
1

© 2003 A.L. Murphy 1

Software Architecture for
Mobile Computing

Amy L. Murphy
Department of Computer Science

U. of Rochester, NY, USA
http://www.cs.rochester.edu/~murphy/

2

Who am I?

♦ University of Rochester, NY, USA
♦ Assistant Professor (on leave)
♦ Department of Computer Science

♦ Politecnico di Milano, Italy
♦ Visiting researcher
♦ Dip. Elettronica e Informazione

♦ Research Interests
♦ Middleware for Mobile Computing
♦ Middleware for Sensor Networks
♦ Algorithm development for mobile environments

ASK QUESTIONS!!!

2

3

Objectives

♦ Provide an understanding the challenging
issues of mobile environments

♦ Survey significant research efforts in
enabling mobile software development,
specifically middleware

♦ Understand one middleware (LIME) in depth,
its features, programming environment, etc

Software Architecture???

4

Outline

♦ Introduction
♦ Two major research issues

♦ Replication
♦ Adaptation

♦ Approaches to Middleware Development
♦ Proxies
♦ Publish/Subscribe
♦ Shared Memory

♦ Case Study – LIME and GVDS

♦ Summary and Open Questions

3

5

Distributed Systems

"One on which I cannot
get any work done

because some machine I
have never heard of has

crashed"
L. Lamport

6

Traditional
Distributed Systems

♦ Fixed hosts, permanent connection, high
bandwidth and stable links, static context

♦ Motivations and challenges for distribution:
♦ Speed: parallelize computation
♦ Scalability: accommodate more users
♦ Economics: clusters cheaper than mainframes
♦ Heterogeneity: different specialized components
♦ Fault tolerance: improve management of hardware

and software faults
♦ Resource sharing: access control, authorization
♦ Inherent distribution: e.g., games, mobility

4

7

Nomadic Distributed Systems
♦ More mobile than traditional systems
♦ Core of fixed hosts
♦ Wireless base stations, e.g., bridges
♦ A set of mobile hosts roaming and accessing

network from different locations
♦ Limited bandwidth, display, interaction, etc.

8

Mobile Ad-hoc
Distributed Systems

♦ Pushing mobility to the extreme, remove
infrastructure

♦ Mobile hosts, intermitted network, non stable links,
dynamic environment

♦ Clusters formed dynamically
♦ Communication may be symmetric and transitive

but not necessarily…

5

9

Middleware: Motivation

♦ Middleware sits between the operating
system and the application

♦ Facilitate the development of distributed
applications

♦ Provide developers with abstractions,
hiding details of distribution, enabling rapid,
dependable development

♦ Typical features include communication
primitives, replication, concurrency
management, etc.

10

Why Middleware for Mobile?

♦ Mobile platform requirements are
demanding

♦ Cannot assume stable connectivity
♦ Need support for handling a dynamically

changing context
♦ Cannot assume a high degree of coupling

between the communicating parties
♦ Cannot hide as much context information as

before

♦ Want rapid, reliable application development

6

11

Commercial Mobile Middleware

♦ Beyond Windows “briefcase”
♦ Web search for “mobile middleware” reveals

a wealth of information, research and
commercial

♦ Straightforward, common solution is to
exploit a proxy

♦ Specific systems to consider
♦ WAP – Wireless Application Protocol
♦ JMS – Java Messaging Service
♦ Wireless Corba

12

Outline

♦ Introduction
♦ Two major research issues

♦ Replication
♦ Adaptation

♦ Approaches to Middleware Development
♦ Proxies
♦ Publish/Subscribe
♦ Shared Memory

♦ Case Study – LIME and GVDS

♦ Summary and Open Questions

7

13

Replication

♦ Goals:
♦ Increase accessibility and reliability of data
♦ Enable disconnected operation

♦ Challenges:
♦ Limited resources on mobile devices
♦ Unpredictability of access to data

♦ Questions:
♦ What to replicate
♦ When to replicate
♦ How to deal with offline changes that conflict

14

Key Replication Systems

♦ Network File System, caching
for performance and
accessibility (disconnected
operation)

♦ Supports nomadic computing,
only servers are trusted

♦ Provide application transparent
file access

♦ Optimistic update policies,
conflict resolution performed
by users on demand

♦ CMU

♦ Distributed database access
♦ Supports mobile ad hoc

networks, and pairwise
reconciliation

♦ Users provide dependency check
and reconciliation policies
♦ Eventual consistency provided

with epidemic algorithm (anti-
entropy)

♦ Sample applications: email,
bibliography database, calendar

♦ Xerox PARC

CODA Bayou

8

15

Collaborative Work Replication

♦ Target: Mobile Collaborative Ad Hoc Groups
♦ Replication for availability and fault

tolerance
♦ Must ensure that the user accesses the most

recent data version available in the group
♦ Uses a conservative coherency protocol

• Exclusive writer, distributed token management. Need token
management in presence of disconnection/loss

• Updates propagated when a member tries to access the
data, save bandwidth to propagate unnecessarily. Only
transmit to requester of data to “save energy”(?)

• Updates also propagated lazily

ReplicationINRIA, France

16

Collaborative Work Replication (2)

♦ Profile based replication
♦ Available energy, expected time in group, available local

storage space
♦ Combined to form “ad-hoc group profile”. Used to control

the rate of replication
♦ Work Replicas vs. Preventive Replicas

♦ WR generated upon access demands to non-locally cached
files. Lazily propagated to other group members. LRU
replacement scheme

♦ PR serve to maintain an up-to-date copy within the group
♦ Secure group management

♦ Must know third party’s public key for authentication
♦ Group key exchanged for most interaction, changed when

group membership changes

ReplicationINRIA, France

9

17

Replication Review

♦ Replication is performed in a mobile
environment for BOTH accessibility and fault
tolerance

♦ Some techniques are tailored to ad hoc
environments, others to nomadic

♦ Most techniques use user profile either
implicitly or explicitly

♦ Resource management is key to effective
replication policies

18

Adaptation to Context

♦ What is context?
♦ Location, proximate devices (and characteristics, e.g.,

energy), physical environment (e.g., noise level,
bandwidth), history of environment

♦ Operating in a mobile environment means context
is always changing, and many applications must
adapt to these changes

♦ Approaches to Adaptation:
♦ Application-transparent: adaptation is the

responsibility of the system
• Applications do not change, simplifies programming
• Does not accommodate all situations, user must sometimes

intervene

♦ Application-aware: applications notified of changes in
context, and expected to modify their own behavior

10

19

Terminal Adaptation

♦ Mobile computing exacerbates the problem of handling
heterogeneity in a distributed system, since the characteristics of
user terminals are extremely different

♦ e.g., GUI concerns, e.g., display size, resolution, colors, modes of
interaction

♦ Research focused on providing some sort of terminal adaptation,
defining languages and mechanisms that allow to reduce (or
eliminate) the amount of rework needed

♦ Examples of related technologies (both are XML-based):
♦ Cocoon (Apache Consortium) is a platform (relying on Java servlets) for

Web content delivery that separates document content, style, and logic
totally; transforms XML files for on-the-fly adaptation

♦ MoDaL is a language developed by IBM to describe user interfaces for
palmtop devices; communication primitives are automatically translated
into the corresponding operation of the TSpaces middleware

Adaptation

20

Odyssey

♦ Odyssey, the “successor” of Coda, supports
application-aware adaptation

♦ Attempts to adjust the quality of data to match
available resources, by
♦ Defining an application-dependent notion of fidelity

• Consistency is “permanent” quality of fidelity
• Fidelity is also data specific, e.g., video data fidelity includes frame

rate and image quality; map fidelity includes minimum feature size
and resolution

♦ Providing an API that allows:
• Applications and the system to talk about salient features of the

environment
• Mechanism that enables applications to track their environment
• Mechanism through which applications request policy changes

AdaptationCMU

11

21

Aura

♦ Distraction-Free Pervasive computing
♦ Move computation and data as the user moves

♦ Operations represented by tasks
♦ Tasks can be accomplished by different services in

different environments.
♦ Anticipate the movement of the user: accomplished

with the “Prism” monitor
♦ Current components include:

♦ Cyber-foraging – exploiting computation and storage of
nearby devices

♦ Bandwidth advisor – predict future bandwidth, advise user
about where

♦ WaveLAN-based people locator – not triangulation based,
but instead uses bootstrap process to collect signal
strengths

CMU Adaptation

22

Aura Architecture

♦ Note inclusion of Coda (file
replication support) and
Odyssey (adaptation to
context)

♦ Spectra
♦ adaptive remote execution

mechanism that uses
context to decide how best
to execute a remote call

♦ e.g., decides where to do
speech recognition

♦ Prism sits above
everything and provides
advice base on
observations

CMU Adaptation

12

23

Context Toolkit

♦ Facilitate development of context aware
applications

♦ Main components
♦ Context widgets

• Software components providing access to context information, e.g.,
location or activity

• Hide details of context sensing
• Wrap sensors, provide poll/subscription access

♦ Context Aggregators (meta-widgets)
• Hide more complexity of environment

♦ Interpreters
• Extract high level features
• E.g., identity, location and sound level information can be

interpreted to mean that a meeting is taking place

♦ Services
• Execute actions on behalf of applications

♦ Discoverers
• Track capabilities that currently exist

Georgia Tech Adaptation

24

Adaptation Summary

♦ Mobility demands that programs be able to
adapt to their environment

♦ Providing adaptability is application specific.
Middleware either:
♦ Allows applications to be notified of changes or
♦ Tries to do the adaptation on behalf of the

application

13

25

Outline

♦ Introduction
♦ Two major research issues

♦ Replication
♦ Adaptation

♦ Approaches to Middleware Development
♦ Proxies
♦ Publish/Subscribe
♦ Shared Memory

♦ Case Study – LIME and GVDS

♦ Summary and Open Questions

26

Common Solution: Proxies
♦ A mobile client relies on the presence of a proxy on the

fixed network, buffering client requests and server
replies
♦ Allows the client to disconnect, e.g., to save battery power, and

gather the results upon the next reconnection
♦ Example: Oracle Mobile Agent, and many others
♦ Disconnection is made explicit to the end user, and it is assumed

that the user can do useful work while disconnected

♦ Often, a thin client is exploited, essentially providing a
remote, mobile user interface
♦ Little or no computation takes place at the client
♦ Example: InfoPad project

14

27

Systems Exploiting Proxies

♦ Wireless Corba
♦ Provide access to mobile object
♦ Provide access to static object by mobile clients
♦ Proxy forwards messages to current location

♦ Rover
♦ Relocatable dynamic objects, mobile objects moved for efficiency
♦ Queued Remote Procedure Call, non-blocking communication

♦ Java Message Service
♦ Reliable, flexible service for the exchange of information
♦ Supports synchronous, asynchronous, and publish/subscribe

communication paradigms
♦ WAP

♦ Tailored to the design of Web pages that must be rendered on very
small screens, without keyboards

♦ Sites must be developed in WML, or translated by a server

28

Publish-Subscribe Events

♦ Publish-Subscribe systems are asynchronous,
implicit, multi-point, and peer-to-peer in
communication style

♦ This style is suited to both traditional distributed
systems and to mobile systems

♦ Clients and publishers are decoupled, and the
infrastructure can be distributed

Event
Dispatcher

C1 C2 C3C1

Temperature > 20 oC Temperature = 25 oC

15

29

Solar

♦ Context-information collection, aggregation, and
dissemination (data fusion)
♦ Operator graph representation of computation allows

decomposition and reuse of context aggregation primitives
♦ Examples: filters, transformers (lookup mechanisms)

♦ Applications register operations with centralized server
“Star” (the centralized dispatcher)

♦ Computation farmed to available hosts (planets)
♦ Directly deliver events to applications

Event-BasedDartmouth College

30

Solar Architecture
Event-BasedDartmouth College

16

31

Jedi

♦ Provides a scalable, distributed, content-
based event dispatcher

♦ Supports mobile agents that connect to a
dispatcher
♦ Clients disconnect
♦ The old event dispatcher stores events for

disconnected clients
♦ When client reconnects, stored events are

transferred and delivered
♦ Partial order of events is guaranteed

Event-BasedPolimi

32

Shared Memory

♦ Provide distributed shared memory
development paradigm in the mobile
environment

♦ MARS/Tucson do this for mobile agents
♦ KLAIM is a model for physical and logical

mobility
♦ We will talk about GVDS:

♦ Global Virtual Data Structures
♦ …through a case study: LIME

17

33

Outline

♦ Introduction
♦ Two major research issues

♦ Replication
♦ Adaptation

♦ Approaches to Middleware Development
♦ Proxies
♦ Publish/Subscribe
♦ Shared Memory

♦ Case Study – LIME and GVDS

♦ Summary and Open Questions

34

Case Study: LIME and GVDS

♦ LIME
♦ Applications
♦ Model
♦ Extensions
♦ Summary

♦ LIME is an example of a Global Virtual Data
Structure. Two other examples are
♦ XMIDDLE
♦ PeerWare

18

35

REDROVER:
virtual games in physical space

♦ Distinguishing characteristic: An application where
transient interactions among mobile users are central
(similar to disaster recovery or robot environment
discovery)

♦ Maintains a consistent
view of the current system
configuration: who else is around

♦ Players request information on
demand from specific connected
players, as well as register interest
for special data from any player

36

ROAMINGJIGSAW:
a multi-player puzzle

♦ Distinguishing characteristic: a mobile application
where the limited availability of shared information due
to mobility is central (similar to CSCW scenarios)

♦ Allows players to work while disconnected to assemble
parts of the puzzle

♦ Maintains a weakly consistent view of global progress
toward the overall puzzle solution

19

37

Enabling the Rapid Development
of Mobile Applications

♦ Embody a conceptual model to facilitate
the design of mobile applications

♦ Functional characteristics to consider
♦ Disconnected operation
♦ Context awareness (data and system)
♦ Context transparency (data and system)
♦ Reactive programming

♦ Provide coordination constructs to
achieve rapid development of mobile
applications through middleware

38

Linda

♦ Tuple-based model of coordination
♦ The tuple space is global and persistent
♦ Communication is

♦ decoupled in time and space
♦ implicit
♦ content-based

Agents

Tuple Space

< USA, Rochester >

< Italy, Milan >

out(t)rd(p)

in(p)

< USA, St. Louis >

20

39

LIME:
Linda in a Mobile Environment

♦ Maintain simple DSM
programming model

♦ LIME = Linda +
♦ Transiently Shared

Tuple Spaces
♦ Tuple Location
♦ Reactions
♦ System Configuration

Tuple Space

♦ Result: rapid
application
development

Disconnection

40

Transiently Shared
Tuple Spaces

♦ Mobile agents are the only active components in the
system and are permanently associated with an
interface tuple space (ITS)
♦ Mobile hosts are just “roaming containers” for mobile agents

♦ Through the ITS, the mobile agent perceive a context
that may change dynamically

♦ The shared context, as determined by mobility, is
determined through transient sharing of the ITSs
♦ Mobility (agent migration and/or changes in connectivity)

triggers engagement and disengagement of the tuple
spaces, and dynamic reconfiguration of the contents perceived
by each agent

♦ The ITS is accessed using Linda operations

21

41

Context Transparency:
Transiently Shared Tuple Spaces

Interface
Tuple Spaces
Host-level
Tuple SpaceFederated
Tuple Space

42

Degrees of Context Awareness

♦ Thus far, distribution and mobility are hidden in
what is perceived as a local tuple space (the ITS)
♦ Programming is simplified

♦ But, this view may hide too much from some
applications which may need to:
♦ limit the scope of query operations to a part of the

context
♦ output tuples that are meant to stay with a host

different from the producer

22

Persistent vs.Transiently Shared
Tuple Spaces

Transiently Shared
Tuple Space

1.

2.

3.

out(t)

t

in(t)

t

Persistent
Tuple Space

t t
out(t)

in(t)

t

44

Binding Tuples to Locations

♦ A tuple’s location is the ITS of an agent

♦ out[λ](t)
♦ the tuple t is inserted in the caller’s ts
♦ if λ is connected, t migrates to λ’s ts; insertion and

migration constitute a single atomic step
♦ if λ is not connected, t stays in the caller’s ts and is marked as

“misplaced”

♦ in[ω, λ](p) and rd[ω, λ](p)
♦ The query for a matching tuple is restricted to a projection of the

tuple space, namely to all the tuples whose current location is ω
and destination is λ

t

23

45

More on Tuple Location

♦ Upon insertion in a tuple space, a user tuple t is
augmented with two fields, yielding a new
tuple 〈 c,d,t 〉:
♦ c, current: the identifier of the agent whose tuple space is

hosting the tuple
♦ d, destination: the identifier of the agent that is the

intended recipient of the tuple

♦ If c ≠ d, the tuple is “misplaced”
♦ This information is used during ITS engagement and

disengagement

46

Tuple Space Engagement

♦ Engagement is triggered by
the arrival of a new mobile
unit (physical or logical)
♦ The contents of the ITSs are

merged
♦ Misplaced tuples are migrated

to destination
♦ Engagement operations are

perceived as a single, atomic
step

24

47

Tuple Space Disengagement

♦ Disengagement also relies on tuple location
♦ Transiently shared tuple space are separated as if each

mobile agent were alone
♦ Separate federated tuple spaces are computed based on

the system configuration after disconnection
♦ In practice, all the tuples are already with the right agent,

and no tuple movement is necessary

48

Awareness of
System Configuration

♦ Details of the system configuration context remain
partially hidden
♦ If a probe inp[ω, λ](p) fails, it may be that ω is around and

does not have tuples matching p, or that ω is not around
♦ Only awareness of the data context is provided

♦ Many applications require knowledge of the context
determined by the system configuration
♦ This is presented to the user in a read-only tuple space named

LimeSystem is provided
♦ The same abstraction is used to represent both data and

system configuration context awareness

25

49

Reacting to
Changes in Context

♦ Mobility is a highly dynamic environment,
where reacting to changes is fundamental

♦ Linda provides a pull mechanism;
with LIME we want to push data to
applications:

♦ Strong and weak reactions provide different
atomicity guarantees

reactsTo (s,p)
t
out(t)s

1

2

50

Strong Reactions

♦ Strong reactions derived directly from Mobile UNITY
reactive statements
♦ after each non-reactive statement, a reaction is selected non-

deterministically and its guard evaluated
♦ if the guard is true, the action is executed, otherwise the

reaction is a skip
♦ the process continues until there are no enabled reactions

♦ The state change and the corresponding action are
tightly coupled
♦ Implementing strong reactions in a distributed system involves

a distributed transaction
♦ Strong reactions are mostly exploited within a single host,

typically to support logical mobility

26

51

Weak Reactions

♦ A much looser coupling is provided between
the state change and the action s
♦ The action s is guaranteed eventually to execute
♦ Implementation does not require a distributed

transaction

♦ Similar to event-based systems, or notification
mechanisms for tuple spaces (e.g., TSpaces’
eventRegister, or JavaSpaces’ notify)
♦ … but a LIME reaction is triggered by the state of the

system, not by the occurrence of an event

52

Reacting to
System Configuration

♦ System configuration is another component
of mobile context

♦ Present “who is around” as a tuple space
called LIMESYSTEM

♦ Accessed with same primitives as data context
♦ Read only by user, updated by system

♦ Augmented with system information,
e.g., host configuration, link state (QoS)

27

53

♦ LIME is the result of a development process integrating
formal modeling, implementation, and application
development

The Making of LIME

Transiently Shared Tuple Spaces

Context Transparency
Tuple migration
Location transparent ops

Context Awareness
Tuple location
Location aware ops

System Configuration
Access
LIMESYSTEM tuple space

Reactivity
Strong
Weak
ONCE/ONCEPERTUPLE

54

LimeTupleSpace API

Basic
Ops

React-
ion
Ops

28

55

Reaction API

56

REDROVER:
virtual games in physical space

♦ Distinguishing characteristic: An application where
transient interactions among mobile users are central
(similar to disaster recovery or robot environment
discovery)

♦ Maintains a consistent
view of the current system
configuration: who else is around

♦ Players request information on
demand from specific connected
players, as well as register interest
for special data from any player

29

57

Using LIME in REDROVER

♦ The reactive model employed varies according to
the required consistency
♦ Strong reactions definitively show who is connected
♦ Weak reactions allow tracking of location with a reasonable

threshold of accuracy

♦ The style of data access varies according to the type
of data
♦ Location-independent access for general data (e.g. flags)
♦ Location-specific access or data whose source is known

(e.g. player picture)

58

ROAMINGJIGSAW:
a multi-player puzzle

♦ Distinguishing characteristic: a mobile application
where the limited availability of shared information due
to mobility is central (similar to CSCW scenarios)

♦ Allows players to work while disconnected to assemble
parts of the puzzle

♦ Maintains a weakly consistent view of global progress
toward the overall puzzle solution

30

59

Using LIME in ROAMINGJIGSAW

♦ Transient sharing of tuple spaces allows transparent
access to the set of puzzle pieces that changes
according to connectivity

♦ A single LIME weak reaction is sufficient to maintain
weakly consistent view of the puzzle
♦ while connected, updates are propagated
♦ upon reconnection, disparate views are reconciled

60

Some Lessons Learned …

♦ “Most computation exploits Linda operations”
Instead, most of programming exploits reactions

♦ “The LimeSystem is nice, but not essential
Instead, the LimeSystem was key in developing
REDROVER

♦ “We are forced to introduce weak reactions”
Weak reactions on the federated tuple space are an
extremely powerful tool, and a good compromise
between expressiveness and overhead

31

61

… and Some Reflections

♦ Is there a programming style induced by LIME?
♦ Proactive vs. reactive programming
♦ Tuple space as data repository vs. coordination mechanism

♦ What are the right atomicity constraints?
♦ Do we need a separate notion of transaction?

♦ Are tuple spaces the right abstraction?
♦ Other kinds of “global virtual data structures” may be

useful as well

♦ Can the model be applied back to a wired setting?
♦ Sharing abstractions for large-scale networks

62

Some LIME Extensions

♦ Tuple space code repository
♦ Extend Java class loader to look into the tuple space

♦ Event distribution
♦ Modeling pub/sub on top of tuple spaces

♦ Service provision
♦ Providing service discovery in MANET
♦ Service repository is a tuple space
♦ Lookup is a query

♦ Secure tuple space sharing
♦ Protect tuple spaces with passwords
♦ Provide password protection for individual tuples
♦ Reuse passwords to secure the communication

32

63

Future Directions of LIME

♦ Cache data for improved access, both during connection
and when disconnected, extending data context

♦ Reduce reliance on announced disconnection, weakening
the guarantees provided by the model, increasing fault
tolerance
♦ Initial work on “Safe Distance”

♦ Agent-centered view of context
♦ Instead of all agents seeing the same federated tuple space, build

each agent’s context independently
♦ Incorporate location into context definition and queries, e.g., agent

sees other agents within 1 mile radius or queries for data within a
given radius

LIME: Summary

♦ LIME adapts the coordination primitives provided by Linda to the
domain of physical and logical mobility

♦ Application programmers found it easy to think about mobility in
terms of these abstractions

♦ LIME balances the ease of programming with the ability to
control the environment

♦ LIME is the result of a development process integrating formal
modeling, implementation, and application development

http://lime.sourceforge.net

33

65

Global Virtual Data Structures
♦ The notion of global virtual data structure (GVDS) lifts

the previous assumptions of distributed shared memory:
♦ the data structure is no longer indivisible:

each of the coordinated agents is associated with a fragment of
the global data structure

♦ the data structure is no longer persistent:
it is transiently and dynamically reconstructed by sharing the
fragments contributed by the coordinated agents

♦ the data structure is no longer globally available:
only some of the coordinated agents (typically based on some
notion of connectivity) are allowed to participate in the
transient sharing of the data structure

66

GVDS Incarnations – 2:
PeerWare

♦ Based on trees
♦ Nodes provide scoping

♦ No direct support for
location-aware primitives
♦ Delegated to traditional

middleware, e.g., RMI

♦ Explicitly separates the
local data structure from
the GVDS

♦ Weak atomicity guarantees

34

67

GVDS Incarnations – 3:
XMIDDLE

♦ Based on tree, but with a different partitioning
♦ The goal is to support offline computation:

♦ Emphasis on pairwise communication rather than global
access

♦ Replication provides some degree of access to GVDS data
in absence of connectivity

Host A Host B Host C

68

GVDS Assets
♦ In coordination models exploiting the notion of GVDS:

♦ The association between the coordination context contributed by a
given agent and the agent itself is now made explicit

♦ The resulting style of coordination draws a distinction between the
information immediately available to an agent and the one that can be
requested from others

♦ Still, the benefits of coordination, e.g., the decoupling of
communication from behavior, are retained

♦ Hence, GVDS fosters a coordination style where:
♦ coordination is defined entirely in terms of the coordinated agents,

without reliance on some external entity
♦ the coordination context is automatically and dynamically reconfigured
♦ coordination is achieved through local actions that have a global effect

♦ The conjecture is that these characteristics are going to:
♦ simplify the task of building (and reasoning about) applications that …
♦ … are built out of autonomous components …
♦ … whose relationships are dynamically and frequently reconfigured

35

69

Design Alternatives
♦ Choice of the data structure

♦ Sets, bags, trees, graphs, matrices, …
♦ May affect the efficiency and/or complexity of the implementation

♦ Choice of operations
♦ Local vs. global
♦ Query vs. manipulation
♦ Proactive vs. reactive
♦ Synchronous vs. asynchronous

♦ Choice of the partitioning/merging criteria
♦ Superposition, union, composition, …

♦ Choice of the enabling condition for sharing
♦ Based on connectivity

• connectivity over space vs. connectivity over time for physical mobility
• co-location for logical mobility

♦ Possibly augmented by application constraints
• e.g., to deal with security, or with specific application constraints

70

Design Alternatives – cont’d
♦ Degree of symmetry and transitivity

♦ Is everybody “seeing” the same content?
♦ Degree of atomicity

♦ Strikes in when determining the semantics of operations, and their
relationship to sharing

♦ Determines the extent to which one can treat the GVDS as a “local”
data structure

♦ Simplifying the programmer’s chore vs. delivering an efficient
implementation

♦ Degree of consistency
♦ Given two agents, how far can their perception of the GVDS drift?
♦ The answer to this question often implies the use of caching and

replication schemes
♦ Degree of knowledge about the system configuration

♦ System information can be represented in a GVDS, too
♦ Degree of persistency

♦ If a portion of the system is known to be stable, how can we exploit it?

36

71

Research Issues

♦ What is the good balance to strike among the design
alternatives?
♦ Relationship with other middleware approaches and results

♦ Is there a “unifying theory” of GVDS?
♦ Is it possible to separate the issues related with distribution

from those intimately connected to the data structure chosen?
♦ A positive answer could lead to a middleware supporting

instantiations of GVDS with different data structures

♦ What is the relationship between GVDS and security?
♦ What is the impact of the GVDS abstraction on formal

reasoning and verification?

72

GVDS Summary

♦ Global virtual data structures are a novel
coordination paradigm targeted at highly dynamic
environments

♦ GVDS is not meant to be a new model by itself:
instead, it is meant to be the driving concept
behind a new family of coordination models

♦ While some incarnations of GVDS are already
available, only a fraction of the design space has
been explored so far

37

73

Outline

♦ Introduction and Major Issues
♦ Two major research issues

♦ Replication
♦ Adaptation

♦ Approaches to Middleware Development
♦ Proxies
♦ Publish/Subscribe
♦ Shared Memory

♦ Case Study – LIME and GVDS

♦ Summary and Open Questions

74

Summary

♦ Middleware for mobile computing provides
abstractions for easing the development
process

♦ Commercial middleware is targeted toward
the first step of mobility, providing service
access to mobile devices

♦ Major issues and approaches in research
include
♦ Replication, Adaptation, Service Discovery, Event-

based, Object-Oriented, Transactional, Transport
Layer, Algorithmic, Data Sharing

♦ Not discussed issues include reflection, security, …

38

75

Questions:

♦ Will there be / should there be a single middleware
for mobile computing?
♦ Not all environments have the same demands and needs
♦ Can there be a composable middleware that allows

designers to pull in only the aspects that they need?

♦ Will the need for mobile middleware diminish as
wireless networks become faster?

♦ Can middleware be shared among applications for:
♦ Nomadic computing
♦ Mobile ad hoc computing
♦ Sensor networks

Questions?

76

References
♦ A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. 15th International Conference on Distributed Computing

Systems. 1995.

♦ C. Bettstetter and C. Renner. A comparison of service discovery protocols and implementation of the service location
protocol. citeseer.nj.nec.com/bettstetter00comparison.html

♦ M. Boulkenafed and V. Issarny. A Middleware Service for Mobile Ad Hoc Data Sharing, Enhancing Data Availability.
ACM/IFIP/USENIX International Middleware Conference. Rio de Janeiro, Brazil. 16-20 June 2003.

♦ Braam, P. J. The Coda Distributed File System. Linux Journal, #50 June 1998.

♦ M.A. Butrico, H. Chang, A. Cocchi, N.H. Cohen, D.G. Shea, S.E. Smith. Gold Rush: Mobile Transaction Middleware with Java-
Object Replication. Proceedings of the Third USENIX Conference on Object-Oriented Technologies (COOTS), Pp. 91--102,
1997

♦ A.T. Campbell, M.E. Kounavis, and R.R.-F. Liao, Programmable Mobile Networks, Computer Networks and ISDN Systems,
Elsevier Science, Vol 31., No 7, 1999,

♦ Campbell A.T., Mobiware: QOS Aware Middleware for Mobile Multimedia Communications, 7th IFIP International Conference
on High Performance Networking (HPN) White Plains, New York, April 1997.

♦ G. Chen and D. Kotz. Solar: An Open Platform for Context-Aware Mobile Applications. In Proceedings of the First
International Conference on Pervasive Computing (Pervasive 2002), pages 41-47, Zurich, Switzerland, June, 2002. Short
papers.

♦ Margaret H. Dunham, Abdelsalam Helal, Santosh Balakrishnan, A Mobile Transaction Model That Captures Both the Data and
Movement Behavior. Mobile Networks and Applications. vol 2 no 2. pp. 149-162, 1997.

♦ M.R. Ebling, G.D.H. Hunt and H. Lei, Issues for Context Services for Pervasive Computing. In Proc. Workshop on Middleware
for Mobile Computing, IFIP/ACM Middleware 2001.

♦ D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste. Project Aura: Toward Distraction-Free Pervasive Computing IEEE
Pervasive Computing, April-June 2002

39

77

References (2)
♦ M. Haahr, R. Cunningham and V. Cahill. Supporting CORBA Applications in a Mobile Environment. MobiCom '99: 5th

International Conference on Mobile Computing and Networking. Seattle, August 1999.

♦ M. Haahr, R. Cunningham and V. Cahill. Towards a Generic Architecture for Mobile Object-Oriented Applications. SerP 2000:
Workshop on Service Portability. San Francisco, December 2000.

♦ C. Intanagonwiwat, R. Govindan and D. Estrin. Directed diffusion: A scalable and robust communication paradigm for sensor
networks. In Proceedings of the Sixth Annual International Conference on Mobile Computing and Networking (MobiCOM
'00), August 2000, Boston, Massachussetts.

♦ A.D. Joseph, J.A. Tauber, and M. Frans Kaashoek. Mobile Computing with the Rover Toolkit. IEEE Transactions on
Computers: Special issue on Mobile Computing, 46(3). March 1997.

♦ A.D. Joseph, J.A. Tauber, and M.F. Kaashoek. Building Reliable Mobile-Aware Applications using the Rover Toolkit, in
Proceedings of the Second ACM International Conference on Mobile Computing and Networking (MobiCom'96). November
1996.

♦ G. H. Kuenning and G. J. Popek. Automated Hoarding for Mobile Computers. Proceedings of the 16th ACM Symposium on
Operating Systems Principles, (SOSP-16) St. Malo, France, October 5-8, 1997.

♦ G.H. Kuenning, W. Ma, P. Reiher, and G.J. Popek Simplifying Automated Hoarding Methods. 5th ACM International Workshop
on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2002), Atlanta, GA, September, 2002.

♦ S. Maffeis. Communication Middleware for Mobile Applications - A Comparison, August 2001.

♦ C. Mascolo, L. Capra, and W. Emmerich. Middleware for Mobile Computing (A Survey). In Advanced Lectures in Networking.
Editors E. Gregori, G. Anastasi, S. Basagni. Springer. LNCS 2497. 2002.

♦ C. Mascolo, L. Capra, S. Zachariadis and W. Emmerich. XMIDDLE: A Data-Sharing Middleware for Mobile Computing. In
Personal and Wireless Communications Journal 21(1), Kluwer. April 2002.

♦ A.L. Murphy, G.P. Picco, G.-C. Roman, Lime: A Middleware for Physical and Logical Mobility. in Proceedings of the
International Conference on Distributed Computing Systems (ICDCS'01), Phoenix, AZ (USA), pp 524--533, April 2001.

78

References (3)

♦ A.L. Murphy, G.-C. Roman, G. Varghese, Tracking Mobile Units for Dependable Message Delivery. IEEE Transactions on
Software Engineering (May 2002).

♦ B. Noble, M. Price, and M. Satyanarayanan. A Programming Interface for Application-Aware Adaptation in Mobile
Computing. Proceedings of the Second USENIX Symposium on Mobile & Location-Independent Computing Apr. 1995, Ann
Arbor, MI

♦ K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible Update Propagation for Weakly
Consistent Replication Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP-16), Saint Malo,
France, October 5-8, 1997, pages 288-301.

♦ G.P. Picco, A.L. Murphy, and G.-C. Roman, Lime: Linda Meets Mobility in Proceedings of the 21st International Conference
on Software Engineering (ICSE 1999), Los Angeles, CA (USA), D. Garlan and J. Kramer, eds., May 1999, ACM Press, ISBN 1-
58113-074-0, pp. 368-377.

♦ A. Popovici, A. Frei and G. Alonso. A Proactive Middleware Platform for Mobile Computing. ACM/IFIP/USENIX International
Middleware Conference. Rio de Janeiro, Brazil. 16-20 June 2003.

♦ X. Qu, J.X. Yu, and R.P. Brent. A Mobile {TCP} Socket. TR-CS-97-08, Canberra 0200 ACT, Australia. 1997

♦ M. Satyanarayanan. Fundamental Challenges in Mobile Computing. Fifteenth ACM Symposium on Principles of Distributed
Computing. May 1996, Philadelphia, PA

♦ M. Satyanarayanan. Coda: A Highly Available File System for a Distributed Workstation Environment. Proceedings of the
Second IEEE Workshop on Workstation Operating Systems. Sep. 1989, Pacific Grove, CA

♦ M. Satyanarayanan. Coda: A Highly Available File System for a Distributed Workstation Environment Proceedings of the
Second IEEE Workshop on Workstation Operating Systems Sep. 1989, Pacific Grove, CA

♦ J.P. Sousa and D. Garlan. From Computers Everywhere to Tasks Anywhere: The Aura Approach. Submitted for Publication

