EQUATIONAL THEORIES AND METRICS FOR NONDETERMINISM AND PROBABILITY

Valeria Vignudelli

CNRS, ENS Lyon

Computational effect (monad in Set)

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Computational effect (monad in Set)

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Effects: nondeterminism, probabilities, termination, combinations

Computational effect (monad in Set)

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Effects: nondeterminism, probabilities, termination, combinations

- reasoning equationally on equivalences of systems
- what about reasoning equationally on distances?

2

2

Monads and Equational Theories for

COMPUTATIONAL EFFECTS

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

- \blacksquare functor $\mathcal{M}: X \mapsto \mathcal{M}(X)$
- \blacksquare unit $\eta_X: X \to \mathcal{M}(X)$
- \blacksquare multiplication $\mu_X: \mathcal{MM}(X) \to \mathcal{M}(X)$

Monad (\mathcal{M}, η, μ) in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

- terms $t := x | op(t_1, ...t_n)$ for $op \in \Sigma$
- **E** a set of equations t = s

Deductive system: equational logic (Reflexivity) $\emptyset \vdash t = t$ (Symmetry) $\{t = s\} \vdash s = t$ (Transitivity) $\{t = u, u = s\} \vdash t = s$

Models: algebras (A, Σ^A) satisfying E

Free model: $(Terms(X, \Sigma)_{/E}, \Sigma)$

$$\begin{array}{c} \operatorname{Monad} \left(\mathcal{M}, \eta, \mu \right) \\ \operatorname{in Set} \end{array} \quad \Longleftrightarrow \quad$$

Equational Theory (Σ, E) for Σ a signature, E a set of equations

$$(\Sigma, \mathit{E})$$
 is a presentation of (\mathcal{M}, η, μ)

The category $\mathbf{EM}(\mathcal{M})$ of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category $\mathbf{A}(\Sigma, E)$ of algebras (models) of (Σ, E)

Category **EM** (\mathcal{M})

- objects: $(\mathsf{A},\alpha:\mathcal{M}(\mathsf{A})\to\mathsf{A})$ with α commuting with η,μ
- arrows: algebra morphisms

Category $\mathbf{A}(\Sigma, E)$

- lacktriangle objects: models (A, Σ^A) of (Σ, E)
- **arrows:** homomorphisms of (Σ, E) -algebras

$$\begin{array}{ccc} \operatorname{Monad} \left(\mathcal{M}, \eta, \mu \right) & & & & \operatorname{Equational Theory} \left(\Sigma, E \right) \\ & & & \operatorname{for} \Sigma \text{ a signature, } E \text{ a set of equations} \end{array}$$

$$(\Sigma, \mathit{E})$$
 is a presentation of (\mathcal{M}, η, μ)

The category $\mathbf{EM}(\mathcal{M})$ of Eilenberg-Moore algebras for (\mathcal{M}, η, μ) is isomorphic to the category $\mathbf{A}(\Sigma, E)$ of algebras (models) of (Σ, E)

Corollary: equational reasoning on free objects Free algebra for the monad $\cong (Terms(X, \Sigma)_{/E}, \Sigma)$

EXAMPLE: NONDETERMINISM

Equational Theory (Σ, E) for Σ a signature, E a set of equations

EXAMPLE: NONDETERMINISM

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Powerset (non-empty) monad (\mathcal{P}, η, μ)

- $\mathcal{P}: X \mapsto \{S \mid S \text{ is a non-}$ empty, finite subset of $X\}$
- $\blacksquare \ \mu : \{S_1, ..., S_n\} \mapsto \bigcup_i S_i$

Equational theory of semilattices

- Σ = binary operation \oplus
- \blacksquare axioms of E =

 \Leftrightarrow

$$(x \oplus y) \oplus z \stackrel{\text{(A)}}{=} x \oplus (y \oplus z)$$

 $x \oplus y \stackrel{\text{(C)}}{=} y \oplus x$
 $x \oplus x \stackrel{\text{(I)}}{=} x$

EXAMPLE: NONDETERMINISM

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Powerset (non-empty) monad (\mathcal{P}, η, μ)

- $\mathcal{P}: X \mapsto \{S \mid S \text{ is a non-}$ empty, finite subset of $X\}$
- $\blacksquare \ \mu : \{S_1, ..., S_n\} \mapsto \bigcup_i S_i$

Equational theory of semilattices

- Σ = binary operation \oplus
- \blacksquare axioms of E =

$$(x \oplus y) \oplus z \stackrel{\text{(A)}}{=} x \oplus (y \oplus z)$$
$$x \oplus y \stackrel{\text{(C)}}{=} y \oplus x$$
$$x \oplus x \stackrel{\text{(I)}}{=} x$$

$$(\mathcal{P}(X),\bigcup)\cong (Terms(X,\Sigma)_{/E},\oplus)$$

 \Leftrightarrow

EXAMPLE: NONDETERMINISM + TERMINATION

$$\begin{array}{c} \operatorname{Monad}\left(\mathcal{M},\eta,\mu\right) \\ & \text{in Set} \end{array}$$

Equational Theory (Σ, E) for Σ a signature, E a set of equations

EXAMPLE: NONDETERMINISM + TERMINATION

Powerset (possibly empty) monad $(\mathcal{P}^{\emptyset}, \eta, \mu)$

- $\mathcal{P}^{\emptyset}: X \mapsto \{S \mid S \text{ is a finite } \iff$ subset of $X\}$
- $\blacksquare \ \mu : \{S_1, ..., S_n\} \mapsto \bigcup_i S_i$

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of semilattices with bottom

- $\Sigma = \star, \oplus$
- axioms of E=
 - axioms of semilattices

$$(x \oplus y) \oplus z \stackrel{\text{(A)}}{=} x \oplus (y \oplus z)$$

 $x \oplus y \stackrel{\text{(C)}}{=} y \oplus x$
 $x \oplus x \stackrel{\text{(I)}}{=} x$

■ bottom axiom $x \oplus \star = x$

$$(\mathcal{P}^{\emptyset}(X),\bigcup,\emptyset)\cong (\mathsf{Terms}(X,\Sigma)_{/E},\oplus,\star)$$

EXAMPLE: PROBABILITY

Equational Theory (Σ, E) for Σ a signature, E a set of equations

$$\tau: X \to \mathcal{D}(X)$$

$$\tau(x) = \frac{1}{2}x_1 + \frac{1}{2}x_2$$

$$\tau(x_1) = 1x_1$$
...

EXAMPLE: PROBABILITY

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

Distribution monad (\mathcal{D}, η, μ)

- $\mathcal{D}: X \mapsto \{\Delta \mid \Delta \text{ is a} \}$ finitely supported probability distribution on $X\}$
- $\eta: \mathbf{X} \mapsto \mathbf{1X}$
- $\blacksquare \mu : \sum_{i} p_{i} \Delta_{i} \mapsto \sum_{i} p_{i} \cdot \Delta_{i}$

Equational theory of convex algebras

- Σ = binary operations $+_p$ for all $p \in (0,1)$
- \blacksquare axioms of E =

$$(x +_{q} y) +_{p} z \stackrel{(A_{p})}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

$$x +_{p} y \stackrel{(C_{p})}{=} y +_{1-p} x$$

$$x +_{p} x \stackrel{(I_{p})}{=} x$$

$$\big(\mathcal{D}(\textbf{X}), CS_p(\underline{\ },\underline{\ })\big)\cong \big(\textit{Terms}(\textbf{X},\Sigma)_{/E},+_p\big)$$

 \Leftrightarrow

EXAMPLE: PROBABILITY+TERMINATION (SUBDISTRIBUTIONS)

 $\begin{array}{c} \operatorname{Monad}\left(\mathcal{M},\eta,\mu\right) \\ \operatorname{in}\operatorname{Set} \end{array}$

Equational Theory (Σ, E) for Σ a signature, E a set of equations

subdistribution = $\sum_i p_i x_i$ with $\sum_i p_i \le 1$

EXAMPLE: PROBABILITY+TERMINATION (SUBDISTRIBUTIONS)

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

Subdistribution monad $(\mathcal{D}^{\leq}, \eta, \mu)$

■ $\mathcal{D}^{\leq}: X \mapsto \{\Delta \mid \Delta \text{ is a} \}$ finitely supported probability subdistribution on X

Equational theory of pointed convex algebras

- $\Sigma = \star$ and $+_p$ for all $p \in (0, 1)$
- \blacksquare axioms of E =

$$(x +_{q} y) +_{p} z \stackrel{(A_{p})}{=} x +_{pq} (y +_{\frac{p(1-q)}{1-pq}} z)$$

$$x +_{p} y \stackrel{(C_{p})}{=} y +_{1-p} x$$

$$x +_{p} x \stackrel{(I_{p})}{=} x$$

COMBINING NONDETERMINISM AND PROBABILITY

■ a transition reaches a set of probability distributions $\left\{\frac{1}{2}X_1 + \frac{1}{2}X_2, \frac{1}{3}X_3 + \frac{2}{3}X_4\right\}$

■ Problem: $\mathcal{P} \circ \mathcal{D}$ is not a monad [Varacca, Winskel 2006]

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions $\left\{\frac{1}{2}X_1 + \frac{1}{2}X_2, \frac{1}{3}X_3 + \frac{2}{3}X_4\right\}$
- Problem: $\mathcal{P} \circ \mathcal{D}$ is not a monad [Varacca, Winskel 2006]

Solution: use convex sets of probability distributions

$$\left\{\, \tfrac{1}{2} X_1 + \tfrac{1}{2} X_2, \ldots, \tfrac{1}{4} X_1 + \tfrac{1}{4} X_2 + \tfrac{1}{6} X_3 + \tfrac{1}{3} X_4, \ldots, \tfrac{1}{3} X_3 + \tfrac{2}{3} X_4 \,\right\}$$

COMBINING NONDETERMINISM AND PROBABILITY

- a transition reaches a set of probability distributions $\{\frac{1}{2}x_1 + \frac{1}{2}x_2, \frac{1}{2}x_3 + \frac{2}{2}x_4\}$
- Problem: $\mathcal{P} \circ \mathcal{D}$ is not a monad [Varacca, Winskel 2006]

Solution: use convex sets of probability distributions

$$\left\{\, \tfrac{1}{2} X_1 + \tfrac{1}{2} X_2, \ldots, \tfrac{1}{4} X_1 + \tfrac{1}{4} X_2 + \tfrac{1}{6} X_3 + \tfrac{1}{3} X_4, \ldots, \tfrac{1}{3} X_3 + \tfrac{2}{3} X_4\,\right\}$$

+ accounts for probabilistic schedulers

THE MONAD OF CONVEX SETS OF PROBABILITY DISTRIBUTIONS

The monad (C, η, μ) in Set:

- $C: X \mapsto \{S \mid S \text{ is a non-empty, convex-closed, finitely generated}$ set of finitely supported probability distributions over $X\}$
- $m{\eta}_{\mathsf{X}}: \mathsf{X}
 ightarrow \mathcal{C}(\mathsf{X})$ $\eta_{\mathsf{X}}: \mathsf{X} \mapsto \{\ \mathsf{1x}\ \}$
- $\blacksquare \ \mu_{\mathsf{X}}: \mathcal{CC}(\mathsf{X}) \to \mathcal{C}(\mathsf{X})$

$$\mu_{\mathsf{X}}:\bigcup_{i}\{\Delta_{i}\}\mapsto\bigcup_{i}\mathsf{WMS}(\Delta_{i})$$

with WMS : $\mathcal{DC}(X) o \mathcal{C}(X)$ the weighted Minkowski sum

$$\mathsf{WMS}(\sum_{i=1}^n p_i \mathsf{S}_i) = \{\sum_{i=1}^n p_i \cdot \Delta_i \mid \text{for each 1} \leq i \leq n, \, \Delta_i \in \mathsf{S}_i\}$$

EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

Convex sets (non-empty) of distributions monad $\mathcal{C}(X) = \{S \mid S \text{ is a non-empty, convex-closed, finitely generated set of finitely supported probability distributions over <math>X\}$

Equational theory of convex semilattices

- $\Sigma = \bigoplus$ and $+_p$ for all $p \in (0,1)$
- axioms E:
 - axioms of semilattices
 - axioms of convex algebras
 - distributivity axiom (D)

$$(x \oplus y) +_{p} z \stackrel{(D)}{=} (x +_{p} z) \oplus (y +_{p} z)$$

[Bonchi, Sokolova, V. 2019 and 2021]

EQUATIONAL THEORY FOR NONDETERMINISM AND PROBABILITY

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

Convex sets (non-empty) of distributions monad $\mathcal{C}(X) = \{S \mid S \text{ is a } \}$ non-empty, convex-closed, finitely generated set of finitely supported probability distributions over $X\}$

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Equational theory of convex semilattices

- $\Sigma = \bigoplus$ and $+_p$ for all $p \in (0, 1)$
- \blacksquare axioms E:
 - axioms of semilattices
 - axioms of convex algebras
 - distributivity axiom (D)

$$(x \oplus y) +_{p} z \stackrel{(D)}{=} (x +_{p} z) \oplus (y +_{p} z)$$

[Bonchi, Sokolova, V. 2019 and 2021]

$$\left(\mathcal{C}(\mathsf{X}), \colongledge , \mathsf{WMS}_p(\colongledge, \colongledge)
ight)\cong \left(\mathsf{Terms}(\mathsf{X}, \Sigma)_{/E}, \oplus, +_p
ight)$$

NONDETERMINISM + PROBABILITY + TERMINATION

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Set

Equational Theory (Σ, E) for Σ a signature, E a set of equations

Convex sets (possibly empty) of distributions monad C^{\emptyset}

Equational theory of convex semilattices \Leftrightarrow with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

 \perp -closed convex sets of subdistributions monad \mathcal{C}^\perp

Equational theory of convex semilattices with bottom $x \oplus \star = x$

[Mio, Sarkis, V. 2021]

APPLICATION: REASONING ON EQUIVALENCE OF TRANSITION SYSTEMS

For transition systems with nondeterminism, probabilities, termination, combinations...

axiomatizations and equational reasoning for bisimulation equivalence

$$x \sim y$$
 iff $x = y$ in the equational theory

proof techniques for trace equivalence (via powerset construction)

[Bonchi, Pous 2013], [Bonchi, Sokolova, V. 2019]...

WHAT ABOUT DISTANCES?

Monads on Metric Spaces and Quantitative

EQUATIONAL THEORIES

FROM EQUIVALENCES TO DISTANCES

MONADS ON METRIC SPACES

Monad
$$(\mathcal{M}, \eta, \mu)$$
 in Set

- functor $\mathcal{M}: X \mapsto \mathcal{M}(X)$
- \blacksquare unit $\eta_X: X \to \mathcal{M}(X)$
- multiplication $\mu_X : \mathcal{M}(\mathcal{M}(X)) \to \mathcal{M}(X)$

Monad
$$(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$$
 in Met

Metric Space (X, d) $\blacksquare X$ a set

■ $d: X \times X \rightarrow [0,1]$ a metric on X

- functor $\hat{\mathcal{M}}$: $(X, d) \mapsto (\mathcal{M}(X), \mathrm{lift}_{\mathcal{M}}(d))$ with $\mathrm{lift}_{\mathcal{M}}$: metric on $X \mapsto$ metric on $\mathcal{M}(X)$
 - unit and multiplication are non-expansive

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

$$\hat{\mathcal{P}}: (X,d) \mapsto (\mathcal{P}(X),\mathcal{H}(d))$$
 $\mathcal{H}(d) = \text{Hausdorff lifting of } d$

The powerset monad (\mathcal{P},η,μ) can be lifted to a monad $(\hat{\mathcal{P}},\hat{\eta},\hat{\mu})$ in Met:

 $lacklet \hat{\mathcal{P}}: (X,d) \mapsto (\mathcal{P}(X), H(d))$ H(d) = Hausdorff lifting of d

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

■ $\hat{\mathcal{P}}$: $(X,d) \mapsto (\mathcal{P}(X), H(d))$ H(d) = Hausdorff lifting of d

$$H(d)(S_1,S_2) = \max\big\{\sup_{x\in S_1}\inf_{y\in S_2}d(x,y)\ ,\ \sup_{y\in S_2}\inf_{x\in S_1}d(x,y)\big\}$$

The powerset monad (\mathcal{P}, η, μ) can be lifted to a monad $(\hat{\mathcal{P}}, \hat{\eta}, \hat{\mu})$ in Met:

■ $\hat{\mathcal{P}}$: $(X,d) \mapsto (\mathcal{P}(X), H(d))$ H(d) = Hausdorff lifting of d

 $\hat{\eta}_{(X,d)}: (X,d) \to (\mathcal{P}(X), H(d)) \text{ and }$ $\hat{\mu}_{(X,d)}: \big(\mathcal{P}\mathcal{P}(X), H(H(d))\big) \to \big(\mathcal{P}(X), H(d)\big)$ non-expansive

THE DISTRIBUTION MONAD, ON METRIC SPACES

The distribution monad (\mathcal{D},η,μ) can be lifted to a monad $(\hat{\mathcal{D}},\hat{\eta},\hat{\mu})$ in Met:

■
$$\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d))$$
 $K(d) = \text{Kantorovich}$ lifting of d

The distribution monad (\mathcal{D},η,μ) can be lifted to a monad $(\hat{\mathcal{D}},\hat{\eta},\hat{\mu})$ in Met:

■
$$\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d))$$
 $K(d) = \text{Kantorovich}$ lifting of d

The distribution monad (\mathcal{D},η,μ) can be lifted to a monad $(\hat{\mathcal{D}},\hat{\eta},\hat{\mu})$ in Met:

■
$$\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d))$$
 $K(d) = \text{Kantorovich}$ lifting of d

The distribution monad (\mathcal{D},η,μ) can be lifted to a monad $(\hat{\mathcal{D}},\hat{\eta},\hat{\mu})$ in Met:

■ $\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d))$ K(d) = Kantorovich lifting of d

$$K(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \left(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \right)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

The distribution monad (\mathcal{D}, η, μ) can be lifted to a monad $(\hat{\mathcal{D}}, \hat{\eta}, \hat{\mu})$ in Met:

■ $\hat{\mathcal{D}}: (X, d) \mapsto (\mathcal{D}(X), K(d))$ K(d) = Kantorovich lifting of d

 $\hat{\eta}_{(X,d)}: (X,d) \to (\mathcal{D}(X), K(d)) \text{ and }$ $\hat{\mu}_{(X,d)}: \left(\mathcal{D}\mathcal{D}(X), K(K(d))\right) \to \left(\mathcal{D}(X), K(d)\right)$ non-expansive

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

■
$$\hat{C}: (X, d) \mapsto (C(X), HK(d))$$
 $HK(d) = \text{Hausdorff-Kantorovich}$ lifting of d

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\hat{\mathcal{C}}: (X,d) \mapsto (\mathcal{C}(X), HK(d))$ HK(d) = Hausdorff-Kantorovich lifting of d

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\hat{\mathcal{C}}: (X,d) \mapsto (\mathcal{C}(X), HK(d))$ HK(d) = Hausdorff-Kantorovich lifting of d

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\hat{\mathcal{C}}: (X,d) \mapsto (\mathcal{C}(X), HK(d))$ HK(d) = Hausdorff-Kantorovich lifting of d

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

The monad (C, η, μ) of convex sets of distributions can be lifted to a monad $(\hat{C}, \hat{\eta}, \hat{\mu})$ in Met:

 $\widehat{\eta}_{(X,d)}: (X,d) \to (\mathcal{C}(X), HK(d)) \text{ and }$ $\widehat{\mu}_{(X,d)}: \big(\mathcal{CC}(X), HK(HK(d))\big) \to \big(\mathcal{C}(X), HK(d)\big)$ non-expansive

FROM EQUIVALENCES TO DISTANCES

QUANTITATIVE EQUATIONAL THEORIES

Signature $\Sigma = \text{set of operations } \textit{op}$, each with its arity

- terms $t := x | op(t_1, ...t_n)$ $\forall op \in \Sigma$
- lacktriangle quantitative equations $t=_{arepsilon}$ s
- *Q* a set of quantitative inferences $\{t_i =_{\varepsilon_i} s_i\}_{i \in I} \vdash t =_{\varepsilon} s$

Deductive system of quantitative equational logic

```
 \begin{array}{ll} (\text{Reflexivity}) & \emptyset \vdash t =_{\text{o}} t \\ (\text{Symmetry}) & \{t =_{\varepsilon} \text{s}\} \vdash \text{s} =_{\varepsilon} t \\ (\text{Triangular}) & \{t =_{\varepsilon_1} u, u =_{\varepsilon_2} \text{s}\} \vdash t =_{\varepsilon_1 + \varepsilon_2} \text{s} \end{array}
```

QUANTITATIVE EQUATIONAL THEORIES

Signature $\Sigma=$ set of operations op , each with its arity

- terms $t := x | op(t_1, ...t_n)$ $\forall op \in \Sigma$
- lacktriangle quantitative equations $t=_{\varepsilon} s$
- Q a set of quantitative inferences $\{t_i =_{\varepsilon_i} s_i\}_{i \in I} \vdash t =_{\varepsilon} s$

Deductive system of quantitative equational logic

(Reflexivity)
$$\emptyset \vdash t =_0 t$$

(Symmetry) $\{t =_{\varepsilon} s\} \vdash s =_{\varepsilon} t$
(Triangular) $\{t =_{\varepsilon_1} u, u =_{\varepsilon_2} s\} \vdash t =_{\varepsilon_1 + \varepsilon_2} s$

Models: quantitative algebras (A, Σ^A, d_A) satisfying Q

$$t =_\varepsilon s \ \text{ is satisfied if } \ \forall \iota : \mathsf{X} \to \mathsf{A}, \ \mathit{d}_\mathsf{A}([\![t]\!]_\mathsf{A}^\iota, [\![s]\!]_\mathsf{A}^\iota) \leq \varepsilon$$

Quantitative algebra of terms modulo (quantitative) equations:

$$(\mathit{Terms}(X,\Sigma)_{/Q},\Sigma,d_{(\Sigma,Q)})$$
 with $d_{(\Sigma,Q)}=(t,t')\mapsto\inf\{\varepsilon\mid\emptyset\vdash t=_\varepsilon t'\}$

MONADS ON METRIC SPACES AND QUANTITATIVE EQUATIONAL THEORIES

$$\begin{array}{c} \operatorname{Monad} (\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu}) \\ \text{in Met} \end{array} \iff$$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

$$(\Sigma, \mathit{Q})$$
 is a presentation of $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$

The category $\mathbf{EM}(\hat{\mathcal{M}})$ of Eilenberg-Moore algebras for $(\hat{\mathcal{M}},\hat{\eta},\hat{\mu})$ is isomorphic to the category $\mathbf{QA}(\Sigma,Q)$ of quantitative (Σ,Q) -algebras

Corollary: equational reasoning on free objects $\text{Free quantitative algebra for the monad} \cong (\textit{Terms}(X, \Sigma)_{/Q}, \Sigma, d_{(\Sigma,Q)})$

THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

Monad
$$(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$$
 in Met

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Powerset (non-empty) monad in Met, with Hausdorff lifting

Quantitative equational theory of semilattices

- ∑ = ⊕
- quantitative inferences Q =
- axioms of semilattices, with t=t' becoming $\emptyset \vdash t=_{\mathtt{o}} t'$
- $\bullet \{ \mathsf{X}_1 =_{\epsilon_1} \mathsf{y}_1, \mathsf{X}_2 =_{\epsilon_2} \mathsf{y}_2 \} \vdash \mathsf{X}_1 \oplus \mathsf{X}_2 =_{\mathsf{max}(\epsilon_1, \epsilon_2)} \mathsf{y}_1 \oplus \mathsf{y}_2$

THE QUANTITATIVE EQUATIONAL THEORY OF SEMILATTICES

$$\begin{array}{c} \mathsf{Monad}\;(\hat{\mathcal{M}},\hat{\eta},\hat{\mu}) \\ \mathsf{in}\;\mathsf{Met} \end{array} \Leftarrow$$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Powerset (non-empty) monad in Met, with Hausdorff lifting

- Σ = ⊕
- quantitative inferences Q =
- axioms of semilattices, with t = t' becoming $\emptyset \vdash t =_{o} t'$
- $\bullet \{ \mathsf{X}_1 =_{\epsilon_1} \mathsf{y}_1, \mathsf{X}_2 =_{\epsilon_2} \mathsf{y}_2 \} \vdash \mathsf{X}_1 \oplus \mathsf{X}_2 =_{\mathsf{max}(\epsilon_1, \epsilon_2)} \mathsf{y}_1 \oplus \mathsf{y}_2$

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX ALGEBRAS

Monad
$$(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$$
 in Met

Quantitative Equational Theory (Σ,Q) for Σ a signature, Q quantitative inferences

Distribution monad in Met, with Kantorovich lifting

Quantitative equational theory of convex algebras

$$\Sigma = +_p$$
 for all $p \in (0, 1)$

- quantitative inferences Q =
- ullet axioms of convex algebras, with t=t' becoming $\emptyset \vdash t =_{0} t'$
- $\bullet \{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \} \vdash x_1 +_{p} x_2 =_{p \cdot \epsilon_1 + (1-p) \cdot \epsilon_2} y_1 +_{p} y_2$

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX ALGEBRAS

$$\begin{array}{c} \text{Monad } (\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu}) \\ \text{in Met} \end{array} \iff$$

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Distribution monad in Met, with Kantorovich lifting Quantitative equational theory of convex algebras

■
$$\Sigma = +_p$$
 for all $p \in (0,1)$

- quantitative inferences Q =
- ullet axioms of convex algebras, with t=t' becoming $\emptyset \vdash t=_{\mathrm{o}} t'$

$$\bullet \{ X_1 =_{\epsilon_1} y_1, X_2 =_{\epsilon_2} y_2 \} \vdash X_1 +_p X_2 =_{p \cdot \epsilon_1 + (1-p) \cdot \epsilon_2} y_1 +_p y_2$$

$$\left(\mathcal{D}(\textbf{X}), CS_p(\mbox{$_{-}$}, \mbox{$_{-}$}), \textbf{K}(\textbf{d})\right) \cong \left(\textit{Terms}(\textbf{X}, \Sigma)_{/Q}, +_p, \ d_{(\Sigma,Q)}\right)$$

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

Monad
$$(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$$
 in Met

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Quantitative equational theory of convex semilattices

Convex sets
(non-empty) of
distributions monad

in Met, with

Hausdorff-

Kantorovich lifting

■ $\Sigma = \bigoplus$ and $+_p$ for all $p \in (0,1)$

quantitative inferences Q =

axioms of convex semilattices,
 with t = t' becoming Ø ⊢ t =₀ t'

$$\bullet \{x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2\} \vdash x_1 \oplus x_2 =_{\max(\epsilon_1, \epsilon_2)} y_1 \oplus y_2$$

$$\bullet \{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \} \vdash x_1 +_{\rho} x_2 =_{\rho \cdot \epsilon_1 + (1-\rho) \cdot \epsilon_2} y_1 +_{\rho} y_2$$

[Mio, V. 2020]

THE QUANTITATIVE EQUATIONAL THEORY OF CONVEX SEMILATTICES

Monad
$$(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$$
 in Met

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Convex sets
(non-empty) of
distributions monad
in Met, with
HausdorffKantorovich lifting

Quantitative equational theory of convex semilattices

- $\Sigma = \bigoplus$ and $+_p$ for all $p \in (0,1)$
- quantitative inferences Q =
- axioms of convex semilattices,
 with t = t' becoming ∅ ⊢ t = t'
- $\bullet \{x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2\} \vdash x_1 \oplus x_2 =_{\max(\epsilon_1, \epsilon_2)} y_1 \oplus y_2$
- $\bullet \{ x_1 =_{\epsilon_1} y_1, x_2 =_{\epsilon_2} y_2 \} \vdash x_1 +_{\rho} x_2 =_{\rho \cdot \epsilon_1 + (1-\rho) \cdot \epsilon_2} y_1 +_{\rho} y_2$

[Mio, V. 2020]

$$\left(\mathcal{C}(X), \uplus, WMS_p(_,_), HK(d)\right) \cong \left(Terms(X,\Sigma)_{/Q}, \oplus, +_p, \ d_{(\Sigma,Q)}\right)$$

RECAP: NONDETERMINISM + PROBABILITY + TERMINATION, IN SET

Monad
$$(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$$
 in Set

Convex sets (possibly empty) of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices \Leftrightarrow with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

 \perp -closed convex sets of subdistributions monad \mathcal{C}^{\perp}

Monad $(\hat{\mathcal{M}}, \hat{\eta}, \hat{\mu})$ in Met

Quantitative Equational Theory (Σ, Q) for Σ a signature, Q quantitative inferences

Convex sets (possibly empty) of distributions monad \mathcal{C}^{\emptyset}

Equational theory of convex semilattices with bottom $x \oplus \star = x$ and black-hole $x +_p \star = \star$

 \perp -closed convex sets of subdistributions monad \mathcal{C}^{\downarrow}

Equational theory of convex semilattices with bottom $x \oplus \star = x$

APPLICATION: BISIMULATION DISTANCES

A sound and complete proof technique for bisimulation distance

 $x \sim_{\epsilon} y$ iff $x =_{\epsilon} y$ in the quantitative equational theory

[Mio, Sarkis, V. 2021]

Different ways of lifting a metric d to probability distributions $\mathcal{D}(X)$

Kantorovich lifting on probability distributions

$$K(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \left(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \right)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

■ Łukaszyk-Karmowski lifting on probability distributions

$$\label{eq:kappa} \begin{split} \mathsf{k} \mathcal{K}(d)(\Delta_1, \Delta_2) &= \sum_{x \in \mathit{supp}(\Delta_1)} \sum_{y \in \mathit{supp}(\Delta_2)} \Delta_1(x) \cdot \Delta_2(y) \cdot d(x,y) \\ &\qquad \qquad \text{[Castro et al. 2021]} \end{split}$$

Different ways of lifting a metric d to probability distributions $\mathcal{D}(X)$

Kantorovich lifting on probability distributions

$$K(d)(\Delta_1, \Delta_2) = \inf_{\omega \in Coup(\Delta_1, \Delta_2)} \left(\sum_{(x_1, x_2) \in X \times X} \omega(x_1, x_2) \cdot d(x_1, x_2) \right)$$

with $Coup(\Delta_1, \Delta_2)$ the set of couplings of Δ_1 and Δ_2 , i.e., probability distributions on $X \times X$ such that the marginals of ω are Δ_1 and Δ_2

■ Łukaszyk-Karmowski lifting on probability distributions

$$\mathsf{L} \mathcal{K}(d)(\Delta_1, \Delta_2) = \sum_{x \in \mathsf{supp}(\Delta_1)} \sum_{y \in \mathsf{supp}(\Delta_2)} \Delta_1(x) \cdot \Delta_2(y) \cdot d(x,y)$$
 [Castro et al. 2021]

A metric? Presented by a quantitative equational theory?

ISSUES WITH THE ŁK DISTANCE: METRIC CONSTRAINTS

 $(X, d: X \times X \rightarrow [0, 1])$ is a metric space iff

- 1 d(x,x) = 0
- d(x,y) = d(y,x)
- $d(x,z) \leq d(x,y) + d(y,z)$
- $d(x,y) = 0 \Rightarrow x = y$

For (X, d) a metric space, $(\mathcal{D}(X), \mathsf{k}K(d))$ is not a metric space

$$\exists \Delta$$
 such that $\forall K(d)(\Delta, \Delta) > 0$

ISSUES WITH THE ŁK DISTANCE: METRIC CONSTRAINTS

 $(X, d: X \times X \rightarrow [0, 1])$ is a metric space iff

- 1 d(x,x) = 0
- d(x,y) = d(y,x)
- $d(x,z) \leq d(x,y) + d(y,z)$
- $d(x,y) = 0 \Rightarrow x = y$

For (X, d) a metric space, $(\mathcal{D}(X), \xi K(d))$ is not a metric space

$$\exists \Delta$$
 such that $\forall K(d)(\Delta, \Delta) > 0$

Solution: generalised metric spaces

GENERALISED METRIC SPACES

(X, d) with d a function $d: X \times X \rightarrow [0, 1]$ (aka "fuzzy relation") d may satisfy:

- 1 d(x, x) = 0
- d(x,y) = d(y,x)
- $d(x,z) \leq d(x,y) + d(y,z)$
- $d(x,y) = 0 \Rightarrow x = y$
- $d(x,z) \leq \max\{d(x,y),d(y,z)\}$

Examples:

- Metric spaces := 1 + 2 + 3 + 4
- Ultrametric spaces := 1 + 2 + 3 + 4 + 5
- Pseudo-metric spaces := 1 + 2 + 3
- Diffuse metric spaces := 2 + 3

ISSUES WITH THE ŁK DISTANCE: NONEXPANSIVENESS

In the deductive system of quantitative equational theories: operations are required to be nonexpansive wrt the product metric

$$s_1 =_{\varepsilon_1} t_1, ..., s_n =_{\varepsilon_n} t_n \vdash \mathsf{op}(s_1, ..., s_n) =_{max\{\varepsilon_1, ..., \varepsilon_n\}} \mathsf{op}(t_1, ..., t_n)$$

i.e., in all quantitative algebras (A, Σ^A, d_A) , operations define a non-expansive map $op^A: (A^n, \mathbf{L}_\times(d)) \to (A, d)$, where

$$\mathbf{L}_{\times}(d)((a_1,...,a_n),(a'_1,...,a'_n)) = \max_{i} \{d(a_i,a'_i)\}$$

In $(\mathcal{D}(X), \& K(d))$, the operation $+_p$ is not nonexpansive wrt to the product metric, i.e., $\exists \Delta_1, \Delta_2, \Delta_1', \Delta_2'$ such that

$$\mathsf{k} \mathsf{K}(\mathsf{d})(\Delta_1 +_{\frac{1}{2}} \Delta_2, \Delta_1' +_{\frac{1}{2}} \Delta_2') > \mathbf{L}_{\times}(\mathsf{k} \mathsf{K}(\mathsf{d}))((\Delta_1, \Delta_1'), (\Delta_2, \Delta_2'))$$

ISSUES WITH THE ŁK DISTANCE: NONEXPANSIVENESS

In the deductive system of quantitative equational theories: operations are required to be nonexpansive wrt the product metric

$$s_1 =_{\varepsilon_1} t_1, ..., s_n =_{\varepsilon_n} t_n \vdash op(s_1, ..., s_n) =_{max\{\varepsilon_1, ..., \varepsilon_n\}} op(t_1, ..., t_n)$$

i.e., in all quantitative algebras (A, Σ^A, d_A) , operations define a non-expansive map $op^A: (A^n, \mathbf{L}_\times(d)) \to (A, d)$, where

$$\mathbf{L}_{\times}(d)((a_1,...,a_n),(a'_1,...,a'_n)) = \max_{i} \{d(a_i,a'_i)\}$$

In $(\mathcal{D}(X), \& K(d))$, the operation $+_p$ is not nonexpansive wrt to the product metric, i.e., $\exists \Delta_1, \Delta_2, \Delta_1', \Delta_2'$ such that

$$\mathsf{k} \mathsf{K}(\mathsf{d}) (\Delta_1 +_{\frac{1}{2}} \Delta_2, \Delta_1' +_{\frac{1}{2}} \Delta_2') > \mathbf{L}_\times (\mathsf{k} \mathsf{K}(\mathsf{d})) ((\Delta_1, \Delta_1'), (\Delta_2, \Delta_2'))$$

Solution: remove the nonexpansiveness requirement

A GENERALISED FRAMEWORK FOR QUANTITATIVE EQUATIONAL REASONING

A generalised framework for quantitative equational reasoning, including:

- generalised metric spaces
- operations which are not nonexpansive

[Mio, Sarkis, V. 2022 & 2023]

How?

 separate equality from quantitative equality: equations and quantitative equations coexist

$$x = y$$
 different from $x =_0 y$

remove rule of nonexpansiveness, and allow for arbitrary operations

A GENERALISED FRAMEWORK FOR QUANTITATIVE EQUATIONAL REASONING

effect+distance (monad in GMet)

(generalised) quantitative equational theory

monads in Met seen so far

(generalised) quantitative equational theories corresponding to those seen so far

(generalised) quantitative equational theory

- $\Sigma = +_p$ for all $p \in (0, 1)$
- equations and quantitative inferences:
- axioms of convex algebras,
- quantitative axiom

$$\begin{cases} x_1 =_{\varepsilon_{11}} x_1, x_2 =_{\varepsilon_{21}} x_1 \\ x_1 =_{\varepsilon_{12}} y_2, y_2 =_{\varepsilon_{22}} y_2 \end{cases} \vdash x_1 +_{\rho} x_2 =_{\delta} y_1 +_{\rho} y_2$$

with
$$\delta=p^2\varepsilon_{11}+(1-p)p\varepsilon_{21}+p(1-p)\varepsilon_{12}+(1-p)^2\varepsilon_{22}$$

distribution monad $\hat{\mathcal{D}}$ in DMet, with Łukaszyk–Karmowski lifting

FUTURE WORK (⇒ OPEN PROBLEMS)

- general axiomatizations of behavioral equivalences with more operators: fixed points, parallel compositions...
- compositionality
- further generalisations: quantales, categories of relational structures...
- quantitative Universal Algebra

FUTURE WORK (⇒ OPEN PROBLEMS)

- general axiomatizations of behavioral equivalences with more operators: fixed points, parallel compositions...
- compositionality
- further generalisations: quantales, categories of relational structures...
- quantitative Universal Algebra

Thank you!