations define a non-
expansive map op” : (A", Ly (d)) — (A, d), where
L..(d)((ay, ...,an), (d, ...,a})) = m’gax{d(a,-,a,{)}

In (D(X), £K(d)), the operation +, is not nonexpansive wrt to the
product metric, i.e., 3A,, A,, A, Al such that

EK(d)(Aq +1 Dgy A 1 AS) > L (EK(d)) (A4, AY), (A2, A3))
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ISSUES WITH THE £K DISTANCE: NONEXPANSIVENESS

In the deductive system of quantitative equational theories: opera-
tions are required to be nonexpansive wrt the product metric

S1 =, ty - Sn =¢, tn I OP(S1, -+, Sn) =max{es,....cn} OP(t1s - tn)

i.e., in all quantitative algebras (A, ¥, d,), operations define a non-
expansive map op” : (A", Ly (d)) — (A, d), where
L..(d)((ay, ...,an), (d, ...,a})) = m’gax{d(a,-,a,{)}

In (D(X), £K(d)), the operation +, is not nonexpansive wrt to the
product metric, i.e., 3A,, A,, A, Al such that

EK(d)(Aq +1 Dgy A 1 AS) > L (EK(d)) (A4, AY), (A2, A3))

Solution: remove the nonexpansiveness requirement
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A GENERALISED FRAMEWORK FOR QUANTITATIVE EQUATIONAL REASONING

A generalised framework for quantitative equational reasoning,
including:

m generalised metric spaces
m operations which are not nonexpansive

How?

m separate equality from quantitative equality: equations and
guantitative equations coexist

x =y differentfrom x =,y

m remove rule of nonexpansiveness, and allow for arbitrary
operations 32



A GENERALISED FRAMEWORK FOR QUANTITATIVE EQUATIONAL REASONING

effect+distance

. = eneralised) quantitative equational theor
(monad in GMet) (e )a . J

monads in Met N (generalised) quantitative equational theories
seen so far corresponding to those seen so far

(generalised) quantitative equational theory
m Y=+, forallp € (0,1)
distribution monad

A m equations and quantitative inferences:
D in DMet, with

e axioms of convex algebras,

tukaszyk-Karmowski e quantitative axiom
liftin 5 =g, Ko e =y
g 1 €11 M 2 €1 M }’ X +p X2 =5 Y1 +p y2
X1 =y Y2,Y2 Zepn V2

with § = p*eq + (1 — p)pea + p(1 — p)er + (1 — p)’ex

32



FUTURE WORK (= OPEN PROBLEMS)

m general axiomatizations of behavioral equivalences with more
operators : fixed points, parallel compositions...

B compositionality

m further generalisations: quantales, categories of relational
structures...

B quantitative Universal Algebra
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FUTURE WORK (= OPEN PROBLEMS)

m general axiomatizations of behavioral equivalences with more
operators : fixed points, parallel compositions...

B compositionality

m further generalisations: quantales, categories of relational
structures...

B quantitative Universal Algebra

Thank you!
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