Parallel and Distributed Model Checking

Hubert Garavel

VASY team
INRIA Rhône-Alpes
655, avenue de l’Europe
38330 Montbonnot Saint Martin
France
Motivations
Functional verification

Modelling language:
- process algebra
- communicating FSMs
- Petri nets...

Generation

State space:
- LTS (Lab. Trans. Syst.)
- Kripke structure
- marking graphs

minimisation
(e.g. bisimulations)

Functional Queries

Verification:
- model-checking
- equivalence checking

Logical results + diagnostics
Verification state spaces

• State/transition models
• LTS ("black box" vision)
 - no information in states (except initial state)
 - all information on transitions
 - process algebras, bisimulation, branching-time logics (modal mu calculus, ACTL), conformance testing
 - often ‘explicit state’ model-checking (CWB, CADP, mCRL)
• Kripke structures ("white/grey" box vision)
 - all information in states
 - no information on transitions
 - linear-time logics
 - often ‘symbolic’ model-checking: set of states (often represented using BDDs, MTDDs...) but also explicit-state approaches
• Timed transition systems (not covered in this lecture)
Performance evaluation

Discrete-event system:
- stoch. process algebra
- stoch. Petri nets
- queing networks

State space:
- Markov chains (CTMC)
- transition rate matrix

Generation

Performance Queries

Probabilities

Solution:
- steady-state analysis
- transient analysis

minimisation
(e.g. lumping, elimination of ‘vanishing’ states...)

Probabilities
Performance state spaces

- **Continuous-Time Markov Chains (CTMC)**
 - no information attached to states
 - stochastic information \(rate \ (s, s') > 0 \) attached to each transition \(s \rightarrow s' \)

- **Transition rate matrix**
 \[
 R \ [s, s'] = \text{if exists } s \rightarrow s' \text{ then } rate \ (s, s') \text{ else } 0
 \]

- **Matrix R is often large, sparse (and stiff)**
State space exploration

• Various traversals
 - Breadth-first search (BFS): exhaustive construction, reachability analysis, shortest path, ...
 - Depth-first search (DFS): cycle detection...
 - Synchronous product with an observer or a formula

• Exploration requires a lot of memory
 - Avoid cycles => store visited states
 - BFS requires a FIFO queue
 - DFS requires a stack
 - More (e.g. state table) is often needed to avoid recomputations
State space EXPLOSION

• The size of state/transition model often grows exponentially in the size of the problem

• Exploration is limited by the physical and virtual memory

• Two problems:
 - state space does not fit into memory
 - state space fits in memory, but is too large for being explored entirely
 (e.g., access to hash table becomes slower as the number of states grows)
Fighting state explosion

• Two approaches
 - ‘Clever’ methods
 - ‘Brute-force’ methods
‘Clever’ methods (1)

- Design ‘better’ modelling languages
 - small languages
 - formal semantics
 - built-in abstractions
 - compositionality properties

- Examples
 - process algebras
 - synchronous languages
 - new generation languages: E-LOTOS [ISO 15437]

- Counter-examples(!)
 - C, C++, Java, SDL, UML/RT, etc.
‘Clever’ methods (2)

• Invent better verification algorithms
 - Operate on higher-level models
 - Abstractions, hiding
 - Data flow analysis, static analysis
 - Reductions, property preserving transformations
 - Exploit structure information
 - Hierarchical and compositional verification
 - ‘Symbolic’ models (decision diagrams, Kronecker algebras)
 - Avoid redundancies
 - Partial orders / stubborn sets
 - Symmetries
 - Use locality
 - Caching, bounded-memory algorithms
‘Brute force’ methods

- Forget about your PC or workstation
- Use a more powerful machine
 - Increase memory and processing power to handle larger state spaces
 - Use a ‘supercomputer’
- Use N machines instead of one
 - Combine the resources of several machines
 - Ideally, N machines => problems N times larger
A note about ethics

• Are brute force methods ‘moral’?

• The answer is: Yes!
 - Brute-force is the essence of model-checking
 - Orthogonal to ‘clever’ methods

• Chess programs combine brute force and clever strategies
Bad news #1

- Brute-force methods will never work
- An exponentially growing problem is attacked by increasing the resources at most linearly!
- That is the fate of model-checking
- In the future, will machine capabilities grow faster than problem complexity?
Lecture overview
State of the art in parallel and distributed approaches

• Recent work
 - first paper in 1987
 - but many significant works > 1995

• Many different approaches
 - different problems: explicit or symbolic model checking, Markov solutions...
 - different machine architectures: SIMD, MIMD, shared- or distributed-memory...

• Split across ‘disjoint’ scientific fields
 - massively parallel and distributed computers
 - formal verification
 - performance evaluation
 - Petri Nets

• Lack of unifying vision
 - mostly conference papers (never in the mainstream)
 - NEW! dedicated workshop PDMC 02 (*Parallel and Distributed Model-Checking*)
 - few journal publications
 - no survey paper
 - no book
Organization of the lecture

• Breadth-first search of the various branches
• For each branch, depending on the available material:
 - Bibliographic references
 - Complexity results
 - Summary of the main ideas
 - Experimental results
 - If enough material (publications by different teams): general ‘laws’, if any
Contents of the lecture

Parallelization and Distribution
Explicit-State Reachability Analysis and State Space Construction
 SIMD
 Shared Memory
 Distributed Memory
Symbolic Reachability Analysis and State Space Construction
 Shared Memory
 Vector Processors
 SIMD
 Distributed Memory
Equivalence checking
 Distributed Memory
 Shared Memory
Model checking
 LTL
 CTL
 Mu-calculus
Solutions of Markov Chains
 Numerical Solutions (Steady-State and Transient Analysis)
 Implicit Representations
Conclusion
Parallelization and Distribution
Five machine architectures

1. **Vector processors**
 - Pipelined functional units operating on arrays of data
 - Expensive, few publications

2. **Data parallel machines (SIMD)**
 - Dedicated hardware for data parallel (regular) programs
 - Require special languages and compilers
 - Expensive, few publications

3. **Shared-memory multiprocessors**
 - Several processors sharing a central memory
 - Programmed using (POSIX) threads and semaphores locks
 - Expensive, but used

4. **Distributed-memory multiprocessors (MIMD)**
 - Independent machines connected by a high-speed network
 - No shared memory, only local memories
 - Programmed using message passing primitives (eg. MPI)
 - Example: Networks Of Workstations (NOW), clusters of PCs, Internet computing grids
 - Cheap, available in most laboratories and companies
 - Many publications

5. **Distributed shared memory multiprocessors (DSM)**
 - Independent machines with both local memories and shared memories
 - Memory hierarchies, cache coherency protocols (CC-NUMA, etc.)
 - Expensive, few publications
Speedup

- $N =$ number of processors/nodes/machines
- $\text{Speedup}(N) = \frac{\text{time taken by sequential version}}{\text{time taken by parallel version with N nodes}}$
- $\text{Cheat}(N) = \frac{\text{time taken by parallel version with 1 node}}{\text{time taken by parallel version with N nodes}}$

- Ideally: $\text{Speedup}(N) = N$ or even more! (superlinear)
- Practically: Speedup $(N) < N$ due to:
 - parallelization/distribution overhead
 - synchronizations which force tasks to idle
- Speedup often depends from the model: an efficient, general purpose, implementation is hard
Load balancing

- How to ensure that the N processors have the same amount of work?
- Unbalanced load slows down the whole system (limited by the most loaded machine)
- Different measures:
 - Physical: CPU time used by each node
 - Logical: state space portion explored by each node
Parallel complexity theory

NC problems

P-complete problems

efficient (polylog time) parallel algorithms

intrinsically sequential problems

‘P = NC ?’ is unknown (everybody failed so far)
An efficient parallel algorithm to solve P-complete problems would be a major algorithmic breakthrough
Parallel complexity theory

Many useful problems are P-complete

But...

- This is about worst-case time complexity
- Memory space (rather than time) is our primary concern
Parallel and Distributed

Explicit-State Reachability Analysis and State Space Construction
Definitions

• Explicit state approach
 - explore states one by one
 - forward exploration only (predecessor function not available)
 - rich data types => explicit state
 - tools: CADP, SPIN, etc.

• Reachability analysis
 - (forward) exploration from the initial state
 - breadth-first (or depth-first)
 - stores all encountered states in memory
 - enables simple verifications (deadlocks, state invariants, safety properties)

• State space construction
 - similar to reachability analysis
 - additionally: store all transitions
 - used to generate LTS, Kripke structures, Markov chains

• Parallelizing state space generation is a goal in itself
 (at least: a prerequisite for deeper verifications)
Basic sequential algorithm

E : set of (explored) states := {} -- stored in memory
V : set of (visited) states := {S0} -- stored in memory
T : set of transitions := {} -- stored on disk

while V not empty do
 S1 := oneof (V)
 move S1 from V to E
 for all L, S2 such that S1 ---L----> S2 do
 if S2 neither in E nor in V then add S1 to V endif
 add transition (S1, L, S2) to T
 done
done -- the generated state space is given by (E, T)
Two main operations

- Computing the transition function

 given S_1, *compute all* (L, S_2) *such that* $S_1 \xrightarrow{L} S_2$

 (done $|S|$ times)

 \Rightarrow language dependent

- Detecting already known states

 determine whether S_2 *is in* E *or in* V

 (done $|T|$ times)

 \Rightarrow hash-tables (CADP, SPIN) or B-trees
State representations

• States are vectors of values
 (e.g. Petri net markings, variable values...)

But
 - state vectors are memory expensive
 - not needed for equivalence checking, action-based model-checking, Markov chain solution...

• States are also assigned unique numbers

• The hash-table (or B-tree) ensures the mapping ‘state vector <--- unique number’
Reachability / Explicit / SIMD

Reachability / Explicit / SIMD

- Gen. Stoch. Petri Nets --> reachability graph

- The sequential algorithm must be revisited to match data flow patterns of the SIMD (Connection Machine)

- The two main operations (transition function and state search) are irregular and do not exhibit the regularity in data structures required for SIMD implementations

- Positive: capability to generate larger state spaces (4-10 Mstates) than on a workstation

- Negative: speed! Even with 32 processors, slower than a workstation (1.5 Mstates => 2 hours)
Reachability / Explicit / Shared Mem.

Reachability / Explicit / Shared Mem.

• Gen. Stoch. Petri Nets --> reachability graph

• The sequential algorithm is almost unchanged
• N threads execute concurrently
 – V implemented as N local stacks + 1 shared stack
 – E union V is implemented as a shared B-tree
• Locks on the shared stack and B-tree nodes

• With 8 processors, 4 Mstates and 25 Mtrans can be generated in 1h40
• Good (linear) speedup
Reachability / Explicit / Dist. Mem. / Old

First attempt at parallelizing state space generation

Reachability / Explicit / Dist. Mem. / Old

• Target: NOW (Ethernet network of SUN 2-3 workstations)
• Two (main) types of nodes:
 - generators: compute transition function
 - tabulators: state storage and search
• Key idea: the state set is partitionned between the tabulators using a hash function
 \[H: \text{state vector} \rightarrow \text{tabulator identifier} \]
• Not implemented
• Much criticized in the litterature [SD97, LS99]
 - complex: six different processes
 - termination relies on timing assumptions that may be difficult to guarantee => complex scheduling problems
 - communication overhead: each states is transferred at least 2 times over the network
Reachability / Explicit / Dist. Mem. / Old

- 1st implementation: Th. Jéron (INRIA Rennes) 1991
 - Echidna tool for Estelle (communicating FSMs)
 - 2 generators, 2 tabulator processes
 - Target machines: iPSC, TNode
 - No publication available

 - Language-neutral platform (Open/Caesar)
 - Code distribution environment (Epee)
 - Architecture-neutral communication library (POM)
 - Target machine: Hypercube
 - Termination: Dijsktra et al. circulating probe algorithm
Reachability / Explicit / Dist. Mem. / New

Reachability / Explicit / Dist. Mem. / New

Reachability / Explicit / Dist. Mem. / New

• Summary: All these algorithms have deep similarities and produce good results
• Many implementations: GSPN tools, Murphi, SPIN, CADP...
• Teams who started with SIMD or shared-memory eventually switched to distributed-memory [CCM95,AK99]
• My own preferences: [CGN98,Cia01] and (of course!) [GMS01] used in our DISTRIBUTOR tool
Reachability / Explicit / Dist. Mem. / New Principles

• N machines (plus possibly a frontal ‘master’) connected by a local network or bus
• Each machine can send messages to any other
• The state space is partitioned among the machines using a function (as in [AAC87])
• Each machine M is both a generator and a tabulator
 - It keeps its states in its local memory (hash table)
 - It computes the successors of its states
 - It also keeps a part of the transition relation
Choosing a partition function

\[
H (s: \text{state vector}) \rightarrow \text{machine}_{\text{id}}
\]

- H can be either a hash function
 - General byte string hashing [GMS01]
 - Universal hashing [SD97]
 - Weighted sums of Petri net places [Cia01]
 - Subset of Petri net places [HBB99]
- or based on lexicographic ordering [CN97]
 - A preliminary random walk in the state space is used to obtain a sampling of reachable states
 - These sample states are lexicographically sorted in N intervals
 - \(H (S) = M \) iff state S is in the M-th interval
State storage and numbering

- Machine M stores \(\{ s : \text{states} \mid H(S) = M \} \) in a local hash-table (or B-tree)

- Each state is assigned a \textit{locally unique} number \(local(S) \) by its owner \(M = H(S) \)

- How to produce a \textit{globally unique} identifier?
 - Most authors use a pair: \((H(S), local(S)) \)
 - \cite{GMS01} uses a number: \((N * local(S)) + H(S) \)
 (from which projections are obtained using \texttt{div} and \texttt{mod})
Reachability / Explicit / Dist. Mem. / New

Hashing assessment [HBB99] [Cia01] [GMS01]

- Hashing seems to distribute the states evenly between machines
 \[N_i = \text{number of states on machine } i \]
 \[\text{Spatial balance} = \max_{i,j} \left\{ \frac{N_i}{N_j} \right\} \text{ in range } 1-1.5 \]

- But the number of cross arcs is harder to control (20%-60%)
Reachability / Explicit / Dist. Mem. / New

Transition storage

- Each machine computes the successors (outgoing transitions) of its states
- but receives and stores the predecessors (incoming transitions) of its states
- Machine M receives triples \((n_1, L, S_2)\) such \(H(S_2) = M\) and stores triples \((n_1, L, n_2)\) on disk
- *The transition rate matrix is stored by columns and not by rows*
- Why? Only M knows that the number of \(S_2\) is \(n_2\)
- Reduces the number of messages (contrary to \([KMHK98]\)
Reachability / Explicit / Dist. Mem. / New

Distributed termination detection

• Termination: all machines have processed all their states and no more messages are in transit in the queues

• Several algorithms:
 - Dijkstra et al.’s circulating probe algorithm
 - Nicol’s non-committal synchronization barrier
 - Mattern’s two wave algorithm [GMS01]
Reachability / Explicit / Dist. Mem. / New

Remapping [NC97,Cia01]

• Classes = set of states (e.g., 100 states/class)

• Each state belongs to a single class (always the same) given by a partition function \(H \)
 \[
 H(s:\text{state vector}) : \text{class_id}
 \]

• Each class is stored on one processor (which may change) given by an array \(T \) replicated on each machine
 \[
 T[c:\text{class_id}] : \text{processor_id}
 \]

• Classes move between processors to balance load
Reachability / Explicit / Dist. Mem. / New

• Many possible remapping strategies
 - Why? Optimize spatial or temporal balance?
 - How?
 - When?

• Experimental results
 - Remapping CPU overhead: below 5%
 - 8 processors: minor improvement
 - 16 processors: beneficial (speedup 12–13)
Parallel and Distributed

Symbolic Reachability Analysis and State Space Construction
Symbolic Rechability Analysis

- Mostly done using BDDs
- Different combinations:
 - algorithm: breadth-first or depth-first
 - machine architecture: shared memory, vector processors, SIMD, distributed [shared] memory
 - BDD variant: ‘standard’ BDD, ROBDDs (Reduced Ordered BDDs), etc.
Reachability / Symbolic / Shared Mem.

- BDDs seen as a minimal finite automata
- Generation/minimization of product automata
- Speedup:
 - 10 for 16 processors [KC90]
 - 14 for 25 processors [KIH95]
Reachability / Symbolic / Vector Processors

Reachability / Symbolic / SIMD

• Uses breadth-first search
• Distributes BDD nodes and hash table
• Some ISCAS-85 benchmarks
Reachability / Symbolic / Distrib. Shared Mem.

• BDD nodes and hash table distributed and shared among processors
• Also uses a distributed stack
• Speedup: 20–32 on some ISCAS-85 circuits

- Distributes BDD nodes on a network of workstations
- Assigns a set of consecutive variables to the same machine
- Allows to handle BDD with several Mnodes

But
- Not really parallel (only one machine computes at a time)
- Unimpressive speedup (often < 1)
- Existential quantification and variable reordering is not efficient

• Based on Brace-Rudell-Bryant’s BDD package (1990)
• Distributes BDD nodes among processors
• Uses depth-first algorithms
• *Unique table*: distributed, two-level hash-table
• *Computed and uncomputed*: distributed hash tables
• Local LRU caches for fast access to distant BDD nodes
• Speedup: 7—57 for 32 processors on some ISCAS-85 benchmarks

• State exploration using BFS on a NOW
• State space is cut in a fixed number of slices
• Slices travel between machines to balance load
• Fast storage: use network instead of disk
• ISCAS’89–93 and IBM benchmarks
• Handles large BDDs up to 1.2 Mnodes
• Linear speedup (0.4N − 0.6N)

A few other references:

Parallel and Distributed Equivalence Checking
Bad news #2

- Computing strong bisimilarity in finite transition systems is a P-complete problem

=> Algorithms for computing bisimulation seem to be inherently sequential and hard to parallelize
Equiv. checking / Distributed Mem.

Equiv. checking / Distributed Mem.

- Two attempts at parallelizing the Kanellakis-Smolka partition refinement algorithm
 - [ZS92]: The block splitting task is distributed among processors (to optimize time)
 - [BS02]: States are distributed between machines

- Obtained results (in both cases):
 - some improvements, not fully convincing
 - more experimental feedback is needed
Equiv. checking / Shared Mem.

Equiv. checking / Shared Mem.

- [RL98] proposes two ‘nearly optimal’ algorithms for CRCW PRAM machines
- [JKOK] proposes an alternative algorithm and claim superior performance
Four pragmatic remarks

1. The problem remains open for distributed-memory machines (including NOWs)

2. Work focuses on Kanellakis-Smolka algorithm, which seems simpler to parallelize than Paije-Tarjan algorithm.

3. Work focuses on time improvement, but memory can be a problem too.

4. Work is for strong bisimulation only. No work on weaker equivalences (e.g., branching, observational)
Parallel and Distributed Model Checking
A tentative classification for a complex situation

• Many potential combinations:
 - type of logic: LTL, CTL, alternation-free or full mu-calculus
 - state space: explicit state or symbolic (BDD)
 - algorithm: global or local (on the fly)
 - machine architecture: vectorial, SIMD, shared- or distributed-memory

• But
 - many combinations have not been studied yet
 - existing ones have been studied by only one team
Known combinations

- **LTL model-checking**
 - explicit state / distributed memory
 - explicit state / shared memory

- **CTL model-checking**
 - explicit state / vector processors
 - symbolic / vector processors
 - explicit state / SIMD

- **Mu-calculus model-checking**
 - explicit state / distributed memory
 - symbolic / distributed memory
Parallel and Distributed

LTL Model Checking
Bad news #3

- LTL model checking relies on a (nested) depth-first search (DFS) of the state space. This algorithm is implemented in SPIN.

- Unfortunately, DFS is a P-complete problem

LTL / Explicit State / Distributed Memory

LTL / Explicit State / Distributed Memory

• [LS99] does not perform a DFS and cannot be used to check full LTL (only safety properties)

• [BBS01] proposes a distributed algorithm for nested DFS. No experimental results reported.

• [BCKP01] replaces nested DFS by a shortest path problem (negative cycle detection)
 - Worst-case time complexity worse than nested DFS
 - But easier to distribute on several machines
 - Practically, less messages and better speedup
LTL / Explicit State / Shared Memory

Papers not available before this lecture (presumably related to LTL model checking)
Parallel and Distributed

CTL Model Checking
Bad news #4

CTL model-checking is a P-complete problem

CTL / Explicit State / Vector Processors

- Bit vectors: $V_F[s]=$ value of formula F in state s
- Bottom-up evaluation of $V_F[.]$ on the syntactic structure of formula F
- Vectorial execution was 26–39 times faster than scalar execution (on the same machine)
- It was 1000 times faster than Clarke et al.’s sequential CTL model checker (on a Sun 3/80)
CTL / Symbolic / Vector Processors

- [OIY91a] [OIY91b] [OIY91c] H. Ochi, N. Ishiura, and S. Yajima. Cited above.

- Based on a vectorial BDD package
- Use BFS algorithm to evaluate CTL, rather than DFS (incompatible with vector processing)
- Vectorial execution was 6–20 times faster than scalar execution (on the same machine)
CTL / Explicit State / SIMD

- States are partitioned between processors
- Each processor computes the same CTL (sub-)formula (SIMD)
- Local computations altern with propagation to neighbours
- Not implemented
Parallel and Distributed

Mu-Calculus
Model Checking
Bad news #5

- The problem of checking whether an LTS is a model of a formula of the propositional mu-calculus is P-complete.

- This is even true under strong assumptions
 - the formula is fixed and alternation-free
 - and the LTS is deterministic and acyclic
 - and the LTS fan-in and fan-out are bounded by 2

• Alternation-free fragment of modal mu-calculus
• Parallelization of Stirling’s game-based local algorithm
• States of the game graph are partitioned between processors using a hash function
• Successors and predecessors of each state are kept
• Game graph built and coloured simultaneously (BFS traversal)
• Mitigated results
 - NOW with up to 52 processors
 - Up to 1 Mstates (LTS) and 13 Mstates (game graph)
But
 - Implementation does not work on the fly
 - Seems to be slow (9 minutes for an LTS with 1 Mstates)
 - No speedup below 5 processors

• Applies to full propositional mu-calculus
• Global algorithm (not on-the-fly: requires the construction of the whole Kripke structure)
• Symbolic (BDD) representation of the state space
• State space slicing into subsets of the ‘same’ size
• Slices are distributed to processors
• Proof of correctness given
• No implementation reported
Parallel and Distributed

Solution of Markov Chains
Goals

Given a Markov chain, one wants to compute

- **steady-state analysis**
 - for ergodic CTMCs: stationary state probabilities
 - for absorbing CTMCs: expected state sojourn state times until absorption

- **and/or transient analysis**
 instantaneous or cumulative measures for a set of user-defined time instants:
 - state probability vector at time \(t_1, t_2, \ldots, t_n \)
 - total time spent in each state up to time \(t \)

=> In any case, the solution is a real vector indexed by states
Exemple: Steady State Probabilities

- Transition rate matrix
 \[R [s, s'] = \begin{cases} \text{rate} (s, s') & \text{if exists } s \rightarrow s' \\ 0 & \text{else} \end{cases} \]

- Infinitesimal generator matrix
 \[Q [s, s'] = \begin{cases} R [s, s'] & \text{if } s \leftrightarrow s' \\ -\sum_{s'' \neq s} R [s, s''] & \text{else} \end{cases} \]

- Numerical stationary solution of CTMC R:
 Compute a vector \(\pi[s] \) of probabilities
 \[\pi Q = 0 \quad \text{and} \quad \sum_s \pi[s] = 1 \]
 \(\Rightarrow \) solve a linear homogeneous system of equations
Numerical methods

• Several algorithms:
 - Power
 - Jacobi
 - Gauss-Seidel
 - SOR iterations
 - Conjugate Gradient Squared (CGS)
 - Block-oriented methods: block-Jacobi
 - ...

Difficulties of numerical methods

• The state space S is very large
 - Probability vectors p_i are of dimension $|S|$
 - Matrices R and Q have $|S|^2 |S|$ elements
 - These matrices are very sparse
 - Memory is a bottleneck

• Key operation: matrix.vector (or vector.matrix) multiplication
 - Floating-point computations are CPU-intensive
 - Time also can be a bottleneck
 - Robust algorithms to ensure num. stability
Numerical / Steady State / Parallel

- [MCC97] P. Marenzoni, S. Caselli, and G. Conte. Cited above (see Sections 5—6 of their paper).
- [CGN98] G. Ciardo, J. Gluckman, and D. Nicol. Cited above (see Section 4.2 of their paper).
- [Cia01] G. Ciardo. Cited above.
Numerical / Steady State / Parallel

Summary:

• Parallel/distributed implementations outperform sequential ones

• The critical issue is the parallel sparse matrix.vector multiplication.

• Gauss-Seidel is efficient sequentially, but difficult to distribute (contrary to Jacobi and CGS).

• Solving large Markov chains still takes time:
 - 50 Mstates requires < 1 day
 - 724 Mstates requires >16 days

on a cluster of 26 PCs using MPI [BB00]
Numerical / Steady State / Disk-Based

- A single (bi-processor) workstation
- Gauss-Seidel method
- Matrix stored on disk (‘out of core’)
- Two cooperating threads:
 - high throughput disk I/O
 - computation
- Successful method: 10 Mstates-100 Mtrans. on a single 128 MB RAM workstation
Numerical / Steady State / Disk-Based

- Distributed-memory approach
- Jacobi and CGS methods
- Matrix stored on disk
- Two cooperating processes per node:
 - high throughput disk I/O
 - computation and inter-nodes communications
- Reorder matrix rows/columns to improve locality exploiting structure of BFS-generated graphs
- 50 Mstates-500 Mtrans. in 17 hours on a Fujitsu computer with 16 nodes (300 MHz, 256 MB RAM) using MPI
Numerical / Transient

- **Shared-memory implementation**
 - Parallelization is simple: CTMC in shared memory
 - Solves a CTMC with 2 Mstates and 19 Mtrans
 in 1 hour 16 on a Convex SPP (8 processors)
 - For larger examples, swapping issues...

- **Distributed-memory implementation**
 - Main issue: vector.matrix multiplication
 - Solves a CTMC with 2.5 Mstates and 24 Mtrans
 in 14 minutes on a cluster of 8 PCs.
 - Scales up to 16 PCs
Implicit representations

- [Cia01] G. Ciardo. Cited above (see Section 5).
Conclusion
Past and present

• Significant work has been done
• Some clear successes:
 - Reachability analysis / Explicit state / Distributed
 - Reachability analysis / Symbolic / Distributed
 - Markov chains solutions / Steady State / Disk-based
• Approaches are split between different branches of computer science
• A unified view can be fruitful
Future

• A lot of ‘useful’ problems are still open

• Not covered in this lecture: parallel verification of timed systems...

• Many problems have only been attacked by one team: cross-check the results!

• Implementations/experiments are essential

• The best sequential algorithms are not the best candidates

• NOWs, PC clusters, Internet grids(?) are everywhere
Think distributed!