
IST-2001-32360

Architecting
Evolvable

Software

http://www.arch-ware.org http://www.architecture-ware.org

An Introduction to the
ArchWare Project

Flavio Oquendo
flavio.oquendo@univ-savoie.fr

Radu Mateescu
radu.mateescu@inria.fr

2

IST-2001-32360

Outline

� Introduction:

� Objectives and Planned Results

� The Approach

� Languages, Framework and Tools

� Demo in SFM’03: Architecture Analysis by
Model-checking

� Overview

� Demo

3

IST-2001-32360

The ArchWare IST European Project
The Partners

The Players:

• F Gallo: Consorzio Pisa Ricerche, Pisa - Italy

• C Occhipinti: Engineering, Rome - Italy

• F Oquendo: University of Savoie, Annecy - France

• R Dindeleux: Thésame, Annecy - France

• B Warboys: University of Manchester - UK

• R Morrison: University of St. Andrews - UK

• H Garavel: INRIA R/A, Grenoble - France

Scientific Coordinators:

Flavio Oquendo & Brian Warboys

Project

Manager:

Nando Gallo

3 years:

2002-2005

Manpower:

50 person-years

4

IST-2001-32360

The Objectives
What ArchWare aims to?

The project aims to:

� design formal languages for describing

architectural structure, behaviour, qualities,
and evolution of software systems

� implement a customisable environment

for process-driven architecture-based
software engineering

The focus is:

� formal development and evolution of

compliant architectures

5

IST-2001-32360

The Objectives
ArchWare supports “compliance”

� What is compliant?
� “compliant” means “property preserving”, thereby
the architecture of a compliant system is designed
with the goal of fitting the architecture to the needs
of the application

� What does it imply?
� if application requirements change then the
architecture must be able to evolve in order to
cope with the new needs

� if the implementation of the application does not
verify the properties of the architecture then the
application must be able to evolve at runtime in
order to cope with the new needs

6

IST-2001-32360

The Planned Results
What ArchWare delivers?

The ArchWare Project delivers:

� Architectural Languages and Tools

� A Persistent Architecture Framework

� Process Models for Refinement and Evolution

� Customisable Architecture-based
Environments

� Customised Architecture-based Environments
for the two Industrial Partners

7

IST-2001-32360

The Approach
What approach to build results?

� Results are built based on the following
principles:

� languages are formal, compositional and reflective

� The framework provides persistent run-time

support for formal compositional reflective

languages

� tools support architecture-based processes

8

IST-2001-32360

The ArchWare Languages

� ArchWare Architectural Languages:
a family of integrated languages

� Architecture Description Language

� Architecture Analysis Language

� Architecture Exchange Language

� Architecture Refinement Language

… all are architectural languages of the same
family: all are designed based on the
Architecture Base Language (π-ADL)

9

IST-2001-32360

The ArchWare Languages
π-ADL: The Base Language

� π-ADL has as formal

foundation the higher-order

typed π-calculus

� a calculus for

communicating and mobile

systems

� π-ADL is itself a formal

language defined as a

domain-specific extension of

the higher-order typed π-

calculus

� it is a well-formed extension

for defining a calculus of

communicating and mobile

architectural components

� π-ADL has been designed as
a formal layered language

� To be compositional

� To be persistent

� To be reflective

� To be executable

� To enable analysis

� To enable refinement

� To enable evolution

� π-ADL is based on earlier
work from the Univ. of Savoie
at Annecy (SPACE and PIE
Projects), Manchester (PIE
and CSA Projects), and St.-
Andrews (CSA Project)

10

IST-2001-32360

The ArchWare Languages
Architecture Analysis Language

� µπ-AAL has as formal
foundation the modal
µ-calculus and the
higher order predicate
calculus
� it provides a property

specification language

� it supports for automated
checking of property
satisfaction by theorem
proving (through higher-
order logic) and model
checking (through
compositional model
checking)

� µπ-AAL has been
designed as an

integrated part of the

ArchWare Architecture

Base Language (π-ADL)
� µπ-AAL is based on

earlier work:

� on temporal logics by

INRIA R/A (Vasy)

� on modal logics and

architectural quality

attributes by the Univ. of

Savoie at Annecy

11

IST-2001-32360

The ArchWare Languages
Architectural Style Language

� The ArchWare

Architecture Description

Language:

� it provides a style-based

language

� it is built on top of the

Architecture Base

Language and the

Architecture Analysis

Language

σπ-ADL = π-ADL + µπ-AAL
+ style constructs

� σπ-ADL is a formal

architectural style

description language:

� for describing

architectures taking into

account reuse of existing

styles

� enabling formal analysis

of architectures against

defined style properties

12

IST-2001-32360

The ArchWare Framework
Persistence and Reflection

� The ArchWare Framework provides:

� virtual machine for executing compositional

descriptions

�orthogonal persistence: models of values

independent of longevity

�linguistic reflection: to allow reflective

descriptions

� hyper-coding (through persistence and reflection):

one representation of a value throughout its

lifetime

� enabling evolution by composition via hyper-coding

13

IST-2001-32360

The ArchWare Framework
Persistence and Reflection

� Orthogonal persistence

� all data resides in a strongly-typed persistent

repository

� First-class code (components, ports, etc.)

� code is a part of this data

� resides in the same repository as other data

� Hyper-code: no user-level distinction between
code and data

14

IST-2001-32360

The ArchWare Tools
Process-enabled Tools

� Visual Architecture Modeller

� Visual Architecture Animator

� Style-aware Architectural Design Repository

� Architecture Analysis Tools
� Theorem-Proving Tool

� Model-Checking Tool

� Model-Specific Evaluation Tools

� Refinement Engine

� Code Synthesiser

� Style-based Customiser

15

IST-2001-32360

Supporting Architecture-based
Engineering of Evolvable Software

� Central feature
� ArchWare applies an innovative approach to the
engineering of compliant software systems that
sets composition and the ability to evolve by
decomposition-recomposition as its central
characteristic

� Evolution arises in response to changes to
requirements in the problem domain as well as to
changes in the implementation domain

� Unified representation
� Hyper-code: the architect sees only a single
representation form throughout the software
engineering process

16

IST-2001-32360

Overview of the ArchWare AAL
Architecture Analysis Language

� Designed to express and check properties of
� Architectural styles (style architect)

� Structural properties (cardinality, topology, …)

� Architectural descriptions (application architect)
�Behavioural properties (safety, liveness, …)

� Design choices
� First-order logic combined with modal µ-calculus
� Data-handling mechanisms

� Regular expressions over execution sequences

17

IST-2001-32360

AAL: possibility modality

� Concrete syntax:

some sequence { R } leads to state { P }

there exists an execution sequence whose
concatenated actions form a word of the
regular language R and that leads to a state
satisfying P

. . .

R = (a.b)* . c

P

a b a b c

18

IST-2001-32360

Possibility: example

� « A transport demand will be potentially sent »

some sequence {

true* .

via transportDemand send any

} leads to state { true }

19

IST-2001-32360

AAL: necessity modality

� Concrete syntax:

every sequence { R } leads to state { P }

any execution sequence whose concatenated
actions form a word of the regular language R
must lead to a state satisfying P

a a a b
. . .

R = a* . b

P
a

b
b

PP

20

IST-2001-32360

Necessity: example

� « A document not present in the repository
cannot be part of a query result »

{ forall d:Document |

every sequence {

(not via addDocument receive d)* .

via documentsOut send d

} leads to state { false }

}

21

IST-2001-32360

AAL: minimal fixed point

� Concrete syntax:

finite tree X given by { P }

denotes the least solution of the equation X = P
where propositional variable X occurs in P

� Informal semantics:

« recursive function » which explores forward
the execution tree starting from the current
state, and stops after a finite number of
actions

22

IST-2001-32360

Minimal fixed point: example

� « Action alarm occurs after 5 steps »

finite tree Alarm (c:integer) is {

c > 0 implies some sequence { true }

leads to state { Alarm (c – 1) }

and

c = 0 implies some sequence { alarm }

leads to state { true }

} (5) alarm

5 steps

23

IST-2001-32360

Demo: model-checking
behavioural AAL properties

Ontology
Adm

Publis her

Ontology
Adm

Publis her

KM S Organization A KM S Organization B

Searche r

Federation

Mng

Ontology

Tool

Knowledge

Mng

Classifier
Annotation

Tool

Annotation

Tool
Classifier

Federation

Mng

Ontology

Tool

Knowledge

Mng

Searching

Tool

Searching

Tool

Administ
rator

Administ
rator

Ontology

Mng

Ontology

Mng

24

IST-2001-32360

Web site: www.arch-ware.org

Several tools will be available in

open source (from spring 2004)

