=20

Software Architecture for
Mobile Computing

Amy L. Murphy
Department of Computer Science
U. of Rochester, NY, USA
http://www.cs.rochester.edu/~murphy/

© 2003 A.L. Murphy

'f%mﬂ& Who am I?

¢ University of Rochester, NY, USA
¢ Assistant Professor (on leave)
¢ Department of Computer Science
¢ Politecnico di Milano, Italy
¢ Visiting researcher
¢ Dip. Elettronica e Informazione
¢ Research Interests
+ Middleware for Mobile Computing
¢ Middleware for Sensor Networks

¢ Algorithm development for mobile environments

ASK QUESTIONS!!!

SIS Objectives

¢ Provide an understanding the challenging
issues of mobile environments

¢ Survey significant research efforts in
enabling mobile software development,
specifically middleware

¢ Understand one middleware (Live) in depth,
its features, programming environment, etc

Software Architecture???

&

ﬂmﬂﬁu Outline

¢ Introduction

¢ Two major research issues
¢ Replication
+ Adaptation

¢ Approaches to Middleware Development
¢ Proxies
¢ Publish/Subscribe
¢ Shared Memory

¢ Case Study — Live and Gvbs
¢ Summary and Open Questions

£

4l Distributed Systems

"One on which I cannot
get any work done
because some machine I
have never heard of has
crashed"”

L. Lamport

%IRCS Traditional
P Distributed Systems

¢ Fixed hosts, permanent connection, high
bandwidth and stable links, static context

¢ Motivations and challenges for distribution:
¢ Speed: parallelize computation
¢ Scalability: accommodate more users
¢ Economics: clusters cheaper than mainframes
¢ Heterogeneity: different specialized components

¢ Fault tolerance: improve management of hardware
and software faults

¢ Resource sharing: access control, authorization
¢ Inherent distribution: e.g., games, mobility

ﬂm Nomadic Distributed Systems

+ More mobile than traditional systems
¢ Core of fixed hosts
¢ Wireless base stations, e.g., bridges

¢ A set of mobile hosts roaming and accessing
network from different locations

+ Limited bandwidth, display, interaction, etc.

e‘%mﬂs Mobile Ad-hoc
) Distributed Systems

¢ Pushing mobility to the extreme, remove
infrastructure

¢ Mobile hosts, intermitted network, non stable links,
dynamic environment

¢ Clusters formed dynamically

¢ Communication may be symmetric and transitive
but not necessarily...

S0 Middleware: Motivation

¢ Middleware sits between the operating
system and the application

¢ Facilitate the development of distributed
applications

¢ Provide developers with abstractions,
hiding details of distribution, enabling rapid,
dependable development

¢ Typical features include communication
primitives, replication, concurrency
management, etc.

:%H&CS Why Middleware for Mobile?

¢ Mobile platform requirements are
demanding

¢ Cannot assume stable connectivity
¢ Need support for handling a dynamically
changing context

+ Cannot assume a high degree of coupling
between the communicating parties

+ Cannot hide as much context information as
before

+ Want rapid, reliable application development

10

ﬂm Commercial Mobile Middleware

¢ Beyond Windows “briefcase”
¢ Web search for “mobile middleware” reveals
a wealth of information, research and
commercial
¢ Straightforward, common solution is to
exploit a proxy
¢ Specific systems to consider
+ WAP — Wireless Application Protocol
¢ JMS - Java Messaging Service
¢ Wireless Corba

11

&

ﬂmﬂﬁu Outline

¢ Introduction

¢ Two major research issues
¢ Replication
+ Adaptation
¢ Approaches to Middleware Development

¢ Proxies
¢ Publish/Subscribe
¢ Shared Memory

¢ Case Study — Live and Gvbs
¢ Summary and Open Questions

12

) Replication

¢ Goals:

¢ Increase accessibility and reliability of data
+ Enable disconnected operation

¢ Challenges:

¢ Limited resources on mobile devices
+ Unpredictability of access to data

¢ Questions:
+ What to replicate
+ When to replicate

+ How to deal with offline changes that conflict

13

4l Key Replication Systems

CODA

¢ Network File System, caching
for performance and
accessibility (disconnected
operation)

¢ Supports nomadic computing,
only servers are trusted

+ Provide application transparent
file access

+ Optimistic update policies,
conflict resolution performed
by users on demand

¢ CMU

Bayou

Distributed database access

+ Supports mobile ad hoc

networks, and pairwise

reconciliation

Users provide dependency check

and reconciliation policies

+ Eventual consistency provided

with epidemic algorithm (anti-
entropy)

Sample applications: email,

bibliography database, calendar

Xerox PARC

14

ﬁm Collaborative Work Replication

‘ INRIA, France Replication

¢ Target: Mobile Collaborative Ad Hoc Groups

¢ Replication for availability and fault
tolerance

+ Must ensure that the user accesses the most
recent data version available in the group

¢ Uses a conservative coherency protocol
¢ Exclusive writer, distributed token management. Need token
management in presence of disconnection/loss

¢ Updates propagated when a member tries to access the
data, save bandwidth to propagate unnecessarily. Only
transmit to requester of data to “save energy”(?)

o Updates also propagated lazily

15

ﬂm Collaborative Work Replication (2)

_INRIA, France Replication

¢ Profile based replication
+ Available energy, expected time in group, available local
storage space
+ Combined to form “ad-hoc group profile”. Used to control
the rate of replication
¢ Work Replicas vs. Preventive Replicas

+ WR generated upon access demands to non-locally cached
files. Lazily propagated to other group members. LRU
replacement scheme

+ PR serve to maintain an up-to-date copy within the group

¢ Secure group management
+ Must know third party’s public key for authentication

+ Group key exchanged for most interaction, changed when
group membership changes

16

ﬂmﬂﬁu Replication Review

¢ Replication is performed in a mobile
environment for BOTH accessibility and fault
tolerance

¢ Some techniques are tailored to ad hoc
environments, others to nomadic

¢ Most techniques use user profile either
implicitly or explicitly

¢ Resource management is key to effective
replication policies

17

'ﬂmﬂ& Adaptation to Context

¢ What is context?

+ Location, proximate devices (and characteristics, e.g.,
energy), physical environment (e.g., noise level,
bandwidth), history of environment

¢ Operating in a mobile environment means context
is always changing, and many applications must
adapt to these changes

¢ Approaches to Adaptation:
+ Application-transparent: adaptation is the
responsibility of the system
o Applications do not change, simplifies programming

¢ Does not accommodate all situations, user must sometimes
intervene

+ Application-aware: applications notified of changes in
context, and expected to modify their own behavior

18

ﬂmﬂ& Terminal Adaptation

Adaptation

+ Mobile computing exacerbates the problem of handling
heterogeneity in a distributed system, since the characteristics of
user terminals are extremely different

+ e.g., GUI concerns, e.g., display size, resolution, colors, modes of
interaction

+ Research focused on providing some sort of terminal adaptation,
defining languages and mechanisms that allow to reduce (or
eliminate) the amount of rework needed

+ Examples of related technologies (both are XML-based):

+ Cocoon (Apache Consortium) is a platform (relying on Java servlets) for
Web content delivery that separates document content, style, and logic
totally; transforms XML files for on-the-fly adaptation

+ MoDal is a language developed by IBM to describe user interfaces for
palmtop devices; communication primitives are automatically translated
into the corresponding operation of the TSpaces middleware

19

'f%mﬂﬁo Odyssey

CcMU Adaptation

¢ Odyssey, the “successor” of Coda, supports
application-aware adaptation

¢ Attempts to adjust the quality of data to match
available resources, by

+ Defining an application-dependent notion of fidelity
e Consistency is “permanent” quality of fidelity
« Fidelity is also data specific, e.g., video data fidelity includes frame
rate and image quality; map fidelity includes minimum feature size
and resolution
¢ Providing an API that allows:

o Applications and the system to talk about salient features of the
environment

¢ Mechanism that enables applications to track their environment
¢ Mechanism through which applications request policy changes

20

ﬂmﬂ& Aura

CcMU Adaptation

+ Distraction-Free Pervasive computing

¢ Move computation and data as the user moves
+ Operations represented by tasks
+ Tasks can be accomplished by different services in
different environments.
¢ Anticipate the movement of the user: accomplished
with the “Prism” monitor

¢ Current components include:
+ Cyber-foraging — exploiting computation and storage of
nearby devices
+ Bandwidth advisor — predict future bandwidth, advise user
about where
+ WavelLAN-based people locator — not triangulation based,
but instead uses bootstrap process to collect signal

strengths
21

*f%mﬂ& Aura Architecture

CMU Adaptation

¢ Note inclusion of Coda (file
replication support) and

Odyssey (adaptation to Task ppor, o tan, v roscomy
context)
Application1 Application 2 Application 3
¢ Spectra
+ adaptive remote execution Other Aura runtime supporl .
mechanism that uses . -
context to decide how best Nomadic file access Resaurce monitaring, adapiafion

to execute a remote call

Linux kemel

¢ e.g., decides where to do
speech recognition e e T
¢ Prism sits above
everything and provides
advice base on

observations
22

f%l.[ﬂf.q Context Toolkit

_Georgia Tech Adaptation

¢ Facilitate development of context aware
applications

+ Main components

+ Context widgets

¢ Software components providing access to context information, e.g.,
location or activity

¢ Hide details of context sensing

* Wrap sensors, provide poll/subscription access
¢ Context Aggregators (meta-widgets)

¢ Hide more complexity of environment
¢ Interpreters

o Extract high level features

¢ E.g., identity, location and sound level information can be
interpreted to mean that a meeting is taking place

+ Services

* Execute actions on behalf of applications
+ Discoverers

o Track capabilities that currently exist

23

4l Adaptation Summary

¢ Mobility demands that programs be able to
adapt to their environment
¢ Providing adaptability is application specific.
Middleware either:
+ Allows applications to be notified of changes or

¢ Tries to do the adaptation on behalf of the
application

24

MC& Outline

¢ Introduction

+ Two major research issues
¢ Replication
¢ Adaptation

¢ Approaches to Middleware Development
¢ Proxies
¢ Publish/Subscribe
¢ Shared Memory

¢ Case Study — Live and Gvbs

¢ Summary and Open Questions

25

*f%mﬂ& Common Solution: Proxies

+ A mobile client relies on the presence of a proxy on the
fixed network, buffering client requests and server
replies

+ Allows the client to disconnect, e.g., to save battery power, and
gather the results upon the next reconnection

¢ Example: Oracle Mobile Agent, and many others

+ Disconnection is made explicit to the end user, and it is assumed
that the user can do useful work while disconnected

¢ Often, a thin client is exploited, essentially providing a
remote, mobile user interface

+ Little or no computation takes place at the client
+ Example: InfoPad project

26

Al Systems Exploiting Proxies

¢ Wireless Corba
+ Provide access to mobile object
+ Provide access to static object by mobile clients
+ Proxy forwards messages to current location
¢ Rover
+ Relocatable dynamic objects, mobile objects moved for efficiency
+ Queued Remote Procedure Call, non-blocking communication
¢ Java Message Service
+ Reliable, flexible service for the exchange of information

¢ Supports synchronous, asynchronous, and publish/subscribe
communication paradigms

+ WAP

+ Tailored to the design of Web pages that must be rendered on very
small screens, without keyboards

¢ Sites must be developed in WML, or translated by a server ,,

£

%mﬂ& Publish-Subscribe Events

¢ Publish-Subscribe systems are asynchronous,
implicit, multi-point, and peer-to-peer in
communication style

¢ This style is suited to both traditional distributed
systems and to mobile systems

¢ Clients and publishers are decoupled, and the
infrastructure can be distributed

Event O
Dispatcher
Temperature > 20 °C

Temperature = 25 °C

28

:%H&CS Solar

Dartmouth College Event-Based

+ Context-information collection, aggregation, and
dissemination (data fusion)

+ Operator graph representation of computation allows
decomposition and reuse of context aggregation primitives

+ Examples: filters, transformers (lookup mechanisms)
¢ Applications register operations with centralized server
“Star” (the centralized dispatcher)
+ Computation farmed to available hosts (planets)
+ Directly deliver events to applications

I Solar Architecture
_Dartmouth College Event-Based

{
I
1
1
1

Subscriptio
Request |

Flanet

30

Al Jedi

‘ Polimi Event—Baeeq

¢ Provides a scalable, distributed, content-
based event dispatcher

¢ Supports mobile agents that connect to a
dispatcher
¢ Clients disconnect

¢ The old event dispatcher stores events for
disconnected clients

+ When client reconnects, stored events are
transferred and delivered

¢ Partial order of events is guaranteed

31

£

{%[Rﬂ& Shared Memory

¢ Provide distributed shared memory
development paradigm in the mobile
environment
¢ MARS/Tucson do this for mobile agents
¢ KLAIM is a model for physical and logical
mobility
¢+ We will talk about GVDS:
¢ Global Virtual Data Structures
¢ ...through a case study: LiMe

32

MC& Outline

¢ Introduction

+ Two major research issues
¢ Replication
¢ Adaptation

¢ Approaches to Middleware Development
Proxies
¢ Publish/Subscribe
¢ Shared Memory

¢ Case Study — LiMe and Gvbs

¢ Summary and Open Questions

33

‘ﬂmﬂﬁo Case Study: LIME and GVDS

¢ LIME
+ Applications
+ Model
+ Extensions
+ Summary
¢ Live is an example of a Global Virtual Data
Structure. Two other examples are
¢ XMIDDLE
¢ PeerWare

34

&[0 REDROVER:

P . . .
virtual games in physical space

¢ Distinguishing characteristic: An application where
transient interactions among mobile users are central
(similar to disaster recovery or robot environment
discovery)

¢ Maintains a consistent
view of the current system
configuration: who else is around

¢ Players request information on
demand from specific connected
players, as well as register interest
for special data from any player

QM ROAMINGJIGSAW:
| a multi-player puzzle

+ Distinguishing characteristic: a mobile application
where the limited availability of shared information due
to mobility is central (similar to CSCW scenarios)

¢ Allows players to work while disconnected to assemble
parts of the puzzle

+ Maintains a weakly consistent view of global progress
toward the overall puzzle solution

36

«‘%m Enabling the Rapid Development
RS- of Mobile Applications

¢+ Embody a conceptual model to facilitate
the design of mobile applications
¢ Functional characteristics to consider
¢ Disconnected operation
¢ Context awareness (data and system)
¢ Context transparency (data and system)
¢ Reactive programming
¢ Provide coordination constructs to
achieve rapid development of mobile
applications through middleware

37

sl Linda

¢ Tuple-based model of coordination

¢ The tuple space is global and persistent

¢ Communication is
¢ decoupled in time and space
+ implicit Agents
¢ content-based

< USA, Rochester >

< USA, St. Louis > < Italy, Milan >

Tuple Space

38

ﬂmﬂs LIME:

Linda in a Mobile Environment

¢ Maintain simple DSM
programming model

¢ LiME = Linda +

¢ Transiently Shared
Tuple Spaces

¢ Tuple Location
+ Reactions
+ System Configuration
Tuple Space
¢ Result: rapid
application
development

Disconnection
39

%H&fﬁ Transiently Shared
P Tuple Spaces

+ Mobile agents are the only active components in the
system and are permanently associated with an
interface tuple space (1TS)

+ Mobile hosts are just “roaming containers” for mobile agents

¢ Through the ITS, the mobile agent perceive a context
that may change dynamically

¢ The shared context, as determined by mobility, is
determined through transient sharing of the ITSs

+ Mobility (agent migration and/or changes in connectivity)
triggers engagement and disengagement of the tuple
spaces, and dynamic reconfiguration of the contents perceived
by each agent

¢ The ITS is accessed using Linda operations

40

%qu Context Transparency:
P®% Transiently Shared Tuple Spaces

derated
Tuple Space

41

Al Degrees of Context Awareness

¢ Thus far, distribution and mobility are hidden in
what is perceived as a local tuple space (the ITS)
¢ Programming is simplified
¢ But, this view may hide too much from some
applications which may need to:

¢+ limit the scope of query operations to a part of the
context

¢ output tuples that are meant to stay with a host
different from the producer

42

.ﬁm Persistent vs.Transiently Shared
o Tuple Spaces

Transiently Shared
Tuple Space
out(t) out(t)
T

e

in(t) in(t)
Persistent
Tuple Space 3.

Al Binding Tuples to Locations

¢ A tuple’s location is the 115 of an agent
o out[1](9)
¢ the tuple tis inserted in the caller’s ts

¢ if A is connected, £ migrates to A’s ts; insertion and
migration constitute a single atomic step

¢ if X is not connected, ¢stays in the caller’s ts and is marked as
“misplaced”

¢ info, 2](p) and rd[o, 2](p)
+ The query for a matching tuple is restricted to a projection of the
tuple space, namely to all the tuples whose current location is ®
and destination is A

44

ﬁ[ﬂﬂ&_ More on Tuple Location

+ Upon insertion in a tuple space, a user tuple tis
augmented with two fields, yielding a new
tuple (¢dt):
+ ¢ current. the identifier of the agent whose tuple space is
hosting the tuple
+ d, destination: the identifier of the agent that is the
Intended recipient of the tuple

¢ If c# 4, the tuple is “misplaced”

¢ This information is used during 11s engagement and
disengagement

45

ﬁ[ﬂﬂ&_ Tuple Space Engagement

¢ Engagement is triggered by
the arrival of a new mobile
unit (physical or logical)
¢ The contents of the ITSs are
merged

¢ Misplaced tuples are migrated
to destination
+ Engagement operations are

perceived as a single, atomic
step

46

:%I.L&CS Tuple Space Disengagement

¢ Disengagement also relies on tuple location

+ Transiently shared tuple space are separated as if each
mobile agent were alone

+ Separate federated tuple spaces are computed based on
the system configuration after disconnection

+ In practice, all the tuples are already with the right agent,
and no tuple movement is necessary

47

‘%[Rﬂﬂ Awareness of
) System Configuration

¢ Details of the system configuration context remain
partially hidden

¢ If a probe inp[o, 1](p) fails, it may be that o is around and
does not have tuples matching p, or that o is not around

¢ Only awareness of the data context is provided

¢ Many applications require knowledge of the context
determined by the system configuration

¢ This is presented to the user in a read-only tuple space named
LimeSystem is provided

¢ The same abstraction is used to represent both data and
system configuration context awareness

48

‘%IRCS Reacting to
) Changes in Context

¢ Mobility is a highly dynamic environment,
where reacting to changes is fundamental

¢ Linda provides a pull mechanism;
with Live we want to push data to
applications:

reactsTo (s,p)

¢ Strong and weak reactions provide different

atomicity guarantees
49

*f%mﬂ& Strong Reactions

¢ Strong reactions derived directly from Mobile UNiTy
reactive statements
+ after each non-reactive statement, a reaction is selected non-
deterministically and its guard evaluated
¢ if the guard is true, the action is executed, otherwise the
reaction is a skip
¢ the process continues until there are no enabled reactions

¢ The state change and the corresponding action are
tightly coupled

+ Implementing strong reactions in a distributed system involves
a distributed transaction

+ Strong reactions are mostly exploited within a single host,
typically to support logical mobility

50

&

ﬂmﬂﬁu Weak Reactions

¢ A much looser coupling is provided between
the state change and the action s
¢ The action sis guaranteed eventually to execute
¢ Implementation does not require a distributed
transaction
¢ Similar to event-based systems, or notification
mechanisms for tuple spaces (e.g., TSpaces’
eventRegister, OF JavaSpaces’ notify)

¢ ... but a Live reaction is triggered by the state of the
system, not by the occurrence of an event

51

@IRCS Reacting to

System Configuration

¢ System configuration is another component
of mobile context

¢ Present "who is around” as a tuple space
called LIMESYSTEM
¢ Accessed with same primitives as data context
¢ Read only by user, updated by system
¢ Augmented with system information,
e.g., host configuration, link state (QoS)

52

i) The Making of LiME

¢ LivE is the result of a development process integrating
formal modeling, implementation, and application
development

Transiently Shared Tuple Spaces

Context Awareness
Tuple location
Location aware ops

Context Transparency
Tuple migration
Location transparent ops

Rsetf;]th'ty System Configuration
g Access

Weak LIMES tupl

ONCE/ONCEPERTUPLE MESYSTEM tuple space

53

Al LimeTupleSpace API

public class LimeTupleSpace {

public LimeTupleSpace(String name);

public String getName();

public boolean isOwner();

public beclean setShared{beclean isShared};

public static boolean setShared(LimeTupleSpace[] 1ts,
boolean isShared);

public boolean isShared();

public veid out(ITuple tuple);

public void out (Agentlocation destination, ITuple tuplel;

public ITuple in{ITuple template);

public ITuple in(Location current, AgentLocation destinationm,

Basic ITuple template);
public ITuple inp{Location current, AgentLocation destinatienm,
ops ITuple template);

public ITuple rd{ITuple template);

public ITuple rd(Locatien current, AgentLecation destinatien,
ITuple template);

public ITuple rdp(Location current, AgentLocation destination,
ITuple template);

public RegisteredReaction(]

React- addStrengheaction(LocalizedReactien[] reactions};

- public RegisteredReaction[] addWeakReaction(Reaction[] reactions);

ion public void removeReaction(RegisteredReaction[] reactions);

ops public RegisteredReaction[] getRegisteredReactions();

public boclean isRegisteredReaction(RegisteredReaction reaction);

54

ﬂmﬂﬁu Reaction API

= entLocation();
gentLocation getDestinationlocation();

public class UbiquitousReaction extends Reaction {
public UbiguitousReaction{ITuple texplate,
Reactionlistener listener,
short mods);

ublic class LocalizedReaction extends Reaction

bl 1 1 React t React {
public LocalizedReaction{Lecation current,

cation destinatien,

ITuple template,
ReactionlListener listener,
short mede);

public class RegisteredRe

ion extends Reaction {
e (1 -

public class ReacticnEvent extends java.util.EventDbject {
public ITuple getEventTuple();
public RegisteredReaction getReaction();
public AgentID getSourceAgent();

public interface Reacticnlistener extends java.util.Eventlistener {
public veid reactsTo(ReactionEvent e);

55

&I REDROVER:

virtual games in physical space

¢ Distinguishing characteristic: An application where
transient interactions among mobile users are central
(similar to disaster recovery or robot environment
discovery)

¢ Maintains a consistent

view of the current system
configuration: who else is around

¢ Players request information on
demand from specific connected
players, as well as register interest
for special data from any player

%mﬂ&. Using LiME in REDROVER

¢ The reactive model employed varies according to
the required consistency
+ Strong reactions definitively show who is connected
+ Weak reactions allow tracking of location with a reasonable
threshold of accuracy
¢ The style of data access varies according to the type
of data
+ Location-independent access for general data (e.g. flags)

+ Location-specific access or data whose source is known
(e.g. player picture)

57

QM ROAMINGJIGSAW:
| a multi-player puzzle

+ Distinguishing characteristic: a mobile application
where the limited availability of shared information due
to mobility is central (similar to CSCW scenarios)

¢ Allows players to work while disconnected to assemble
parts of the puzzle

+ Maintains a weakly consistent view of global progress
toward the overall puzzle solution

58

@Tﬂﬂ&. Using LiME in ROAMINGJIGSAW

¢ Transient sharing of tuple spaces allows transparent
access to the set of puzzle pieces that changes
according to connectivity

¢ A single LIME weak reaction is sufficient to maintain
weakly consistent view of the puzzle
+ while connected, updates are propagated
+ upon reconnection, disparate views are reconciled

59

ﬂmﬂ&. Some Lessons Learned ...

”

+ "Most computation exploits Linda operations
Instead, most of programming exploits reactions

¢ "The Limesystem is nice, but not essential
Instead, the Limesystem was key in developing
REDROVER

+ "We are forced to introduce weak reactions”
Weak reactions on the federated tuple space are an
extremely powerful tool, and a good compromise
between expressiveness and overhead

60

'ﬂmﬂ& ... and Some Reflections

¢ Is there a programming style induced by LIME?

+ Proactive vs. reactive programming

¢ Tuple space as data repository vs. coordination mechanism
¢ What are the right atomicity constraints?

+ Do we need a separate notion of transaction?
¢ Are tuple spaces the right abstraction?

¢ Other kinds of "global virtual data structures”may be
useful as well

¢ Can the model be applied back to a wired setting?
¢ Sharing abstractions for large-scale networks

61

3 Some LIME Extensions

¢ Tuple space code repository
+ Extend Java class loader to look into the tuple space
+ Event distribution
+ Modeling pub/sub on top of tuple spaces
¢ Service provision
+ Providing service discovery in MANET
¢ Service repository is a tuple space
¢ Lookup is a query
¢ Secure tuple space sharing
+ Protect tuple spaces with passwords
+ Provide password protection for individual tuples
+ Reuse passwords to secure the communication

62

'ﬂmﬂ& Future Directions of LImME

¢ Cache data for improved access, both during connection
and when disconnected, extending data context

¢ Reduce reliance on announced disconnection, weakening
the guarantees provided by the model, increasing fault
tolerance
+ Initial work on “Safe Distance”

¢ Agent-centered view of context

+ Instead of all agents seeing the same federated tuple space, build
each agent’s context independently

+ Incorporate location into context definition and queries, e.g., agent
sees other agents within 1 mile radius or queries for data within a
given radius

63

=1 LIME: Summary

+ LIME adapts the coordination primitives provided by Linda to the
domain of physical and logical mobility

+ Application programmers found it easy to think about mobility in
terms of these abstractions

¢ LIME balances the ease of programming with the ability to
control the environment

¢ LIME is the result of a development process integrating formal
modeling, implementation, and application development

http://lime.sourceforge.net

ﬂm Global Virtual Data Structures

¢ The notion of global virtual data structure (GVDS) lifts |
the previous assumptions of distributed shared memory:

+ the data structure is no longer indivisible:
each of the coordinated agents is associated with a fragment of
the global data structure

+ the data structure is no longer persistent:
it is transiently and dynamically reconstructed by sharing the
fragments contributed by the coordinated agents

¢ the data structure is no longer globally available:
only some of the coordinated agents (typically based on some
notion of connectivity) are allowed to participate in the
transient sharing of the data structure

65

m GVDS Incarnations — 2:
PeerWare

¢ Based on trees
+ Nodes provide scoping osh

¢ No direct support for - =T
location-aware primitives 5/?
Peer B ool
+ Delegated to traditional ééﬁfé 2 ’
middleware, e.g., RMI S

¢ Explicitly separates the
local data structure from
the GVDS

¢ Weak atomicity guarantees

66

{§ GVDS Incarnations - 3:
) XMIDDLE

¢ Based on tree, but with a different partitioning

¢ The goal is to support offline computation:
+ Emphasis on pairwise communication rather than global
access

+ Replication provides some degree of access to GVDS data
in absence of connectivity

Host A Host B Host C

CRRCRRME

O

O

67

= GVDS Assets

+ In coordination models exploiting the notion of GVDS:

+ The association between the coordination context contributed by a
given agent and the agent itself is now made explicit

¢ The resulting style of coordination draws a distinction between the
information immediately available to an agent and the one that can be
requested from others
+ Still, the benefits of coordination, e.g., the decoupling of
communication from behavior, are retained
¢ Hence, GVDS fosters a coordination style where:

+ coordination is defined entirely in terms of the coordinated agents,
without reliance on some external entity

+ the coordination context is automatically and dynamically reconfigured

+ coordination is achieved through local actions that have a global effect
+ The conjecture is that these characteristics are going to:

+ simplify the task of building (and reasoning about) applications that ...

¢ ... are built out of autonomous components ...

+ ... whose relationships are dynamically and frequently reconfigured

68

ﬂmﬂﬁo Design Alternatives

¢ Choice of the data structure

¢ Sets, bags, trees, graphs, matrices, ...

+ May affect the efficiency and/or complexity of the implementation
¢ Choice of operations

¢ Local vs. global

+ Query vs. manipulation

+ Proactive vs. reactive

+ Synchronous vs. asynchronous

¢ Choice of the partitioning/merging criteria
+ Superposition, union, composition, ...
¢ Choice of the enabling condition for sharing

+ Based on connectivity
e connectivity over space vs. connectivity over time for physical mobility
e co-location for logical mobility
+ Possibly augmented by application constraints
¢ e.g., to deal with security, or with specific application constraints 69

'f%mﬂﬁo Design Alternatives — cont’d

+ Degree of symmetry and transitivity
+ Is everybody “seeing” the same content?
¢ Degree of atomicity
+ Strikes in when determining the semantics of operations, and their
relationship to sharing
¢ Determines the extent to which one can treat the GVDS as a “local”
data structure
+ Simplifying the programmer’s chore vs. delivering an efficient
implementation
+ Degree of consistency
+ Given two agents, how far can their perception of the GVDS drift?
+ The answer to this question often implies the use of caching and
replication schemes
+ Degree of knowledge about the system configuration
+ System information can be represented in a GVDS, too
+ Degree of persistency

+ If a portion of the system is known to be stable, how can we exploit it?
70

ﬂmﬂﬁu Research Issues

¢ What is the good balance to strike among the design
alternatives?

+ Relationship with other middleware approaches and results
¢ Is there a “unifying theory” of GVDS?

¢ Is it possible to separate the issues related with distribution
from those intimately connected to the data structure chosen?

¢ A positive answer could lead to a middleware supporting
instantiations of GVDS with different data structures

¢ What is the relationship between GVDS and security?

¢ What is the impact of the GVDS abstraction on formal
reasoning and verification?

71

=N GVDS Summary

¢ Global virtual data structures are a novel
coordination paradigm targeted at highly dynamic
environments

¢ GVDS is not meant to be a new model by itself:
instead, it is meant to be the driving concept
behind a new family of coordination models

+ While some incarnations of GVDS are already
available, only a fraction of the design space has
been explored so far

72

MC& Outline

¢ Introduction and Major Issues

+ Two major research issues
¢ Replication
¢ Adaptation

¢ Approaches to Middleware Development
¢ Proxies
¢ Publish/Subscribe
¢ Shared Memory

¢ Case Study — Live and Gvbs

¢ Summary and Open Questions

73

'f%mﬂ& Summary

¢ Middleware for mobile computing provides
abstractions for easing the development
process

+ Commercial middleware is targeted toward
the first step of mobility, providing service
access to mobile devices

¢ Major issues and approaches in research
include

¢ Replication, Adaptation, Service Discovery, Event-
based, Object-Oriented, Transactional, Transport
Layer, Algorithmic, Data Sharing

+ Not discussed issues include reflection, security, ...

74

=il Questions:

¢ Will there be / should there be a single middleware
for mobile computing?
+ Not all environments have the same demands and needs

+ Can there be a composable middleware that allows
designers to pull in only the aspects that they need?

+ Will the need for mobile middleware diminish as
wireless networks become faster?

¢ Can middleware be shared among applications for:
+ Nomadic computing
+ Mobile ad hoc computing
+ Sensor networks

Questions?

75

¥ IRC& References

. A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. 15th International Conference on Distributed Computing
Systems. 1995.

. C. Bettstetter and C. Renner. A comparison of service discovery protocols and implementation of the service location
protocol. citeseer.nj.nec.com/bettstetter00comparison.html

. M. Boulkenafed and V. Issarny. A Middleware Service for Mobile Ad Hoc Data Sharing, Enhancing Data Availability.
ACM/IFIP/USENIX International Middleware Conference. Rio de Janeiro, Brazil. 16-20 June 2003.

. Braam, P. J. The Coda Distributed File System. Linux Journal, #50 June 1998.

. M.A. Butrico, H. Chang, A. Cocchi, N.H. Cohen, D.G. Shea, S.E. Smith. Gold Rush: Mobile Transaction Middleware with Java-
Object Replication. Proceedings of the Third USENIX Conference on Object-Oriented Technologies (COOTS), Pp. 91--102,
1997

. A.T. Campbell, M.E. Kounavis, and R.R.-F. Liao, Programmable Mobile Networks, Computer Networks and ISDN Systems,
Elsevier Science, Vol 31., No 7, 1999,

. Campbell A.T., Mobiware: QOS Aware Middleware for Mobile Multimedia Communications, 7th IFIP International Conference
on High Performance Networking (HPN) White Plains, New York, April 1997.

. G. Chen and D. Kotz. Solar: An Open Platform for Context-Aware Mobile Applications. In Proceedings of the First
International Conference on Pervasive Computing (Pervasive 2002), pages 41-47, Zurich, Switzerland, June, 2002. Short
papers.

. Margaret H. Dunham, Abdelsalam Helal, Santosh Balakrishnan, A Mobile Transaction Model That Captures Both the Data and
Movement Behavior. Mobile Networks and Applications. vol 2 no 2. pp. 149-162, 1997.

. M.R. Ebling, G.D.H. Hunt and H. Lei, Issues for Context Services for Pervasive Computing. In Proc. Workshop on Middleware
for Mobile Computing, IFIP/ACM Middleware 2001.

. D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste. Project Aura: Toward Distraction-Free Pervasive Computing IEEE
Pervasive Computing, April-June 2002 76

&

References (2)

10

. M. Haahr, R. Cunningham and V. Cahill. Supporting CORBA Applications in a Mobile Environment. MobiCom '99: 5th
International Conference on Mobile Computing and Networking. Seattle, August 1999.

. M. Haahr, R. Cunningham and V. Cahill. Towards a Generic Architecture for Mobile Object-Oriented Applications. SerP 2000:
Workshop on Service Portability. San Francisco, December 2000.

. C. Intanagonwiwat, R. Govindan and D. Estrin. Directed diffusion: A scalable and robust communication paradigm for sensor
networks. In Proceedings of the Sixth Annual International Conference on Mobile Computing and Networking (MobiCOM
'00), August 2000, Boston, Massachussetts.

. A.D. Joseph, J.A. Tauber, and M. Frans Kaashoek. Mobile Computing with the Rover Toolkit. IEEE Transactions on
Computers: Special issue on Mobile Computing, 46(3). March 1997.

. A.D. Joseph, J.A. Tauber, and M.F. Kaashoek. Building Reliable Mobile-Aware Applications using the Rover Toolkit, in
Proceedings of the Second ACM International Conference on Mobile Computing and Networking (MobiCom'96). November
1996.

. G. H. Kuenning and G. J. Popek. Automated Hoarding for Mobile Computers. Proceedings of the 16th ACM Symposium on
Operating Systems Principles, (SOSP-16) St. Malo, France, October 5-8, 1997.

. G.H. Kuenning, W. Ma, P. Reiher, and G.J. Popek Simplifying Automated Hoarding Methods. 5th ACM International Workshop
on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2002), Atlanta, GA, September, 2002.

+ S. Maffeis. Communication Middleware for Mobile Applications - A Comparison, August 2001.

. C. Mascolo, L. Capra, and W. Emmerich. Middleware for Mobile Computing (A Survey). In Advanced Lectures in Networking.
Editors E. Gregori, G. Anastasi, S. Basagni. Springer. LNCS 2497. 2002.

. C. Mascolo, L. Capra, S. Zachariadis and W. Emmerich. XMIDDLE: A Data-Sharing Middleware for Mobile Computing. In
Personal and Wireless Communications Journal 21(1), Kluwer. April 2002.

. A.L. Murphy, G.P. Picco, G.-C. Roman, Lime: A Middleware for Physical and Logical Mobility. in Proceedings of the
International Conference on Distributed Computing Systems (ICDCS'01), Phoenix, AZ (USA), pp 524--533, April 2001. 77

P Bl References (3
. 10

. A.L. Murphy, G.-C. Roman, G. Varghese, Tracking Mobile Units for Dependable Message Delivery. IEEE Transactions on
Software Engineering (May 2002).

. B. Noble, M. Price, and M. Satyanarayanan. A Programming Interface for Application-Aware Adaptation in Mobile
Computing. Proceedings of the Second USENIX Symposium on Mobile & Location-Independent Computing Apr. 1995, Ann
Arbor, MI

. K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible Update Propagation for Weakly
Consistent Replication Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP-16), Saint Malo,
France, October 5-8, 1997, pages 288-301.

. G.P. Picco, A.L. Murphy, and G.-C. Roman, Lime: Linda Meets Mobility in Proceedings of the 21st International Conference
on Software Engineering (ICSE 1999), Los Angeles, CA (USA), D. Garlan and J. Kramer, eds., May 1999, ACM Press, ISBN 1-
58113-074-0, pp. 368-377.

. A. Popovici, A. Frei and G. Alonso. A Proactive Middleware Platform for Mobile Computing. ACM/IFIP/USENIX International
Middleware Conference. Rio de Janeiro, Brazil. 16-20 June 2003.

. X. Qu, J.X. Yu, and R.P. Brent. A Mobile {TCP} Socket. TR-CS-97-08, Canberra 0200 ACT, Australia. 1997

. M. Satyanarayanan. Fundamental Challenges in Mobile Computing. Fifteenth ACM Symposium on Principles of Distributed
Computing. May 1996, Philadelphia, PA

. M. Satyanarayanan. Coda: A Highly Available File System for a Distributed Workstation Environment. Proceedings of the
Second IEEE Workshop on Workstation Operating Systems. Sep. 1989, Pacific Grove, CA

. M. Satyanarayanan. Coda: A Highly Available File System for a Distributed Workstation Environment Proceedings of the
Second IEEE Workshop on Workstation Operating Systems Sep. 1989, Pacific Grove, CA

. J.P. Sousa and D. Garlan. From Computers Everywhere to Tasks Anywhere: The Aura Approach. Submitted for Publication

78

