
Predicting the Impact of
Dynamic Power Management

with Formal Methods

Marco Bernardo

University of Urbino - Italy



Dynamic Power Management

• Context: designing battery-powered devices for
mobile embedded systems.

• Major issue: reducing the power consumption of such
devices (battery-powered).

• DPM: modify at run time the power consumption of
the devices by changing their state or scaling their
voltage/frequency.

• Several DPM schemes and policies proposed in the
literature.



DPM Transparency

• Problem: if we introduce a DPM, what is the effect
on the system functionality and performance?

• Make sure that the system behavior will not be
significantly altered and that the quality of service
will not go below an acceptable threshold.

• Proposal: incremental methodology based on formal
methods to predict the DPM impact in the early
design stages.



Predictive Methodology

• The DPM activities can be divided into two classes:

– Activities that modify the state of the
power-manageable device.

– Activities that gather information about the state
of the power-manageable device.

• We say that the DPM is enabled/disabled depending
on whether it is capable of modifying the state of the
power-manageable device or not.

• Basic idea: comparing the behavior and the efficiency
for the system with the DPM disabled and the system
with the DPM enabled.



by
 c

on
st

ru
ct

io
n

co
rr

ec
t

by
 c

on
st

ru
ct

io
n

co
rr

ec
t

va
lid

at
e

DPM disabled

DPM disabled

DPM disabled

F

M

G
simul. perf. comp.

noninterf. analysis

analyt. perf. comp.

DPM enabled

DPM enabled

DPM enabled

F

M

G

va
lid

at
e

tim
in

g
tim

in
g

re
pl

. g
en

.
ad

d 
ex

p.

re
pl

. g
en

.
ad

d 
ex

p.

tim
in

g
tim

in
g

• Three pairs of models of the system compared in three
phases: functional, Markovian and general.

• Each model is incrementally obtained from the
previous one by adding further details.

• Within each pair, one model refers to the system with
the DPM disabled, while the other one refers to the
system with the DPM enabled.



First Phase

• Does the introduction of the DPM alter the system
functionality?

• Non-interference approach: the high enclave is not
interfering with the low enclave if what the high one
can do has no effect on what the low one can see.

• High: DPM state-modifying activities.

• Low: all activities carried out by the system users.

• Non-interference based on equivalence checking.

• Functional transparency: the functional model with
the state-modifying activities of the DPM being made
unobservable (DPM hidden) is equivalent to the
functional model with the same activities being
prevented from taking place (DPM disabled).

• Distinguishing modal logic formula in case of
inequivalence.

• Diagnostic piece of information to guide the
modification of the behavior of the DPM and/or the
system.



Second Phase

• It is practically impossible that the introduction of
the DPM does not alter the quality of the service
delivered by the system.

• Is it possible to achieve a trade-off between the
energy consumption and the overall system
efficiency?

• Additional specification of the timing of each system
activity (performance evaluation).

• Exponential delays turn the two functional models
into two Markovian models.

• Functional transparency is automatically preserved
(unless some DPM state-modifying activities are
characterized through immediate transitions).

• Compare energy consumption, system throughput,
radio channel utilization, and quality of service for
the system with the DPM disabled and with the DPM
enabled when varying the DPM operation rates.

• Standard techniques for the solution of reward Markov
chains.



Third Phase

• Are the two Markovian models realistic?

• Replacing exponential distributions with general ones
wherever necessary turns the two Markovian models
into two general models.

• Validate the general models against the Markovian
ones in case of major modifications (e.g. because the
formalism does not support general distributions).

• Functional transparency is automatically preserved
(unless the duration of some DPM state-modifying
activities are characterized through general
distributions with finite support).

• Standard simulation techniques to compare the same
performance measures as the second phase.

• Useful to guide the decision about whether it is worth
introducing the DPM in certain realistic scenarios and,
if so, to tune the DPM operation rates without
compromising the quality of service.

• Do not skip the second phase (smaller modeling gap,
validation of the simulation results in the early design
stages).



RPC Case Study

DPM S

RSC

RCS

C

call call

shutdown

results results

• Two perfect radio channels RCS and RSC (no packet
loss).

• Naive blocking client C with no timeout mechanism.

• The server S has four power states:

– Idle (waits for a call to arrive).

– Busy (delivers the requested service).

– Sleeping (after DPM shutdown command).

– Awaking (after call arrival while sleeping).

• Trivial DPM sending shutdown commands indepen-
dently of the current state of the server (idle/busy).

• Server always sensitive to DPM shutdown commands
(call processing interruption).



RPC: Phase 1

• Æmilia functional model of the client:

ELEM_TYPE Client_Type(void)

BEHAVIOR

Client(void; void) =

<send_rpc_packet, _> . <receive_result_packet, _> .

<process_result_packet, _> . Client()

INPUT_INTERACTIONS

UNI receive_result_packet

OUTPUT_INTERACTIONS

UNI send_rpc_packet



• Æmilia functional model of the radio channels:

ELEM_TYPE Radio_Channel_Type(void)

BEHAVIOR

Radio_Channel(void; void) =

<get_packet, _> . <propagate_packet, _> .

<deliver_packet, _> . Radio_Channel()

INPUT_INTERACTIONS

UNI get_packet

OUTPUT_INTERACTIONS

UNI deliver_packet



• Æmilia functional model of the server:

ELEM_TYPE Server_Type(void)

BEHAVIOR

Idle_Server(void; void) =

choice {

<receive_rpc_packet, _> . Busy_Server(),

<receive_shutdown, _> . Sleeping_Server()

};

Busy_Server(void; void) =

choice {

<prepare_result_packet, _> . Responding_Server(),

<receive_shutdown, _> . Sleeping_Server()

};

Responding_Server(void; void) =

choice {

<send_result_packet, _> . Idle_Server(),

<receive_shutdown, _> . Sleeping_Server()

};

Sleeping_Server(void; void) =

<receive_rpc_packet, _> . Awaking_Server();

Awaking_Server(void; void) =

<awake, _> . Busy_Server()



INPUT_INTERACTIONS

UNI receive_rpc_packet; receive_shutdown

OUTPUT_INTERACTIONS

UNI send_result_packet



• Æmilia functional model of the DPM:

ELEM_TYPE DPM_Type(void)

BEHAVIOR

DPM_Beh(void; void) =

<send_shutdown, _> . DPM_Beh()

INPUT_INTERACTIONS

void

OUTPUT_INTERACTIONS

UNI send_shutdown



• Æmilia description of the system topology:

ARCHI_ELEM_INSTANCES

C : Client_Type();

RCS : Radio_Channel_Type();

RSC : Radio_Channel_Type();

S : Server_Type();

DPM : DPM_Type()

ARCHI_INTERACTIONS

void

ARCHI_ATTACHMENTS

FROM C.send_rpc_packet TO RCS.get_packet;

FROM RCS.deliver_packet TO S.receive_rpc_packet;

FROM S.send_result_packet TO RSC.get_packet;

FROM RSC.deliver_packet TO C.receive_result_packet;

FROM DPM.send_shutdown TO S.receive_shutdown



• The non-interference analyzer of TwoTowers has been
applied to the Æmilia description of the functional
model.

• TwoTowers automatically produces the two different
views of the system – DPM disabled and DPM
enabled – when providing the auxiliary specification:

HIGH DPM.send_shutdown

LOW C.send_rpc_packet;

C.receive_result_packet;

C.process_result_packet

• The two views are not equivalent.



• Modal logic formula explaining why the DPM
interferes with the system functional behavior as
perceived by the client:

EXISTS_WEAK_TRANS(

LABEL(C.send_rpc_packet#

RCS.get_packet);

REACHED_STATE_SAT(

NOT(EXISTS_WEAK_TRANS(

LABEL(RSC.deliver_packet#

C.receive_result_packet);

REACHED_STATE_SAT(TRUE)

)

)

)

)

• If the DPM is enabled a deadlock can occur.

• After receiving a call, the server is shut down by the
DPM.

• The server cannot wake up until it receives
another call, but the client cannot send another call
because it is blocking and does not use any timeout
mechanism.



RPC Case Study Revisited

DPM S

RSC

RCS

C

call call
busy

idle

shutdown

results results

• Blocking client implementing a timeout mechanism.

• Realistic radio channels (may lose packets).

• Server informing the DPM about its idle/busy state.

• DPM prevented from shutting down the server if busy.



RPC Revisited: Phase 1

• Non-interference achieved: DPM functionally
transparent from the client viewpoint.



RPC Revisited: Phases 2 and 3

• Values of the performance parameters:

– Average server service time: 0.2 msec.

– Average server awaking time: 3 msec.

– Average packet propagation time: 0.8 msec.

– Packet loss probability: 0.02.

– Average client processing time: 9.7 msec.

– Average client timeout: 2 msec.

– Average DPM shutdown period: 0 to 25 msec.



• Reward-based performance measure specification:

MEASURE throughput IS

ENABLED(C.process_result_packet) -> TRANS_REWARD(1);

MEASURE waiting_time IS

ENABLED(C.monitor_waiting_client) -> STATE_REWARD(1);

MEASURE energy IS

ENABLED(S.monitor_idle_server) -> STATE_REWARD(2)

ENABLED(S.monitor_busy_server) -> STATE_REWARD(3)

ENABLED(S.monitor_awaking_server) -> STATE_REWARD(2)

• For the third phase, additional specification of the
simulation experiment details.



• Markovian comparison with TwoTowers:

0.01

0.02

0.03

en
er

gy
/r

eq
ue

st

Markov model

0.01

0.02

0.03

en
er

gy
/r

eq
ue

st

DPM
NO-DPM

General model

0.002

0.004

w
ai

tin
g 

tim
e

0.002

0.004

w
ai

tin
g 

tim
e

0 5 10 15 20 25
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

0 5 10 15 20 25 30
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

– The shorter the period, the larger the impact.

– DPM never counterproductive in terms of energy:
the additional energy required to wake up the server
from the sleep state is compensated on average by
the energy saved while sleeping.

– DPM not transparent to the client from the
performance viewpoint: energy savings are always
paid in terms of performance penalties (reduced
throughput and increased waiting time).



• Simulative comparison with TwoTowers:

0.01

0.02

0.03

en
er

gy
/r

eq
ue

st

Markov model

0.01

0.02

0.03

en
er

gy
/r

eq
ue

st

DPM
NO-DPM

General model

0.002

0.004

w
ai

tin
g 

tim
e

0.002

0.004

w
ai

tin
g 

tim
e

0 5 10 15 20 25
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

0 5 10 15 20 25 30
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

– Packet propagation time normally distributed, with
all the other time-related parameters being
deterministic (no more exponentially distributed).

– Sizeable difference with respect to the figures
obtained from the Markovian models.

– Good agreement when replacing general distribu-
tions with exponential ones (discretization).



0.01

0.02

0.03

en
er

gy
/r

eq
ue

st
Markov model

0.01

0.02

0.03

en
er

gy
/r

eq
ue

st

DPM
NO-DPM

General model

0.002

0.004

w
ai

tin
g 

tim
e

0.002

0.004

w
ai

tin
g 

tim
e

0 5 10 15 20 25
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

0 5 10 15 20 25 30
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

– Bi-modal dependence: if the shutdown period is
shorter than the average idle time (11.3 msec), the
energy grows linearly, while the waiting time and
the throughput are constant; for larger periods, the
DPM has no effect.

– DPM counterproductive if the shutdown period is
close to the average idle time (the server needs to
wake up right after a shutdown).

– Energy savings for short periods paid in terms of
increased waiting time and reduced throughput.

– DPM performance transparent to the client only
when providing no energy saving.



• Tradeoff curves:

0.01 0.015 0.02 0.025 0.03 0.035 0.04
waiting time

0.002

0.003

0.004

0.005

0.006

E
ne

rg
y 

pe
r 

re
qu

es
t

Markov
General

– Energy-quality tradeoff when varying the DPM
shutdown period.

– Optimal tradeoff in the Markovian case.

– In the general case many points of the tradeoff
curve are beyond the Pareto curve (values of the
DPM period close to the average idle time).



Conclusion

• Incremental methodology to assist the design of
mobile computing devices by predicting the DPM
impact on the functionality and the performance.

• It can also be exploited for optimization purposes,
by tuning the DPM operation parameters in order to
achieve a satisfactory energy-quality tradeoff (if any).

• Based on formal methods, but independent of
specific formal description techniques (as long as all
the necessary ingredients are provided).

• Suitability of the non-interference analysis (detection
of illegal information flows) for investigating the
functional transparency of the DPM.


