Analysis and Design of Collective Behavior by
Aggregate Computing

Mirko Viroli

ALMA MATER STUDIORUM—Universita di Bologna, Italy
mirko.viroliQunibo.it

Open Problems in Concurrency Theory
Bertinoro, 30/6/2023

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 1/29

Building resilient distributed systems for the “complex loT"

Elements of variability

o heterogeneity of devices: wearable / mobile / embedded / flying devices
@ heterogeneity of connectivity: BT, wifi, 4G/5G (via brokers, p2p, ...)

@ heterogeneity of computational resources: edge-cloud continuum

@ pervasive change/dynamism: faults, delays, changing conditions

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 2/29

Problem statement, and Research Goal

Problem statement

Devise a minimal computational model to express distributed/collective
systems in a way completely independent of the underlying platform
(scheduling, displacement of devices, connectivity, platform, scale, ..)

Key idea: “program of the entire system, as a whole, not the individual device”J

Research Goals
Conceive the full stack:

@ key abstraction, core calculus, properties, programming language
@ simulation support, execution platforms
@ algorithms, applications

Motto: “the platform can change, but the program remains the same”)

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 3/29

An analogy with stream programming

Averaging the size of lines in an iterable of strings (in Scala)

val op = (dataset: Iterable[Stringl) =>
dataset .map(_.size)
.map((_, 1.0))
.reduceOption((x, y) => (x._1 + y._1, x._2 + y._2))
.map{case (sum, size) => sum/size}
.get

How is this executed? Which assumptions? ... It doesn't matter!
@ Could be an in-memory list, a text-file, a sensor stream, a big-data on a
cluster

@ Could compute by a single-thread, multiple-threads, in a cluster, in a
distributed and faulty database

Same motto: “the platform can change, but the program remains the same” J

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 4/29

Stream programming in Apache Spark

Averaging the length of lines in an iterable of strings (in Scala)

val op

(dataset: Iterable[Stringl) =>

dataset .map(_.size)

.map((_, 1.0))

.reduceOption((x, y) => (x._1 + y._1, x._2 + y._2))
.map{case (sum, size) => sum/size}

.get

Worker Node
Executor | Cache
>

SparkContext Cluster Manager
Worker Node

Executor | Cache

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023

5/29

A case: computing a redundant route in a smart-city

Vi rddist
Dynamically and continuously adapting: avoiding traffic, road
construction, ...

Mirko Viroli (Uni

di Bologna)

Aggregate Computing

DA
30/6/2023 6/29

Macro-programming

Programming “group interaction in space” [1]

[1] Roberto Casadei. “Macroprogramming: Concepts, State of the Art, and

Opportunities of Macroscopic Behaviour Modelling”. In: ACM Comput. Surv. (2023)

Device abstractions — make interaction implicit
NetLogo, Hood, TOTA, Gro, MPI, and the SAPERE approach

Pattern languages — supporting composability of spatial behaviour
Growing Point, Origami Shape, various selforg pattern langs
Information movement — gathering in space, moving elsewhere
TinyDB and Regiment

Spatial computing — program space-time behaviour of systems
Proto, MGS

Aggregate computing — programming functional composition of
computational fields
Field calculus and ScaFi

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023

7/29

Aggregate computing

Key principles
1. The reference computing machine
= an aggregate of devices as single “body”
2. The metaphor/methodology
= could abstract “body” to the actual space where the system runs
3. The computational model
= iterative and distributed evolution of a (computational) field
4. Key programming mechanism
= stream programming “against the neighbourhood"

neighborhood

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 8/29

Computational

Static view: Devices — Values (abst. to Space — Values)

Fields

Dynamic view: Events — Values (abst. to SpaceTime — Values)
Domain Field
vusinis | oviinns
30/6/2023 9/;9

Mirko Viroli (Universita di Bologna)

Aggregate Computing

Field denotation, over event structures

Augmented event structure (a situated DAG of events) [2]

[2] Giorgio Audrito et al. “A Higher-Order Calculus of Computational Fields”. In:
ACM Transactions on Computational Logic 20.1 (Jan. 2019), 5:1-5:55

@ events: devices that perform a computation and send messages
@ arrows between events of different devices: (message) causation
@ arrows between events of the the same device: state persistence
°

denotation of field: a map from an ES to values

device
TS

: ®M~®~m S

AN
\
sgs
e

;®@%Mf/

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023

10 /29

Programming fields, operational semantics

Round-based semantics of a program P
o the platform manages the neighbourhood relation (which is dynamic)
@ only the latest message from a neighbour is retained

@ at each event, P is used to turn input messages and sensor data to an
output message

@ operational semantics schema [2]: §;0;0Fep || 6

Read “at device d, with messages © and sensor data o, evaluation of
ep gives result/message 6"

%%f’w@

SO B O 0

// Y.
2 xwa

. % {LJM

device
ED

time

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 11/29

Aggregate programming as a functional approach

Sought features for a programming language (or core calculus) for P [3]

[3] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming for the
Internet of Things". In: IEEE Computer 48.9 (2015), pp. 22-30
@ Purely functional: it turns fields (/sensors) into a field (/actuator)
o Composable: function composition as modularisation/reuse mechanism
@ Declarative (stream-oriented) constructs to deal with space/time

source

|destination| | width |

| gradient | | gradient | | distance |

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 12/29

Preview

How we want that computation to be expressed?
@ source, dest and width as (typed) inputs
@ gradient, distance and dilate as reusable functions

= note the “global-level composition” feeling

| destination I | width

def channel(source: Boolean, dest: Boolean, width: Double): Double =
dilate(gradient(source) + gradient(dest) <= distance(source,dest), width)

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 13 /29

Field calculus model

Key idea

@ a sort of A-calculus with “everything is a field” philosophy!

Syntax (slightly refactored, semi-formal version of papers’)

e i=x | v | e(e1,...,en) | rep(ep){e} | nbr{e} (expr)
v = < standard-values > | A (value)
Ai=f | o | (R)=>e (functional value)
F = def £(%) {e} (function definition))

Few explanations

@ v includes numbers, booleans, strings,..
..tuples/vectors/maps/any-ADT (of expressions)

o f is a user-defined function (the key aggregate computing abstraction)

@ o is a built-in local operator (pure math, local sensors,..)

v

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 14 /29

Intuition of global-level (denotational) semantics

The four main constructs at work
= values, application, evolution, and interaction — in aggregate guise

@ex=...| v | eer,...,en) | rep(eg){e} | nbr{e}

=

rep(0){(x)=>x+1}

nbr{e}
'

q)d [d1—>V1 d —»Vn]

Mirko Viroli (Universita di Bologna)

Aggregate Computing 30/6/2023 15/29

A mini-tutorial

W NP

values

1

2+ 3
(10,20)
random()

0 N O 0N

sensors

sense (1)

sense(1) 7 10 : 20
mid()

minHood (nbrRange)

time-iteration
rep(0){ (x) => x + 1}

: rep(random()){ (x) => x }

space-interaction

: maxHood(nbr{ sense(1) })
: sumHood(nbr{ 1 })

space-time

: rep(O){ (x) => max(sense(1), maxHood(nbr{ b'd })) }

: rep(Infinity) { (d) => sense(1) ? 0 : minHood(nbr{d} + 1) }

: rep(Infinity) { (d) => sense(1) ? 0 : minHood(nbr{d} + nbrRange) }
: branch(sense(2)){Infinity}{ rep(Infinity) {

(d) => sense(1) ? 0 : minHood(nbr{d} + nbrRange) }}

Mirko Viroli (Universita di Bologna)

Aggregate Computing 30/6/2023

16 /29

A preview: the channel pattern

def gradient(source){ ; reifying minimum distance from source
rep(Infinity) { ;; distance is infinity initially
(distance) => source 7 0 : minHood(nbr{distance} + nbrRange)
P}

def distance(source, dest) { ;; propagates minimum distance between source and dest
snd (;; returning the second component of the pair
rep(pair(Infinity, Infinity)) { , computing a field of pairs (distance,value)
(distanceValue) => source ? pair(0, gradient(dest))
minHood(;; propagating as a gradient, using for first component of the pair
pair(fst(nbr{distanceValue}) + nbrRange, snd(nbr{distanceValue})))
Pod

def dilate(region, width) { ; a field of booleans
gradient (region) < width
}

def channel(source, dest, width) {
dilate(gradient(source) + gradient(dest) <= distance(source,dest), width)
}

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023

17 /29

Field calculus, is it expressive?

Practically, we can express:
e complex spreading / aggregation / decay functions [3]
@ spatial leader election, partitioning, consensus [4]
e distributed spatio-temporal sensing [5][6]
@ splitting in parallel independent subprocesses [7][8]

@ runtime verification of spatial properties [9][10]

On its theory
e few selection of constructs evaluated, e.g., in XC calculus [11]
@ universality [12]

e identification of a self-stabilising fragment [13]

[11] Giorgio Audrito et al. “Functional Programming for Distributed Systems with
XC". In: ECOOP 2022. 2022, 20:1-20:28

v

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 18 /29

Layers of Aggregate Computing

Application
Code
Collective Behavior
collectivePerception
collectiveSummary
managementRegions
¥) i Developer
Per i Action State APIs
summarize ||distanceTo||timer
average broadcast ||lowpass
regionMax ||partition ||recentTrue|
Resilient |
Coordination |
Operators

Field Calculus

Constructs
‘senso actuators — o Device :
communication state Y
restriction Capabilities
Iocal functions
=] & = E E

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023

Tooling

Several open-source projects
@ ScaFi: a Scala-hosted DSL (https://scafi.github.io/)
@ ScaFi-web: a Web playground for ScaFi
(https://github.com/scafi/scafi-web)

@ Alchemist: a simulator with ScaFi plugin
(https://alchemistsimulator.github.io/)

@ PulvReaKT: a platform for flexible deployment
(https://github.com/pulvreakt/pulvreakt)

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 20/29

https://scafi.github.io/
https://github.com/scafi/scafi-web
https://alchemistsimulator.github.io/
https://github.com/pulvreakt/pulvreakt

Open directions

learning collective behaviour

federated learning with aggregate computing
programming/managing the cloud-edge continuum
programming/managing swarms

filling the gap with traditional program/concurrency approaches

e 6 6 6 o o

formally proving/enforcing properties

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 21/29

The MacroSwarm library

Base Movement Team Formation Pattern Formation Swarm
o Formed CteamFormation wShape line centeredcircle Flanning
goTo plan
- Macro Swarm
explore
execute
browr
Leader Based
maintainuntil

Flocking
sinkat = gith

separation cohesicn align
T Iy

Resgilient
| [| | G | | H ‘ Coordination «——

Field-Coordination

Constructs

Mirko Viroli (Universita di Bologna)

Aggregate Computing

30/6/2023 22/29

Involved people/groups

Main contributors
@ Mirko Viroli, Univ. Bologna, Italy
» Danilo Pianini, Roberto Casadei, Gianluca Aguzzi

@ Ferruccio Damiani, Univ. Torino, Italy, and colleagues
o Jake Beal, IOWA University, USA, and colleagues

Other contributors

Franco Zambonelli, Univ. Modena e Reggio Emilia, Italy
Guido Salvaneschi, St.Gallen, Switzerland

Simon Dobson, St.Andrews, UK

Giancarlo Fortino, Univ. della Calabria, Italy

Danny Weyns, Univ. Leuven, Belgium

Volker Stolz, Univ. Oslo, Norway

Lukas Esterle, Aarhus University, Denmark

®© 6 6 6 6 6 o

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023

23/29

Bibliography |

(1]

2]
(3]

(4]

(5]

Roberto Casadei. “Macroprogramming: Concepts, State of the Art, and
Opportunities of Macroscopic Behaviour Modelling”. In: ACM Comput. Surv.
(2023).

Giorgio Audrito et al. “A Higher-Order Calculus of Computational Fields”. In:
ACM Transactions on Computational Logic 20.1 (Jan. 2019), 5:1-5:55.

Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming for the
Internet of Things". In: IEEE Computer 48.9 (2015), pp. 22-30.

Danilo Pianini et al. “Partitioned integration and coordination via the
self-organising coordination regions pattern”. In: Future Generation Computer
Systems 114 (2021), pp. 44-68.

Danilo Pianini et al. “Time-Fluid Field-Based Coordination through
Programmable Distributed Schedulers”. In: Logical Methods in Computer
Science Volume 17, Issue 4 (Nov. 2021).

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 24/29

Bibliography Il

(6]

[7]

(8]

[9]

Giorgio Audrito et al. “Optimal resilient distributed data collection in mobile
edge environments”. In: Computers & Electrical Engineering (2021), p. 107580.
ISSN: 0045-7906. DOTI:
https://doi.org/10.1016/j.compeleceng.2021.107580. URL: https:
//www.sciencedirect.com/science/article/pii/S0045790621005140.

Roberto Casadei et al. “Engineering collective intelligence at the edge with
aggregate processes’. In: Engineering Applications of Artificial Intelligence 97
(2021), p. 104081.

Gianluca Aguzzi et al. “Dynamic Decentralization Domains for the Internet of
Things". In: IEEE Internet Computing 26.06 (2022), pp. 16-23. 1ssN: 1941-0131.
DOI: 10.1109/MIC.2022.3216753.

Giorgio Audrito et al. “Adaptive distributed monitors of spatial properties for
cyber?physical systems”. In: Journal of Systems and Software 175 (2021),

p. 110908. 1ssN: 0164-1212. DOI:
https://doi.org/10.1016/j.jss.2021.110908. URL: https:
//www.sciencedirect.com/science/article/pii/S0164121221000054.

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 25/29

https://doi.org/https://doi.org/10.1016/j.compeleceng.2021.107580
https://www.sciencedirect.com/science/article/pii/S0045790621005140
https://www.sciencedirect.com/science/article/pii/S0045790621005140
https://doi.org/10.1109/MIC.2022.3216753
https://doi.org/https://doi.org/10.1016/j.jss.2021.110908
https://www.sciencedirect.com/science/article/pii/S0164121221000054
https://www.sciencedirect.com/science/article/pii/S0164121221000054

Bibliography Il

(10]

(11]

(12]

(13]

Giorgio Audrito et al. “Distributed runtime verification by past-CTL and the field
calculus”. In: Journal of Systems and Software 187 (2022), p. 111251. ISSN:
0164-1212. poI: https://doi.org/10.1016/j.jss.2022.111251. URL: https:
//www.sciencedirect.com/science/article/pii/S0164121222000243.

Giorgio Audrito et al. “Functional Programming for Distributed Systems with
XC". In: ECOOP 2022. 2022, 20:1-20:28.

Giorgio Audrito et al. “Space-Time Universality of Field Calculus”. In:
Coordination Models and Languages - 20th IFIP WG 6.1 International
Conference, COORDINATION 2018, Held as Part of the 13th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2018,
Madrid, Spain, June 18-21, 2018. Proceedings. Ed. by Giovanna

Di Marzo Serugendo and Michele Loreti. Vol. 10852. Lecture Notes in Computer
Science. Springer, 2018, pp. 1-20. DOI: 10.1007/978-3-319-92408-3_1. URL:
https://doi.org/10.1007/978-3-319-92408-3_1.

Mirko Viroli et al. “Engineering Resilient Collective Adaptive Systems by
Self-Stabilisation”. In: ACM Transaction on Modelling and Computer Simulation
28.2 (Mar. 2018), 16:1-16:28.

Mirko Viroli (Universita di Bologna) Aggregate Computing 30/6/2023 26 /29

https://doi.org/https://doi.org/10.1016/j.jss.2022.111251
https://www.sciencedirect.com/science/article/pii/S0164121222000243
https://www.sciencedirect.com/science/article/pii/S0164121222000243
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1007/978-3-319-92408-3_1

	References

