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Building resilient distributed systems for the “complex loT"

Elements of variability

o heterogeneity of devices: wearable / mobile / embedded / flying devices
@ heterogeneity of connectivity: BT, wifi, 4G/5G (via brokers, p2p, ...)

@ heterogeneity of computational resources: edge-cloud continuum

@ pervasive change/dynamism: faults, delays, changing conditions
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Problem statement, and Research Goal

Problem statement

Devise a minimal computational model to express distributed/collective
systems in a way completely independent of the underlying platform
(scheduling, displacement of devices, connectivity, platform, scale, .. )

Key idea: “program of the entire system, as a whole, not the individual device”J

Research Goals
Conceive the full stack:

@ key abstraction, core calculus, properties, programming language
@ simulation support, execution platforms
@ algorithms, applications

Motto: “the platform can change, but the program remains the same” )
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An analogy with stream programming

Averaging the size of lines in an iterable of strings (in Scala)

val op = (dataset: Iterable[Stringl) =>
dataset .map(_.size)
.map((_, 1.0))
.reduceOption((x, y) => (x._1 + y._1, x._2 + y._2))
.map{case (sum, size) => sum/size}
.get

How is this executed? Which assumptions? ... It doesn't matter!
@ Could be an in-memory list, a text-file, a sensor stream, a big-data on a
cluster

@ Could compute by a single-thread, multiple-threads, in a cluster, in a
distributed and faulty database

Same motto: “the platform can change, but the program remains the same” J
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Stream programming in Apache Spark

Averaging the length of lines in an iterable of strings (in Scala)

val op

(dataset: Iterable[Stringl) =>

dataset .map(_.size)

.map((_, 1.0))

.reduceOption((x, y) => (x._1 + y._1, x._2 + y._2))
.map{case (sum, size) => sum/size}

.get

Worker Node
Executor | Cache
>

SparkContext Cluster Manager
Worker Node

Executor | Cache
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A case: computing a redundant route in a smart-city

Vi rddist
Dynamically and continuously adapting: avoiding traffic, road
construction, ...
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Macro-programming

Programming “group interaction in space” [1]

[1] Roberto Casadei. “Macroprogramming: Concepts, State of the Art, and

Opportunities of Macroscopic Behaviour Modelling”. In: ACM Comput. Surv. (2023)

Device abstractions — make interaction implicit
NetLogo, Hood, TOTA, Gro, MPI, and the SAPERE approach

Pattern languages — supporting composability of spatial behaviour
Growing Point, Origami Shape, various selforg pattern langs
Information movement — gathering in space, moving elsewhere
TinyDB and Regiment

Spatial computing — program space-time behaviour of systems
Proto, MGS

Aggregate computing — programming functional composition of
computational fields
Field calculus and ScaFi
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Aggregate computing

Key principles
1. The reference computing machine
= an aggregate of devices as single “body”
2. The metaphor/methodology
= could abstract “body” to the actual space where the system runs
3. The computational model
= iterative and distributed evolution of a (computational) field
4. Key programming mechanism
= stream programming “against the neighbourhood"

neighborhood
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Computational

Static view: Devices — Values (abst. to Space — Values)

Fields

Dynamic view: Events — Values (abst. to SpaceTime — Values)
Domain Field
vusinis | oviinns
30/6/2023 9/;9
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Field denotation, over event structures

Augmented event structure (a situated DAG of events) [2]

[2] Giorgio Audrito et al. “A Higher-Order Calculus of Computational Fields”. In:
ACM Transactions on Computational Logic 20.1 (Jan. 2019), 5:1-5:55

@ events: devices that perform a computation and send messages
@ arrows between events of different devices: (message) causation
@ arrows between events of the the same device: state persistence
°

denotation of field: a map from an ES to values
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Programming fields, operational semantics

Round-based semantics of a program P
o the platform manages the neighbourhood relation (which is dynamic)
@ only the latest message from a neighbour is retained

@ at each event, P is used to turn input messages and sensor data to an
output message

@ operational semantics schema [2]: §;0;0Fep || 6

Read “at device d, with messages © and sensor data o, evaluation of
ep gives result/message 6"
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Aggregate programming as a functional approach

Sought features for a programming language (or core calculus) for P [3]

[3] Jacob Beal, Danilo Pianini, and Mirko Viroli. “Aggregate Programming for the
Internet of Things". In: IEEE Computer 48.9 (2015), pp. 22-30
@ Purely functional: it turns fields (/sensors) into a field (/actuator)
o Composable: function composition as modularisation/reuse mechanism
@ Declarative (stream-oriented) constructs to deal with space/time

source

|destination| | width |

| gradient | | gradient | | distance |
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Preview

How we want that computation to be expressed?
@ source, dest and width as (typed) inputs
@ gradient, distance and dilate as reusable functions

= note the “global-level composition” feeling

| destination I | width

def channel(source: Boolean, dest: Boolean, width: Double): Double =
dilate( gradient(source) + gradient(dest) <= distance(source,dest), width )
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Field calculus model

Key idea

@ a sort of A-calculus with “everything is a field” philosophy!

Syntax (slightly refactored, semi-formal version of papers’)

e i=x | v | e(e1,...,en) | rep(ep){e} | nbr{e} (expr)
v = < standard-values > | A (value)
Ai=f | o | (R)=>e (functional value)
F = def £(%) {e} (function definition))

Few explanations

@ v includes numbers, booleans, strings,..
..tuples/vectors/maps/any-ADT (of expressions)

o f is a user-defined function (the key aggregate computing abstraction)

@ o is a built-in local operator (pure math, local sensors,..)

v
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Intuition of global-level (denotational) semantics

The four main constructs at work
= values, application, evolution, and interaction — in aggregate guise

@ex=...| v | eer,...,en) | rep(eg){e} | nbr{e}

=

rep(0){(x)=>x+1}

nbr{e}
'

q)d [d1—>V1 d —»Vn]
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A mini-tutorial

W NP

values

1

2+ 3
(10,20)
random()

0 N O 0N

sensors

sense (1)

sense(1) 7 10 : 20
mid()

minHood (nbrRange)

time-iteration
rep(0){ (x) => x + 1}

: rep(random()){ (x) => x }

space-interaction

: maxHood( nbr{ sense(1) } )
: sumHood( nbr{ 1 } )

space-time

: rep(O){ (x) => max( sense(1), maxHood( nbr{ b'd } ) ) }

: rep(Infinity) { (d) => sense(1) ? 0 : minHood( nbr{d} + 1 ) }

: rep(Infinity) { (d) => sense(1) ? 0 : minHood( nbr{d} + nbrRange ) }
: branch(sense(2)){Infinity}{ rep(Infinity) {

(d) => sense(1) ? 0 : minHood( nbr{d} + nbrRange ) }}
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A preview: the channel pattern

def gradient(source){ ; reifying minimum distance from source
rep(Infinity) { ;; distance is infinity initially
(distance) => source 7 0 : minHood( nbr{distance} + nbrRange )
P}

def distance(source, dest) { ;; propagates minimum distance between source and dest
snd ( ;; returning the second component of the pair
rep(pair(Infinity, Infinity)) { , computing a field of pairs (distance,value)
(distanceValue) => source ? pair(0, gradient(dest))
minHood( ;; propagating as a gradient, using for first component of the pair
pair(fst(nbr{distanceValue}) + nbrRange, snd(nbr{distanceValue})))
Pod

def dilate(region, width) { ; a field of booleans
gradient (region) < width
}

def channel(source, dest, width) {
dilate( gradient(source) + gradient(dest) <= distance(source,dest), width )
}
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Field calculus, is it expressive?

Practically, we can express:
e complex spreading / aggregation / decay functions [3]
@ spatial leader election, partitioning, consensus [4]
e distributed spatio-temporal sensing [5][6]
@ splitting in parallel independent subprocesses [7][8]

@ runtime verification of spatial properties [9][10]

On its theory
e few selection of constructs evaluated, e.g., in XC calculus [11]
@ universality [12]

e identification of a self-stabilising fragment [13]

[11] Giorgio Audrito et al. “Functional Programming for Distributed Systems with
XC". In: ECOOP 2022. 2022, 20:1-20:28

v
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Layers of Aggregate Computing

Application
Code
Collective Behavior
collectivePerception
collectiveSummary
managementRegions
¥ ) i Developer
Per i Action State APIs
summarize ||distanceTo||timer
average broadcast ||lowpass
regionMax ||partition ||recentTrue|
Resilient |
Coordination |
Operators

Field Calculus

Constructs
‘senso actuators — o Device :
communication state Y
restriction Capabilities
Iocal functions
=] & = E E
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Tooling

Several open-source projects
@ ScaFi: a Scala-hosted DSL (https://scafi.github.io/)
@ ScaFi-web: a Web playground for ScaFi
(https://github.com/scafi/scafi-web)

@ Alchemist: a simulator with ScaFi plugin
(https://alchemistsimulator.github.io/)

@ PulvReaKT: a platform for flexible deployment
(https://github.com/pulvreakt/pulvreakt)
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Open directions

learning collective behaviour

federated learning with aggregate computing
programming/managing the cloud-edge continuum
programming/managing swarms

filling the gap with traditional program/concurrency approaches

e 6 6 6 o o

formally proving/enforcing properties
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The MacroSwarm library

Base Movement Team Formation Pattern Formation Swarm
o Formed CteamFormation wShape line centeredcircle Flanning
goTo plan
- Macro Swarm
explore
execute
browr
Leader Based
maintainuntil

Flocking
sinkat = gith

separation cohesicn align
T Iy

Resgilient
| [ | | G | | H ‘ Coordination «——

Field-Coordination

Constructs
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