
The Application of Dependence Analysis
to Software Architecture Descriptions

With contributions by:
Judith Stafford, Tufts University, USA

Mauro Caporuscio, Universitá dell’Aquila, Italy

Presenter:

Alexander L. Wolf
University of Colorado

Boulder, CO USA

High Cost of System Maintenance
LO

W
H

IG
H

YOUNG OLD

Cost of Error
Detection and Repair

System
Understanding

Requirements

Arch Design

Impl Design

Implementation

Impl Testing

Maintenance

%
 A

na
ly

si
s

E
ffo

rt

Phases of System Life Cycle

Today
Code-based

Tomorrow
Architecture-based

Architecture-Based Analysis

Approach
Early
High Level

Example Architectural Questions

What could cause the
system to go on alert?

Will keystrokes
be recognized
in the order
they were
typed?

Can the braking system
be affected by any
less safety critical
components?

Why is the ignition never allowed
to activate?

Example Architectural Relationships

Causal: When a plane
comes within range, the
system must be put on
alert.

Temporal: Keystrokes must
be recognized
in the order
they were
typed.

Safety level: The level 4
braking subsystem
can be affected
by the level 1
GPS.

State-based: The car must
be in park when the ignition
is activated.

More Architectural Questions

Which components make use of this
particular state of a component?
If this component uses a shared repository,
with what other components does it
communicate?
What are the potential effects of dynamically
replacing this component?
If this component is to be reused in another
system, which other components of the
system are also required?

Still More Architectural Questions

If a failure of the system occurs, what is the
minimal set of components that must be
inspected during the debugging process?
If the source specification for a component is
checked out into a workspace for
modification, which other source
specifications should also be checked out?
If a change is made to this component, what
is the minimal set of test cases that must be
rerun?

Dependence Analysis

Widely studied for program analysis
– determines dependence relationships among

code (i.e., implementation-level) elements

Formal architecture description languages
enable automated analyses

Can we apply dependence analysis
techniques to architectural descriptions?

Foundations: Flow Graphs for Programs

Control flow
– the partial order of statement execution, as

defined by the semantics of the language
Data flow
– the flow of values from definitions of a variable

to its uses

Graph representation of control flow and
data flow relationships

Graph representation of control flow and
data flow relationships

A Sample Program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2 ∗ X + Y;

end P;

2,3,4 5

6

9´

10

12

14

T T

F
9

T

F

F

7

T
F

X

X

X

P’s Control/Data Flow Graph

2,3,4 5

6

9´

10

12

14

T

F

9 T

F
Y

X

X

Y

Y X

X

Y

YX
X

X

T
F

7

T
F X

X

Program Dependence Graph (PDG)

Summary representation of “dependence”
Nodes are either
– statements
– predicates
– special “entry’’ node

Two kinds of edges
– control dependence edge
– data dependence edge

Two subgraphs induced by the edges

Control Dependence Graph (CDG)

Informal definition
– for nodes X and Y in a CFG, Y is control

dependent on X if, during execution, X can
directly affect whether Y is executed

A Sample Program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2 ∗ X + Y;

end P;

2,3,4 5

6

9´

10

12

14

T T

F
9

T

F

F

7

T
F

2,3,4 5

6

9´

1012

14

T T
F

9 T

7

T F

1

F

Control Dependence Graph (CDG)

Formal definition
– let X and Y be nodes in a CFG
– if Y appears on every path from X to the exit

node, where Y≠X, then Y post-dominates X
– there is a control dependence from X to Y with

label L iff:
» there is a non-null path p from X to Y, starting with

edge L, such that Y post-dominates every node
strictly between X and Y on p

 and
» Y does not post-dominate X

Data Dependence Graph (DDG)

Informal definition
– two statements are data dependent if they might

reference the same memory location and one of
the references is an assignment to the memory
location

– intuition: if the statements cannot be switched
without affecting the program, then they are data
dependent

A Sample Program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2 ∗ X + Y;

end P;

2,3,4 5

6

9´

10

12

14

T T

F
9

T

F

F

7

T
F

2,3,4 5

6

9´

1012

149

7

1

Data Dependence Graph (DDG)

Formal definition
– let X and Y be nodes in a CFG
– there is a data dependence from X to Y with

respect to a variable v iff there is a non-null path
p from X to Y with no intervening definition of v
and either:

» X contains a definition of v and Y a use of v
 or
» X contains a use of v and Y a definition of v
 or
» X contains a definition of v and Y a definition of v

P’s PDG (DDG for X Only)

2,3,4 5

6

9´

1012

14

T T
F

9 T

7

T F

1

F

Dependence Analysis Comparison

Example Relationships
– structural

» import/export
» inheritance
» textual inclusion

– behavioral
» definition/use
» stimulus/response
» cause
» timing

– non-functional
» safety critical level
» development priority

Centered on
– statements
– variables
– procedures

Supports analyses such as
– anomaly checking
– fault localization (debugging)
– regression test selection

– impact analysis
– safety level analysis
– development scheduling

Centered on
– components
– ports
– connections

Code-Based
Dependence

Analysis

Architecture-Based
Dependence

Analysis

Strictly structural
view

Refining Analysis of Architectures

Add behavioral
connections

PreciseConservative

Aladdin: A Tool for Architecture Analysis

Implements a technique called chaining

Supports architectural queries including:
– are there ports that are ignored or neglected?
– what ports could directly affect or be affected by

a particular port?
– what ports could indirectly affect or be affected

by a particular port?

Chaining

A link represents a direct dependence
between two components
A chain represents the indirect and direct
relationships among components
Chaining is...
– the construction of chains to answer questions

about software architectures
– a means for performing software architecture

dependence analysis

related chain

affects chain affected-by chain

affected-by
affects

Component
of Interest

A Component-Centric View of Chains

What components could have contributed
to a failure in this component?

If this component is replaced, what
components will need to be retested?

If I am going to work on this component,
what other components do I want to
have immediately available?

Tabular Representation

client server
Out In
A B

cl
ie

nt
O

ut A

se
rv

er
In B

Table frame is built by
recording the ports

Relationships are
recorded in the cells

ADL Specification
component Client
{ out: A;

behavior
send A; }

component Server
{ in: B;

behavior
when B then DOSOMETHING; }

architecture Client-Server {
server: Server;
client: Client;
connect

client.A => server.B; }

Sources

Targets

client server
Out In
A B

cl
ie

nt
O

ut A

se
rv

er
In B

ADL Specification
component Client
{ out: A;

behavior
send A; }

component Server
{ in: B;

behavior
when B then DOSOMETHING; }

architecture Client-Server {
server: Server;
client: Client;
connect

client.A => server.B; }

Links and Chains

Choose a port and a
relationship
Perform transitive
closure over the links

Relationships are
recorded in the cellsSources

Targets

Chain

{R1}
Link

Architectural Specification

Chain
Builder

GUI

Chains

API

Queries

Language IndependentLanguage IndependentRelationship
Table

Table
Builder

Language SpecificLanguage Specific
Relationships modeled
in an ADL are mapped to
relationships understood
by Aladdin’s chain builder

Aladdin Architecture

MIMI

Example: Gas Station

Rapide specification
– 1 operator, 1 pump, and 2 customers

Aladdin analyses
– anomaly checking

» are there any ports that are neglected or ignored?
– fault localization

» why can’t the second customer refuel?
– impact analysis

» which components could be affected by a change to
the pump?

type Dollars is integer; - enum 0, 1, 2, 3 end enum;
type Gallons is integer; - enum 0, 1, 2, 3 end enum;

type Customer is interface
action in Okay(), Change(Cost : Dollars);

out Pre_Pay(Cost : Dollars), Okay(), Turn_On(), Walk(), Turn_Off();
behavior

D : Dollars is 10;
begin

start ||> Pre_Pay(D);;
Okay ||> Walk;;
Walk ||> Turn_On;;

end Customer;

type Dollars is integer; - enum 0, 1, 2, 3 end enum;
type Gallons is integer; - enum 0, 1, 2, 3 end enum;

type Customer is interface
action in Okay(), Change(Cost : Dollars);

out Pre_Pay(Cost : Dollars), Okay(), Turn_On(), Walk(), Turn_Off();
behavior

D : Dollars is 10;
begin

start ||> Pre_Pay(D);;
Okay ||> Walk;;
Walk ||> Turn_On;;

end Customer;

Rapide Specification for Gas Station

architecture gas_station() return root is
O : Operator;
P : Pump;
C1, C2 : Customer;

connect
(?C : Customer; ?X : Dollars) ?C.Pre_Pay(?X) ||> O.Request(?X);
(?X : Dollars) O.Schedule(?X) ||> P.Activate(?X);
(?X : Dollars) O.Schedule(?X) ||> C1.Okay;
(?C : Customer) ?C.Turn_On ||> P.On;
(?C : Customer) ?C.Turn_Off ||> P.Off;
(?X : Gallons; ?Y : Dollars)P.Report(?X, ?Y) ||> O.Result(?Y);

end gas_station;

architecture gas_station() return root is
O : Operator;
P : Pump;
C1, C2 : Customer;

connect
(?C : Customer; ?X : Dollars) ?C.Pre_Pay(?X) ||> O.Request(?X);
(?X : Dollars) O.Schedule(?X) ||> P.Activate(?X);
(?X : Dollars) O.Schedule(?X) ||> C1.Okay;
(?C : Customer) ?C.Turn_On ||> P.On;
(?C : Customer) ?C.Turn_Off ||> P.Off;
(?X : Gallons; ?Y : Dollars)P.Report(?X, ?Y) ||> O.Result(?Y);

end gas_station;

type Operator is interface
type Pump is interface

Gas Station Anomalies

C1(CUSTOMER)

ACTIVATE

OFF

ON

P(PUMP)

REPORT

C2(CUSTOMER)

OKAY

START

TURN_OFF

WALK

PRE_PAY

CHANGE

OKAY

START

TURN_OFF

WALK

PRE_PAYL

TURN_ON
CHANGE

REQUEST

RESULT REMIT

O(OPERATOR)

SCHEDULE

TURN_ON

Gas Station Fault Localization

C1(CUSTOMER)

ACTIVATE

OFF

ON

P(PUMP)

REPORT

C2(CUSTOMER)

OKAY

START

TURN_OFF

WALK
CHANGE

OKAY

START

TURN_OFF

WALK

TURN_ON
CHANGE

REQUEST

RESULT REMIT

O(OPERATOR)

SCHEDULE

TURN_ON

PRE_PAY

PRE_PAY

type Pump is interface
action in On(), Off(), Activate(Cost : Dollars);

out Report(Amount: Gallons, Cost : Dollars), ;
behavior

Free: var Boolean := True;
Reading, Limit : var Dollars := 0;
action In_Use(), Done();

begin
(?X: Dollars)(On ~ Activate(?X)) where $Free ||> Free := False; Limit:= ?X; In_Use;;
In_Use ||> Reading := $Limit; Done;;
Off or Done ||> Free := True; Report($Reading);;

end Pump;

type Pump is interface
action in On(), Off(), Activate(Cost : Dollars);

out Report(Amount: Gallons, Cost : Dollars), ;
behavior

Free: var Boolean := True;
Reading, Limit : var Dollars := 0;
action In_Use(), Done();

begin
(?X: Dollars)(On ~ Activate(?X)) where $Free ||> Free := False; Limit:= ?X; In_Use;;
In_Use ||> Reading := $Limit; Done;;
Off or Done ||> Free := True; Report($Reading);;

end Pump;

Summarizing Local Behavior

Q: How can we ignore details of internal events?
A: Conservatively relate internal stimulus events
back to some external stimulus event, and internal
stimulus event forward to external out actions

internal events

Architecture Debugging

Why is it that the second
customer can never
pump gas?

Architecture Debugging

Why is it that the second
customer can never
pump gas? First customer gets

Okay intended for
second customer

architecture gas_station() return root is
O : Operator;
P : Pump;
C1, C2 : customer;

connect
(?C : customer; ?X : Dollars) ?C.Pre_Pay(?X) ||> O.Request(?X);
(?X : Dollars) O.Schedule(?X) ||> P.Activate(?X);
(?X : Dollars) O.Schedule(?X) ||> C1.Okay;
(?C : customer) ?C.Turn_On ||> P.On;
(?C : customer) ?C.Turn_Off ||> P.Off;
(?X : Gallons; ?Y : Dollars) P.Report(?X, ?Y) ||> O.Result(?Y);

end gas_station;

(?X : Dollars) O.Schedule(?X) ||> C1.Okay;

Out
Sch Rem Req Res Rep On Off Act PP T_On Walk T_Off Okay Chg start PP T_On Walk T_Off Okay Chg start

Schedule ||> ||>
Remit
Request ||>
Result ||>

O
ut Report ||>

On ||>
Off ||>
Activate ||>
Pre_Pay
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>
Pre_Pay ||>
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>

C
us

to
m

er
2

In
O

ut
In

O
ut

In
O

ut
In

O
PE

RA
TO

R
Pu

m
p

Cu
st

om
er

1

Operator Pump Customer1 Customer2
In Out InOut In In Out

Tabular Representation of Gas Station

||> Rapide agent connection: Models new thread of control for each triggering

Out
Sch Rem Req Res Rep On Off Act PP T_On Walk T_Off Okay Chg start PP T_On Walk T_Off Okay Chg start

Schedule ||> ||>
Remit
Request ||>
Result ||>

O
ut Report ||>

On ||>
Off ||>
Activate ||>
Pre_Pay
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>
Pre_Pay ||>
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>

C
us

to
m

er
2

In
O

ut
In

O
ut

In
O

ut
In

O
PE

RA
TO

R
Pu

m
p

Cu
st

om
er

1

Operator Pump Customer1 Customer2
In Out InOut In In Out

Connection Anomaly

||> Rapide agent connection: Models new thread of control for each triggering

Out
Sch Rem Req Res Rep On Off Act PP T_On Walk T_Off Okay Chg start PP T_On Walk T_Off Okay Chg start

Schedule ||> ||>
Remit
Request ||>
Result ||>

O
ut Report ||>

On ||>
Off ||>
Activate ||>
Pre_Pay
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>
Pre_Pay ||>
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>

C
us

to
m

er
2

In
O

ut
In

O
ut

In
O

ut
In

O
PE

RA
TO

R
Pu

m
p

Cu
st

om
er

1

Operator Pump Customer1 Customer2
In Out InOut In In Out

Impact Analysis

||> Rapide agent connection: Models new thread of control for each triggering

Out
Sch Rem Req Res Rep On Off Act PP T_On Walk T_Off Okay Chg start PP T_On Walk T_Off Okay Chg start

Schedule ||> ||>
Remit
Request ||>
Result ||>

O
ut Report ||>

On ||>
Off ||>
Activate ||>
Pre_Pay
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>
Pre_Pay ||>
Turn_On ||>
Walk ||>
Turn_Off ||>
Okay ||>
Change
Start ||>

C
us

to
m

er
2

In
O

ut
In

O
ut

In
O

ut
In

O
PE

RA
TO

R
Pu

m
p

Cu
st

om
er

1

Operator Pump Customer1 Customer2
In Out InOut In In Out

Architecture Debugging

||> Rapide agent connection: Models new thread of control for each triggering

Aladdin User Interface

Get an answerChoose a query

Result of Aladdin Query

Architecture Debugging:
Second Customer is not allowed to
refuel
Aladdin helps locate the fault in the
specification

Choose a port Select a relationship
type

Select a
query type

Study the
resulting
chain

Another Example: MobiKit

Publish/subscribe
mobility service
Architectural
questions
– Which components

of the system
contribute to the
“event download”
functionality?

– Does the system
behave as
expected?

Chain Derived from Rapide Specification

Problem in MobiKit Specification

Lack of coordination between “move out”
and “move in” mobility operations
– client can perform “move in” before “move out”

completed
– can be attributed to asynchronous behavior as

shown by the parallel chains
Components needing further examination
– Subscriber, MobiKit-Client, MobiKit-Proxy1,

MobiKit-Proxy2, Queue, Dummy, S0, and S1
– revealed by affects chain

Aladdin Summary

Current status
– analyzes Rapide and informal specifications
– provides a generic interface for other ADLs
– performs analysis for causal relationships

Future plans
– make use of other relationships (e.g., timing)
– leverage other features of Rapide to increase

precision of chains (e.g., patterns, constraints)
– include query for cycles in the architecture
– incorporate table builders for other ADLs

Some Related Work

A. Podgurski and L.A. Clarke
– formalized program dependence analysis

O. O’Malley and D.J. Richardson
– program dependence analysis tools (ProDAG, TAOS)

A.M. Sloane and J. Holdsworth
– slicing of non-imperative programs

J. Chang and D.J. Richardson
– specification slicing

G. Naumovich, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil
– software architecture concurrency analysis

J. Zhao
– software architecture slicing

Architectural Slicing [Zhao]

An analysis technique applied to formal
architectural specifications

An architectural slice is a subset of
behaviors

Intended to isolate the behavior of a specific
set of component or connectors

Architectural Slicing and Program Slicing

Program slice
– consists of those parts of a program that may

directly or indirectly affect the values computed
at some program point of interest

Program slicing
– a decomposition technique that extracts

program elements related to a particular
computation

– an application of dependence analysis

More on Program Slicing

Concerned with code written in conventional
programming languages
– applied to variables and statements

Usual definition
– a slicing criterion is a pair (s,V), where s is a

statement and V is a set of variables defined or
used at s

– a slice consists of only statements
Expensive to compute and of questionable
utility

Architectural Slicing as a Tool

Takes as input a formal architectural
specification P of a software system

Removes from the specification those
components and interconnections that are
not necessary for maintaining the semantics
of the software architecture

Returns as output a “sub-architecture” S

Architectural Slicing: A Definition

Given an architectural specification
P = (Cm, Cn, cg)

 where
 Cm: set of components
 Cn: set of connectors
 cg: configuration of P

 an architectural slice Sp = (C′m, C′n, c′g) is a
sub-architecture of P that partially preserves
the semantics of P

Elements of a Design Entity

Component entity
– ports and computations

Connector entity
– roles and glue

Configuration entity
– instances and attachments

Reductions on Entities

Let P = (Cm, Cn, cg) be an architectural
specification and cm∈Cm, cn∈Cn
– a reduced component of cm is a component c′m

that is derived from cm by removing zero or more
elements from cm

– a reduced connector of cc is a connector c′n
that is derived from cn by removing zero or more
elements from cn

– a reduced configuration of cg is a configuration
c′g that is derived from cg by removing zero or
more elements from cg

Reduced Architectural Specification

Let P = (Cm, Cn, cg) and P′ = (C′m, C′n, c′g) be
two architectural specifications
– P′ is a reduced architectural specification of P

if
 C′m={c′m1

, c′m2
,… , c′mk

} is a subset of Cm={cm1
,

cm2
,… , cmk

} such that for i = 1,2,…,k, c′mi
is a

reduced component of cmi
 C′n={c′n1

, c′n2
,… , c′nk

} is a subset of Cn={cn1
,

cn2
,… , cnk

} such that for i = 1,2,…,k, c′ni
is a

reduced component of cni
 c′g is a reduced configuration of cg

Slicing Criterion

Defines a starting point for the slice

Let P = (Cm, Cn, cg) be an architectural
specification
– a slicing criterion for P is a pair (c, E) such that
 c∈Cm and E is a set of port elements of c, or
 c∈Cn and E is a set of roles elements of c

Backward Slicing

Let P = (Cm, Cn, cg) be an architectural
specification
– a backward architectural slice Sbp

=(C′m,C′n,cg)
of P using a give slicing criterion (c,E) is a
reduced architectural specification of P that
contains only those reduced components,
connectors, and configuration that might directly
or indirectly affect the behavior of c through
elements in E

Forward Slicing

Let P = (Cm, Cn, cg) be an architectural
specification
– a forward architectural slice Sfp

=(C′m,C′n,cg) of
P using a give slicing criterion (c,E) is a reduced
architectural specification of P that contains only
those reduced components, connectors and
configuration that might be directly or indirectly
affected by the behavior of c through elements
in E

Architectural Slicing: Data Structure

Architecture Information Flow Graph (AIFG)
– a digraph whose vertices represent the ports of

components and the roles of connectors in an
architectural specification

– arcs represents possible information flows
between components and/or connectors in the
specification

A R S B

component component

port port

connector

role

role

Data Structure Definition

The AIFG of architectural specification P is a
digraph G=(Vcom,Vcon,Com,Con,Int) where
– Vcom is the set of port vertices of P
– Vcon is the set of role vertices of P
– Com is the set of component-connector flow arcs
– Con is the set of connector-component flow arcs
– Int is the set of internal flow arcs

A R S B

component component

port port

connector

role

role

Computing an Architectural Slice

Amounts to walks over the AIFG
Two steps

compute forward and backward dependence
relationships
reduce the architectural description by removing
non-dependent elements

Gas Station Example

pv1

Customer1

rv1

rv2

Customer1_cashier

pv3

Customer2

rv4

rv3 Customer2_cashier

pv6
Cashier

pv5

pv7

pv1: Customer.Pay

…

pv5: cashier.Customer1

pv6: cashier.Customer2

pv7: cashier.ToPump

…

rv1: Customer_cashier.givemoney

Component-connector
Connector-component
Internal

Gas Station Slice

Slicing Criterion: (cashier, E)
such that E={Customer1, Customer2, ToPump}

Customer1

Cashier

Customer2

Customer1_cashier

Customer2_cashier

Concluding Thoughts

Dependence analysis is a powerful technique
Formal architecture description lends itself to
dependence analysis
But what is the method that guides its use?
– What relationships are really of interest?
– What types of analyses can architecture-based

dependence analysis support?
– How can we create and maintain precise,

bi-directional, inter-level mappings between the
architecture and the implementation?

Concluding Thoughts (cont.)

Architecture-level dependence analysis
tends to be conceived in traditional terms
– sequential, deterministic control and data flow

Architecture description languages tend to
be conceived in non-traditional terms
– event interactions and patterns
– concurrency and asynchronous communication
– constraints on connections/state transitions

How do we re-conceptualize dependence
analysis to fit?

