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ESL DesignESL Design

Designing embedded systems requires addressing concurrently Designing embedded systems requires addressing concurrently 
different engineering domains, e.g., mechanics, sensors, actuatodifferent engineering domains, e.g., mechanics, sensors, actuators, rs, 
analog/digital electronic hardware, and software. analog/digital electronic hardware, and software. 

In this tutorial, we focus on Electronic System Level Design (ESIn this tutorial, we focus on Electronic System Level Design (ESLD), LD), 
traditionally considered as the design step that pertains to thetraditionally considered as the design step that pertains to the
electronic part (hardware and software) of an embedded system. electronic part (hardware and software) of an embedded system. 

ESL design starts from ESL design starts from systemsystem specifications and ends with a specifications and ends with a 
system implementation that requires the definition and/or selectsystem implementation that requires the definition and/or selection ion 
of hardware, software and communication componentsof hardware, software and communication components
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Embedded SystemsEmbedded Systems
• Computational

– but not first-and-foremost a computer
• Integral with physical processes

– sensors, actuators
• Reactive

– at the speed of the environment
• Heterogeneous

– hardware/software, mixed 
architectures

• Networked
– shared, adaptive

Source: Edward A. Lee
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1. EN:  GeN2-Cx 2. ANSI:
Gen2/GEM

3. JIS: 
GeN2-JIS
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$4 billion development effort
40-50% system integration & validation cost
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Electronics and the CarElectronics and the Car
•More than 30% of the cost of a car is now in Electronics
•90% of all innovations will be based on electronic systems
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* C++ CODE FABIO ROMEO, Magneti-Marelli
DAC, Las Vegas, June 20th, 2001

Memory

Lines Of Code

Changing Rate

Dev. Effort

Validation Time

Time To Market

INSTRUMENT
CLUSTER 

Productivity

Residual Defect
Rate @ End Of Dev

256 Kb

50.000

3 Years

40 Man-yr

5 Months

24 Months

PWT UNIT

6 Lines/Day

3000 Ppm

128 Kb

30.000

2 Years

12 Man-yr

1 Month

18 Months

BODY 
GATEWAY

10 Lines/Day

2500 ppm

184 Kb

45.000

1 Year

30 Man-yr

2 Months

12 Months

6 Lines/Day

2000ppm

8 Mb

300.000

< 1 Year

200 Man-yr

2 Months

< 12 Months

TELEMATIC
UNIT

10 Lines/Day*

1000 ppm
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Distributed Car Systems ArchitecturesDistributed Car Systems Architectures
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DesignDesign

From an ideaFrom an idea……
…… build something that performs a certain functionbuild something that performs a certain function
Never done directly:Never done directly:

some aspects are not considered at the beginning of the developmsome aspects are not considered at the beginning of the development:ent:
Node and NetworkNode and Network
Processes and ProcessorsProcesses and Processors
SoCSoC Software and HardwareSoftware and Hardware

the designer wants to explore different possible implementationsthe designer wants to explore different possible implementations in order to in order to 
maximize (or minimize) a cost functionmaximize (or minimize) a cost function

The solution is a tradeThe solution is a trade--off among:off among:
Mechanical partitionMechanical partition
Hardware partition: analog and digitalHardware partition: analog and digital
Software partition: low, middle and application levelSoftware partition: low, middle and application level
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(Automotive) V(Automotive) V--Models: Car level Models: Car level 
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What:What:
FunctionalityFunctionality

How:How:
ArchitectureArchitecture

Trading (ES):Trading (ES):
Computation (hw/Computation (hw/swsw))
Communication (hw/Communication (hw/swsw))

Time trigger/Event triggerTime trigger/Event trigger

Abstractions ?Abstractions ?
Cost evaluation ?Cost evaluation ?
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(Automotive) V(Automotive) V--Models: Subsystem Level Models: Subsystem Level 

Development 
of Distributed 

System

Development of 
Mechanical Part (s)

ECU 
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Part(s)  Integration, 
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Sub-System(s)  
Integration, Test, 
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Development of 
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Sub-System  Sign-Off!

Distributed 
System  
Sign-Off!

What: FunctionalityWhat: Functionality
How: ArchitectureHow: Architecture
Trading (ES):Trading (ES):

Algorithm complexity (hw/Algorithm complexity (hw/swsw))
Sensors/ActuatorsSensors/Actuators

Abstractions ?Abstractions ?
Cost evaluation ?Cost evaluation ?



15

PA
R

A
D

ES

(Automotive) V(Automotive) V--Models: ECU level (Hw/Models: ECU level (Hw/SwSw))
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of Distributed 
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Trade (ES):Trade (ES):
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Abstractions ?Abstractions ?
Cost evaluation ?Cost evaluation ?
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(Automotive) V(Automotive) V--Models Models 
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Integration, Test, 
and Validation

Development of 
Sub-System

ECU Sign-Off!

Sub-System  Sign-Off!
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Common Situation in IndustryCommon Situation in Industry

Different hardware devices and architecturesDifferent hardware devices and architectures

Increased complexityIncreased complexity

NonNon--standard tools and design processesstandard tools and design processes

Redundant development effortsRedundant development efforts

Increased R&D and sustaining costsIncreased R&D and sustaining costs

Lack of standardization results in greater quality risksLack of standardization results in greater quality risks

Customer confusionCustomer confusion
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How toHow to……

How to propagate functionality from top to bottomHow to propagate functionality from top to bottom

How to evaluate the trade offsHow to evaluate the trade offs

How to cope with:How to cope with:
Design TimeDesign Time
Design ReuseDesign Reuse
Design HeterogeneityDesign Heterogeneity

How to abstract with models that can be used to reason How to abstract with models that can be used to reason 
about the propertiesabout the properties



19

PA
R

A
D

ES

Heterogeneity in Electronic DesignHeterogeneity in Electronic Design

Heterogeneity in:Heterogeneity in:
Specification: Specification: 

formal/semiformal/semi--formal/natural languageformal/natural language
MoCMoC
LanguageLanguage

AnalysisAnalysis
Synthesis:Synthesis:

Manual/automatic/semiManual/automatic/semi--automaticautomatic

VerificationVerification
Methodology Methodology 
Design ProcessDesign Process
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Embedded System ApplicationsEmbedded System Applications

Platform based design methodologyPlatform based design methodology

Electronic System Level DesignElectronic System Level Design
Functions: Functions: MoCMoC, Languages, Languages
Architectures: Network, Node, Architectures: Network, Node, SoCSoC

MetropolisMetropolis

ConclusionsConclusions



21

PA
R

A
D

ES

Separation of concernsSeparation of concerns

Computation versus CommunicationComputation versus Communication

Function versus ArchitectureFunction versus Architecture

Function versus TimeFunction versus Time
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Separation of Concerns (1990 Vintage!)Separation of Concerns (1990 Vintage!)
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MeetMeet--inin--thethe--MiddleMiddle

TopTop--Down:Down:
Define a set of abstraction layersDefine a set of abstraction layers
From specifications at a given level, select a solution (controlFrom specifications at a given level, select a solution (controls, components) in s, components) in 
terms of components (Platforms) of the following layer and propaterms of components (Platforms) of the following layer and propagate gate 
constraintsconstraints

BottomBottom--Up:Up:
Platform components (e.g., microPlatform components (e.g., micro--controller, RTOS, communication primitives) controller, RTOS, communication primitives) 
at a given level are abstracted to a higher level by their functat a given level are abstracted to a higher level by their functionality and a set of ionality and a set of 
parameters that help guiding the solution selection process. Theparameters that help guiding the solution selection process. The selection selection 
process is equivalent to a covering problem if a common semanticprocess is equivalent to a covering problem if a common semantic domain is domain is 
used.used.
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Platform Models for Model Based DevelopmentPlatform Models for Model Based Development

Development Development Development 
of Distributed of Distributed of Distributed 

SystemSystemSystem

Distributed Distributed Distributed 
System  System  System  
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and Validationand Validationand Validation
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Implementation Models 
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MeetMeet--inin--thethe--middlemiddle

Platform
Abstraction

Design ExplorationDesign Exploration
PartitioningPartitioning
SchedulingScheduling
EstimationEstimation

Interface SynthesisInterface Synthesis
(or configuration)(or configuration)

Component SynthesisComponent Synthesis
(or configuration)(or configuration)

WHAT ? HOW ?
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Aspects of the Hw/Aspects of the Hw/SwSw Design ProblemDesign Problem
Specification of the system (topSpecification of the system (top--down)down)
Architecture export (bottomArchitecture export (bottom--up)up)

Abstraction of processor, of communication infrastructure, interAbstraction of processor, of communication infrastructure, interface between hardware and software, etc.face between hardware and software, etc.

PartitioningPartitioning
Partitioning objectivesPartitioning objectives

Minimize network load, latency, jitter, Minimize network load, latency, jitter, 
Maximize speedup, extensibility, flexibilityMaximize speedup, extensibility, flexibility
Minimize size, cost, etc.Minimize size, cost, etc.

Partitioning strategiesPartitioning strategies
partitioning by handpartitioning by hand
automated partitioning using various techniques, etc.automated partitioning using various techniques, etc.

SchedulingScheduling
ComputationComputation
CommunicationCommunication

Different levels:Different levels:
Transaction/Packet scheduling in communicationTransaction/Packet scheduling in communication
Process scheduling in operating systemsProcess scheduling in operating systems
Instruction scheduling in compilersInstruction scheduling in compilers
Operation scheduling in hardwareOperation scheduling in hardware

Modeling the partitioned system during the design processModeling the partitioned system during the design process
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PlatformPlatform--based Designbased Design

Platform: library of resources defining an abstraction layerPlatform: library of resources defining an abstraction layer
hide unnecessary details hide unnecessary details 
expose only relevant parameters for the next stepexpose only relevant parameters for the next step

Intercom Platform (BWRC, 2001)

Wireless
Processor
Protocol

Baseband
ProcessorFlash

Xilinx
FPGA

ADC

DAC

RF
Frontend

Bus

Sonics Silicon Backplane

Tensilica
Xtensa

RISC CPU
ASICs SRAM

Speech
Samples
Interface

UART
Interface

External
Bus

Interface

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System (Software + Hardware)
Platform
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Function
Function Space Architecture Platform

Formal MechanismFormal Mechanism

Library Elements

Closure under
constrained composition

(term algebra)

Platform Instance
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Semantic PlatformFunction Space
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Instance
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Platform i+1

Platform stack & design refinementsPlatform stack & design refinements

Platform
Design-Space

Export

Platform
Mapping

Refinement 

Implementation Space

Application Space

Platform 4

Platform 3

Platform 2

Platform 1

implementation instance

application instance

plat.3 
instance

plat.2 
instance

Platform i platform i instance

platform i+1 instance
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1 Transmission ECU
2 Actuation group
3 Engine ECU
4 DBW
5  Active shift display
6/7 Up/Down buttons 
8 City mode button
9 Up/Down lever
10 Accelerator pedal 

position sensor
11 Brake switch

Subsystem Partitioning 
Subsystem Integration
Software Design: Control Algorithms, Data Processing
Physical Implementation and Production

Automotive Supply Chain:Automotive Supply Chain:
Tier 1 Subsystem ProvidersTier 1 Subsystem Providers
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OutlineOutline

Embedded System ApplicationsEmbedded System Applications

Platform based design methodologyPlatform based design methodology

Electronic System Level DesignElectronic System Level Design
Functions: Functions: MoCMoC, Languages, Languages
Architectures: Network, Node, Architectures: Network, Node, SoCSoC
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Design FormalizationDesign Formalization

Model of a design with precise unambiguous semantics:Model of a design with precise unambiguous semantics:

Implicit or explicit relations: inputs, outputs and (possibly) Implicit or explicit relations: inputs, outputs and (possibly) 
state variablesstate variables

Properties Properties 

““CostCost”” functions functions 

ConstraintsConstraints

Formalization of Design + Environment    =
closed system of equations and inequalities over some algebra.
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What: Functional DesignWhat: Functional Design
A rigorous design of functions requires a mathematical frameworkA rigorous design of functions requires a mathematical framework

The functional description must be an invariant of the designThe functional description must be an invariant of the design
The mathematical model should be expressive enough to capture eaThe mathematical model should be expressive enough to capture easily the functionssily the functions

The different nature of functions might be better captured by heThe different nature of functions might be better captured by heterogeneous model of terogeneous model of 
computations (e.g. finite state machine, data flows)computations (e.g. finite state machine, data flows)

The functional design requires the abstraction ofThe functional design requires the abstraction of
Time (i.e. unTime (i.e. un--timed model)timed model)

Time appears only in constraints that involve interactions with Time appears only in constraints that involve interactions with the environmentthe environment
Data type (i.e. infinite precision)Data type (i.e. infinite precision)

Any implementation MUST be a refinement of this abstraction (i.eAny implementation MUST be a refinement of this abstraction (i.e. functionality is . functionality is 
““guaranteedguaranteed””):):

E.g.  UnE.g.  Un--timed timed --> logic time > logic time --> time> time
E.g.  Infinite precision E.g.  Infinite precision --> float > float --> fixed point> fixed point
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Models of ComputationModels of Computation

FSMsFSMs

Discrete Event Systems Discrete Event Systems 

CFSMsCFSMs

Data Flow ModelsData Flow Models

Petri Nets Petri Nets 

The Tagged Signal ModelThe Tagged Signal Model

Synchronous Languages and DeSynchronous Languages and De--synchronization synchronization 

Heterogeneous Composition: Hybrid Systems and Languages Heterogeneous Composition: Hybrid Systems and Languages 

Interface Synthesis and Verification Interface Synthesis and Verification 

Trace Algebra, Trace Structure Algebra and Agent Algebra Trace Algebra, Trace Structure Algebra and Agent Algebra 

Definition: Definition: A mathematical description  that A mathematical description  that 
has a syntax and rules for computation of has a syntax and rules for computation of 
the behavior described by the syntax the behavior described by the syntax 
(semantics). Used  to specify the semantics (semantics). Used  to specify the semantics 
of computation and concurrency.of computation and concurrency.
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Usefulness of a Model of ComputationUsefulness of a Model of Computation

ExpressivenessExpressiveness

GeneralityGenerality

SimplicitySimplicity

CompilabilityCompilability/ Synthesizability/ Synthesizability

VerifiabilityVerifiability

The ConclusionThe Conclusion
One way to get all of these is to mix diverse, simple models of computation, 
while keeping compilation, synthesis, and verification separate for each MoC. To 
do that, we need to understand these MoCs relative to one another, and 
understand their interaction when combined in a single system design.
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Reactive RealReactive Real--time Systemstime Systems

Reactive RealReactive Real--Time SystemsTime Systems
““ReactReact”” to external environmentto external environment
Maintain permanent interactionMaintain permanent interaction
Ideally never terminateIdeally never terminate
timing constraints (realtiming constraints (real--time)time)

As opposed toAs opposed to
transformational systemstransformational systems
interactive systemsinteractive systems
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Models Of Computation for reactive systemsModels Of Computation for reactive systems

We need to consider essential aspects of reactive systems:We need to consider essential aspects of reactive systems:
time/synchronizationtime/synchronization
concurrencyconcurrency
heterogeneityheterogeneity

Classify models based on:Classify models based on:
how specify behaviorhow specify behavior
how specify communicationhow specify communication
implementabilityimplementability
composabilitycomposability
availability of tools for validation and synthesisavailability of tools for validation and synthesis
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for reactive systemsfor reactive systems

Main Main MOCsMOCs::
Communicating Finite State MachinesCommunicating Finite State Machines
Dataflow Process NetworksDataflow Process Networks
Petri NetsPetri Nets
Discrete EventDiscrete Event
(Abstract) Codesign Finite State Machines(Abstract) Codesign Finite State Machines
Synchronous ReactiveSynchronous Reactive
Task Programming ModelTask Programming Model

Main languages:Main languages:
StateChartsStateCharts
EsterelEsterel
Dataflow networksDataflow networks
SimulinkSimulink
UMLUML

Details

Details
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for reactive systemsfor reactive systems

Main Main MOCsMOCs::
Communicating Finite State MachinesCommunicating Finite State Machines
Dataflow Process NetworksDataflow Process Networks
Petri NetsPetri Nets
Discrete EventDiscrete Event
Codesign Finite State MachinesCodesign Finite State Machines
Synchronous ReactiveSynchronous Reactive
Task Programming ModelTask Programming Model

Main languagesMain languages::
StateChartsStateCharts
EsterelEsterel
Dataflow networksDataflow networks
SimulinkSimulink
UMLUML
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The Synchronous Programming ModelThe Synchronous Programming Model

Synchronous programming modelSynchronous programming model* * is dealing with is dealing with 
concurrency as follows:concurrency as follows:

non overlapping computation and communication phases taking non overlapping computation and communication phases taking 
zerozero--time and triggered by a global ticktime and triggered by a global tick

Widely used and supported by several tools: Simulink, Widely used and supported by several tools: Simulink, 
SCADE, ESTEREL SCADE, ESTEREL ……

Strong constraints on the final implementationStrong constraints on the final implementation to preserve to preserve 
the separation between computation and communication the separation between computation and communication 
phasesphases

*A. Benveniste and G. Berry: The synchronous approach to reactive and real-time systems, Proc IEEE, 1991
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The Synchronous Reactive (SR) The Synchronous Reactive (SR) MoCMoC ((**))

Discrete model of time (global set of totally ordered Discrete model of time (global set of totally ordered ““time tickstime ticks””))

Blocks execute Blocks execute atomicallyatomically at every time tickat every time tick

Blocks are computed in Blocks are computed in causal ordercausal order (writer before reader)(writer before reader)

State variables (State variables (MEMsMEMs) are used to break combinatorial paths) are used to break combinatorial paths

Combinatorial loops have fixedCombinatorial loops have fixed--point semanticspoint semantics

+

G

WkVk

Uk

Wk = Vk+Yk = Vk+G*Wk-1

Yk Yk = G*Uk = G*Wk-1

(*) S. A. Edwards and E. A. Lee, “The semantics and execution of a synchronous block-diagram language”, 
Science of Computer Programming, 48(1):21–42, jul 2003.

MEM
Uk = Wk-1



44

PA
R

A
D

ES

The Task Programming ModelThe Task Programming Model

The Task Programming Model (TPM) The Task Programming Model (TPM) 
A task is a logically grouped sequence of operationsA task is a logically grouped sequence of operations
Each task is released for execution on an event/time reference Each task is released for execution on an event/time reference 
Task execution can be deferred as long as it meets its deadlineTask execution can be deferred as long as it meets its deadline
Task scheduling is priorityTask scheduling is priority--based possibly with preemptionbased possibly with preemption

Priorities can be static or dynamicPriorities can be static or dynamic

Communication between tasks occurs:Communication between tasks occurs:
Locally: via shared variablesLocally: via shared variables
Globally: via communication networkGlobally: via communication network

Output values depend on schedulingOutput values depend on scheduling

Represented by Task GraphsRepresented by Task Graphs
T10

T14

T12

T13

T11

T8T7T9
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OutlineOutline

Embedded System ApplicationsEmbedded System Applications

Platform based design methodologyPlatform based design methodology

Electronic System Level DesignElectronic System Level Design
Functions: Functions: MoCMoC, Languages, Languages
Architectures: Network, Node, Architectures: Network, Node, SoCSoC

MetropolisMetropolis

ConclusionsConclusions
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(Automotive) V(Automotive) V--Models: Car level Models: Car level 
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DistributedDistributed EmbeddedEmbedded Systems: Systems: ArchitecturalArchitectural DesignDesign

Functions
Functional
Networks

bus

Resources
Topologies

Solution
Patterns

Mapping

Solution n+1

Evaluation
and Iteration

TheThe Design Design ComponentsComponents at at workwork
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CoCo--Design Problem Design Problem 
From:From:

a model of the functionality (e.g. TPM or SPM) a model of the functionality (e.g. TPM or SPM) 
a model of the platform (abstraction of topology, network protoca model of the platform (abstraction of topology, network protocol, CPU, Hw/ol, CPU, Hw/SwSw etc)etc)

Allocate:Allocate:
The tasks to the nodesThe tasks to the nodes
The communication signals to the network segmentsThe communication signals to the network segments

Schedule:Schedule:
The task sets in each nodeThe task sets in each node
The packets (mapping signals) in each network segmentThe packets (mapping signals) in each network segment

Such that:Such that:
The system is schedulable and the cost is minimizedThe system is schedulable and the cost is minimized

Design solutions:Design solutions:
Architectural constrainsArchitectural constrains
Analytical approachesAnalytical approaches
Simulation modelsSimulation models
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The Time Triggered ApproachThe Time Triggered Approach

Time Triggered Architecture: Global notion of timeTime Triggered Architecture: Global notion of time
Communication and computation are synchronized and MUST HAPPEN Communication and computation are synchronized and MUST HAPPEN 
AND COMPLETE in a given cyclic AND COMPLETE in a given cyclic timetime--division schemadivision schema

TimeTime--Triggered Architecture (TTA)Triggered Architecture (TTA) C. C. ScheidlerScheidler, G. , G. HeinerHeiner, R. , R. SasseSasse, E. Fuchs, H. , E. Fuchs, H. KopetzKopetz

Find optimal allocation and Find optimal allocation and 
scheduling of a Time Triggered TPMscheduling of a Time Triggered TPM

An Improved Scheduling Technique for TimeAn Improved Scheduling Technique for Time--
Triggered Embedded SystemsTriggered Embedded Systems, Paul Pop, Petru Eles, 
and Zebo Peng
Extensible and Scalable Time Triggered SchedulingExtensible and Scalable Time Triggered Scheduling
, EEWei Zheng, Jike Chong, Claudio Pinello, Sri 
Kanajan, Alberto L. Sangiovanni-Vincentelli

Models of bus/network speed and 
topology (Hw) and WCET (Hw/Sw) are 
needed
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The Holistic Scheduling and AnalysisThe Holistic Scheduling and Analysis

Based on a Time and Event TriggeredBased on a Time and Event Triggered
Task Graph Model allocated to a set Task Graph Model allocated to a set 
of nodesof nodes

Worst Case Execution Time of Tasks and Communication time of eacWorst Case Execution Time of Tasks and Communication time of each h 
message are knownmessage are known

Construct a correct static schedule for the TT tasks and ST messages (a 
schedule which meets all time constraints related to these activities) and 
conduct a schedulability analysis in order to check that all ET tasks meet 
their deadlines.

Holistic Scheduling and Analysis of Mixed Time/Event-Triggered Distributed Embedded Systems (2002) Traian Pop, Petru Eles, 
Zebo Peng
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Network Calculus Network Calculus ModelingsModelings

Network calculus:Network calculus:
“Network calculus”, J-Y Le Boudec and P. Thiran, Lecture Notes in Computer Sciences vol. 
2050, Springer Verlag
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Event ModelsEvent Models
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Composition and AnalysisComposition and Analysis

PxPx transformation based on:transformation based on:
•• Output event dependencyOutput event dependency
•• WCETWCET
•• BCETBCET

Provide:Provide:
•• SchedulabilitySchedulability checkcheck
•• Output stream modelsOutput stream models

Other strategy to search solutions 
(allocation and scheduling)
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Executable Model: Computation and CommunicationExecutable Model: Computation and Communication

Task_A
out in

Task_B
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Task_A
out in

Task_B

Communication Refinement: Platform ModelCommunication Refinement: Platform Model
Post() from Task_A Value()/Enabled() from 

Task_B

Controller
Network

Communication PatternSender Receiver

RTOSCLib

CPUMemory
Access

CPU
Port

Bus 
Adapter

Slave
Adapter

Memory

Local
Bus

Bus Arbiter

BusNetwork Bus

RTOS CLib

CPU Memory
Access

CPU
Port

Bus 
Adapter

Local
Bus

Bus Arbiter

LLC/MAC

Bus 
Adapter

Controller
Network

Slave
Adapter

Memory

LLC/MAC

Bus 
Adapter

Device
DriverNetwLayerDevice

Driver
NetwLayer
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Cadence SYSDESIGN
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Exploring Solutions by SimulationExploring Solutions by Simulation

Requires a Requires a model of the model of the 
functionalityfunctionality and and 
performance models of performance models of 
CPUs and network CPUs and network 
protocolsprotocols
It is trace based!It is trace based!
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(Automotive) V(Automotive) V--Models: Subsystem Level Models: Subsystem Level 

Development 
of Distributed 

System

Development of 
Mechanical Part (s)

ECU 
Development

ECU/ Sens./Actrs./Mech. 
Part(s)  Integration, 
Calibration, and Test

Sub-System(s)  
Integration, Test, 
and Validation

Development of 
Sub-System

Sub-System  Sign-Off!

Distributed 
System  
Sign-Off!
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Control system designControl system design
Specifications given at a Specifications given at a 

high level of abstraction:high level of abstraction:
known input/output relationknown input/output relation
(or properties) and constraints (or properties) and constraints 
on performance indexes on performance indexes 

Control algorithms designControl algorithms design

Mapping to different architectures using performance estimationMapping to different architectures using performance estimation techniques and techniques and 
automatic code generation from modelsautomatic code generation from models

Mechanical/Electronic architecture selected among a set of candMechanical/Electronic architecture selected among a set of candidatesidates
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HW/SW implementation architectureHW/SW implementation architecture

• a set of possible hw/sw implementations is given 
by
– M different hw/sw implementation architectures
– for each hw/sw implementation architecture m ∈{1,...,M},

• a set of hw/sw implementation parameters z
– e.g. CPU clock, task priorities, hardware frequency, etc.

• an admissible set XZ of values for z

μControllers Library

OSEK
RTOS

OSEK
COMI/O drivers & handlers

(> 20 configurable modules)

Application Programming Interface

Boot Loader
Sys. Config.

Transport
KWP 2000

CCP

Application
Specific
Software

Speedom
eter

Tachom
eter

W
ater tem

p.

Speedom
eter

Tachom
eter

O
dom

eter
---------------

Application
Libraries

Customer
Libraries
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Classical approach (decoupledClassical approach (decoupled designdesign))
controller structure and parameters controller structure and parameters ((r r ∈∈ R, c R, c ∈∈ XXCC))

are selected in orderare selected in order to satisfy system specificationto satisfy system specificationss

implementationimplementation architecture and parameters architecture and parameters ((m m ∈∈ M, z M, z ∈∈ XXZZ))
areare selected in orderselected in order to minimize implementation costto minimize implementation cost

if system specifications are not met, the design cycle is repeatif system specifications are not met, the design cycle is repeateded

Ideal approachIdeal approach
both controller and architecture options both controller and architecture options ((r, c, m, zr, c, m, z)) are selected at the are selected at the 

same timesame time to to 
minimize implementation costminimize implementation cost
satisfy system specificationsatisfy system specificationss

too complex!!too complex!!
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Algorithm Explorations and Control SynthesisAlgorithm Explorations and Control Synthesis
D

E
S
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Behavior
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Implementation abstraction layerImplementation abstraction layer
we introduce an we introduce an implementation abstraction layerimplementation abstraction layer

which exposes ONLY the implementation nonwhich exposes ONLY the implementation non--idealities that affect the idealities that affect the 
performance of the controlled plant, e.g.performance of the controlled plant, e.g.

control loop delay
quantization error
sample and hold error
computation imprecision

at the implementation abstraction layer, platform instances at the implementation abstraction layer, platform instances 
are described byare described by

SS different implementation architecturedifferent implementation architecturess
for each implementation architecturefor each implementation architecture s s ∈∈{{1,...,S1,...,S}},,

a set of a set of implementationimplementation parameters parameters pp
e.g. latency, quantization interval, computation errors, etc.

an admissible set an admissible set XXPP of values of values for for pp
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controlled plant performancecontrolled plant performance

d

Controller

y     
Plant wu

r
Δw

Δr 
Δu +

nu

+

+

nr

nw

modeling of implementation nonmodeling of implementation non--idealities:idealities:
ΔΔuu, , ΔΔrr, , ΔΔww : : timetime--domain perturbationsdomain perturbations

control control loop delays, sample & hold loop delays, sample & hold , etc., etc.

nnu u , n, nr r , , nnww ::valuevalue--domain perturbationsdomain perturbations
quantization error, computation imprecisionquantization error, computation imprecision, etc., etc.



64

PA
R

A
D

ES

Model and Simulation files

• Simulink model

• Calibrations data

• Time history data 

•1
•OutData
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• Control Algorithm Specification 

Time History

Simulation Results

Calibration
data

Simulink Model

Algorithm DevelopmentAlgorithm Development
CControlontrol Algorithm DesignAlgorithm Design
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(Automotive) V(Automotive) V--Models: ECU level (Hw/Models: ECU level (Hw/SwSw))

Development 
of Distributed 

System

Development of 
Mechanical Part (s)

ECU 
Development

ECU SW
Development

ECU HW
Development

ECU SW Integration 
and Test

ECU HW/SW 
Integration and Test

ECU/ Sens./Actrs./Mech. 
Part(s)  Integration, 
Calibration, and Test

Sub-System(s)  
Integration, Test, 
and Validation

Development of 
Sub-System

ECU Sign-Off!

Sub-System  Sign-Off!

Distributed 
System  
Sign-Off!

ECU HW
Sign-Off!

ECU SW 
Implementation
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(Automotive) V(Automotive) V--Models: ECU level (Hw/Models: ECU level (Hw/SwSw))

Development 
of Distributed 

System

Development of 
Mechanical Part (s)

ECU 
Development

ECU SW
Development

ECU HW
Development

ECU SW Integration 
and Test

ECU HW/SW 
Integration and Test

ECU/ Sens./Actrs./Mech. 
Part(s)  Integration, 
Calibration, and Test

Sub-System(s)  
Integration, Test, 
and Validation

Development of 
Sub-System

ECU Sign-Off!

Sub-System  Sign-Off!

Distributed 
System  
Sign-Off!

ECU HW
Sign-Off!

ECU SW 
Implementation

Main design tasks:
Define ECU Hardware/Software Partitioning

Platform instance structure selection

Software Implementation 

Hardware (SoC) Design and Implementation 
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Control Algorithm Implementation StrategyControl Algorithm Implementation Strategy

Control algorithms are mapped to the target platform to Control algorithms are mapped to the target platform to 
achieve the best performance/cost tradeachieve the best performance/cost trade--off.off.

In most cases the platform can accommodate in software the In most cases the platform can accommodate in software the 
control algorithms, if not:control algorithms, if not:
New New platform servicesplatform services might be required ormight be required or
New New hardware componentshardware components might be implemented ormight be implemented or
New New control algorithmscontrol algorithms must be explored.must be explored.
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Platform Design StrategyPlatform Design Strategy

Minimize software development timeMinimize software development time
Maximize model based softwareMaximize model based software

Software generation is possible today from several Software generation is possible today from several MoCMoC and languages:and languages:
StateCharts, Dataflow, SR, …

Implement the same Implement the same MoCMoC of specification or guarantee the equivalenceof specification or guarantee the equivalence
Fit into the chosen software architecture to maximize reuse at cFit into the chosen software architecture to maximize reuse at component omponent 
levellevel

E.g. AUTOSAR for automotive

Maximize the reuse of handMaximize the reuse of hand--written software componentwritten software component
Define application and platform software architectureDefine application and platform software architecture

Minimize the change requests for the hardware platformMinimize the change requests for the hardware platform
Implement as much as possible in softwareImplement as much as possible in software



69

PA
R

A
D

ES

System Platform DefinitionSystem Platform Definition

ECU output devices ECU input devices
CPUs

RTOS

BIOS
Device Drivers

Net

Software Platform
(API services)

ECU output devices ECU input devices
CPUs

RTOS
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Device Drivers

Net

Software Platform
(API services)
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The software platform is 
cross applications and 
cross HW plats and is  
composed of 
parameterized  software 
components (sources)

The software 
application is 
composed of model-
based and hand-written 
application-dependent 
software components 
(sources)
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Software Implementation FlowSoftware Implementation Flow
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ExampeExampe of Specification of Control Algorithmsof Specification of Control Algorithms

A control algorithm is a (synch or aA control algorithm is a (synch or a--synch) composition of synch) composition of 
extended finite state machines (EFSM).extended finite state machines (EFSM).
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control-logic
data-flow computational blocks
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Code GenerationCode Generation
Mapping a functional model to software platform:Mapping a functional model to software platform:

Data refinementData refinement
Software platform services mapping (communication and computatioSoftware platform services mapping (communication and computation)n)
Time refinement (scheduling)Time refinement (scheduling)

Data refinementData refinement
Float to Fixed Point Translation.Float to Fixed Point Translation.

Range, scaling and size setting (by the designer).Range, scaling and size setting (by the designer).
Worst case analysis for internal variable ranges and scaling.Worst case analysis for internal variable ranges and scaling.

Signals and parameters to CSignals and parameters to C--variables mapping.variables mapping.

Software platform model:Software platform model:
variables and services (naming).variables and services (naming).

Access variable method are mapped with variable classes.Access variable method are mapped with variable classes.
execution model:execution model:

MultiMulti--rate subsystems are implemented as multirate subsystems are implemented as multi--task software components scheduled by an  OSEK/VDX task software components scheduled by an  OSEK/VDX 
standard RTOSstandard RTOS

Time refinementTime refinement
Task schedulingTask scheduling
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Mapping Control Algorithms to the PlatformMapping Control Algorithms to the Platform

ECU output devices ECU input devices
CPUs

RTOS

BIOS
Device Drivers

Net

Software Platform
(API services)

ECU output devices ECU input devices
CPUs

RTOS

BIOS
Device Drivers

Net

Software Platform
(API services)

Sensor/Actuator Layer

Application Software
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Automatic synthesis

Handwritten code

From high level models:
• Automatic translation to C/C++ code
• (Semi)-Automatic data refinement for 

computation
• Automatic refinement of communication 

services
Flow examples:
ASCET, Simulink/eRTW/TargetLink, UML
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 Modelled 
Components 

 
SLOC 

% of Model 
Compiled SLOC

Platform 
Components 

 
26-HandCoded 

 
26500 

 
0% 

Application 
Components 
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13-HandCoded 
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 % of the total memory occupation

 ROM % RAM % 

Platform 17.9 2.9 
Application 82.1 97.1 

 

 

Example: Gasoline Direct Injection Engine Control
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Example: Example: Gasoline Direct Injection Engine ControlGasoline Direct Injection Engine Control

Tremendous increase in applicationTremendous increase in application--software productivity:software productivity:
Up to 4 time faster than in the traditional handUp to 4 time faster than in the traditional hand--coding cycle.coding cycle.

Tremendous decrease in verification effort:Tremendous decrease in verification effort:
Close to 0 Close to 0 ppmppm

Tremendous reuse of modes and source codeTremendous reuse of modes and source code
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Simulation Based (C/C++/Simulation Based (C/C++/SystemCSystemC) Exploration Flow) Exploration Flow

Simulink

Defined MoC
and Languages

Integration

Algorithm
Analysis 

Code Generation (Synthesis)

UML
ASCET

Different Languages 
and MoCs Platform non 

idealities

C/C++/SystemC

Mapping Build

Platform Models

C/C++/SystemC

Generators

Simulator Simulation and
Performance Estimation

Unique Representation
C/C++/SystemC

StateMate

Exporters
Platform Export

Performance Traces
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SystemCSystemC and OCP Abstraction Levelsand OCP Abstraction Levels

+Computation Time+Computation TimeTime Functional  (TF)Time Functional  (TF)

Function Function UntimedUntimed Functional (UTF)Functional (UTF)

GatesGatesRTL (LRTL (L--0)0)+Pin/clock+Pin/clockPin Cycle Accurate (PCA)Pin Cycle Accurate (PCA)

ComputationComputation

Communication (I/F)Communication (I/F)

+Clock cycle+Clock cycleRegister Transfer (RT)Register Transfer (RT)

Token Token UntimedUntimed FunctionalFunctional

Wire registersWire registersTransfer (LTransfer (L--1)1)+Clock cycle+Clock cycleBus cycle Accurate (BCA)Bus cycle Accurate (BCA)

Clocks, protocolsClocks, protocolsTransaction (LTransaction (L--2)2)+Transaction time+Transaction timeProgrammers View + Programmers View + 
Time (PVT)  Time (PVT)  

Time Resource Time Resource 
SharingSharing

Message (LMessage (L--3)3)

+Address+AddressProgrammers View (PV)Programmers View (PV)

Abstraction Abstraction RemovesRemovesOCP LayersOCP LayersAbstraction AccuracyAbstraction AccuracySystemCSystemC
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Mapping application to platformMapping application to platform

0

5

10

15

CPU load%

mapping "zero" mapping "uno" mapping "due" mapping "tre"

0

1000

2000

IRQ/s

mapping "zero" mapping "uno" mapping "due" mapping "tre"

0

5000

10000

task switching (attivazioni/s)

mapping "zero" mapping "uno" mapping "due" mapping "tre"

0

5

10

15

numero di task

mapping "zero" mapping "uno" mapping "due" mapping "tre"
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SW estimationSW estimation

SW estimation is needed toSW estimation is needed to
Evaluate HW/SW tradeEvaluate HW/SW trade--offsoffs
Check performance/constraintsCheck performance/constraints

Higher reliabilityHigher reliability

Reduce system costReduce system cost
Allow slower hardware, smaller size, lower power consumptionAllow slower hardware, smaller size, lower power consumption
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SW estimation: Static vs. Dynamic  SW estimation: Static vs. Dynamic  
Static estimationStatic estimation

Determination of runtime properties at compile timeDetermination of runtime properties at compile time
Most of the (interesting) properties are undecidable => use apprMost of the (interesting) properties are undecidable => use approximationsoximations
An approximation program analysis is safe, if its results can alAn approximation program analysis is safe, if its results can always be depended on.ways be depended on.

E.G. WCET, BCETE.G. WCET, BCET
Quality of the results (precision) should be as good as possibleQuality of the results (precision) should be as good as possible

Dynamic estimationDynamic estimation
Determination of properties at runtimeDetermination of properties at runtime
DSP ProcessorsDSP Processors

relatively data independentrelatively data independent
most time spent in handmost time spent in hand--coded kernelscoded kernels
static datastatic data--flow consumes most cyclesflow consumes most cycles
small number of threads, simple interruptssmall number of threads, simple interrupts

Regular processorsRegular processors
arbitrary C, highly data dependentarbitrary C, highly data dependent
commercial RTOS, many threadscommercial RTOS, many threads
complex interrupts, prioritiescomplex interrupts, priorities
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SW estimation overviewSW estimation overview
Two aspects to be consideredTwo aspects to be considered

The structure of the code (The structure of the code (program path analysisprogram path analysis))
E.g. loops and false pathsE.g. loops and false paths

The system on which the software will run (The system on which the software will run (micromicro--architecture modelingarchitecture modeling))
CPU (ISA, interrupts, etc.), HW (cache, etc.), OS, CompilerCPU (ISA, interrupts, etc.), HW (cache, etc.), OS, Compiler

Level at which it is doneLevel at which it is done
LowLow--levellevel

e.g. gatee.g. gate--level, assemblylevel, assembly--language levellanguage level
Easy and accurate, but long design iteration timeEasy and accurate, but long design iteration time

High/systemHigh/system--levellevel
Fast: reduces the exploration time of the design spaceFast: reduces the exploration time of the design space
Accurate Accurate ““enoughenough””: approximations are required: approximations are required
Processor model must be cheapProcessor model must be cheap

“what if” my processor did X
future processors not yet developed
evaluation of processor not currently used

Must be convenient to useMust be convenient to use
no need to compile with cross-compilers and debug on my desktop
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SW estimation in VCCSW estimation in VCC
Virtual Processor Model (VPM)Virtual Processor Model (VPM)
compiled code virtual instruction set simulatorcompiled code virtual instruction set simulator

An virtual processor functional model with its own ISA estimatinAn virtual processor functional model with its own ISA estimating g 
computation time based on a table with instruction time computation time based on a table with instruction time 
informationinformation

Pros:Pros:
does not require target software development chain (uses host codoes not require target software development chain (uses host compiler)mpiler)
fast simulation model generation and executionfast simulation model generation and execution
simple and cheap generation of a new processor modelsimple and cheap generation of a new processor model
Needed when target processor and compiler not availableNeeded when target processor and compiler not available

Cons:Cons:
hard to model target compiler optimizations (requires hard to model target compiler optimizations (requires ““best in classbest in class”” Virtual Virtual 
Compiler that can also as  CCompiler that can also as  C--toto--C optimization for the target compiler)C optimization for the target compiler)
low precision, especially for data memory accesseslow precision, especially for data memory accesses
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SW estimation by ISSSW estimation by ISS

Interpreted instruction set simulator (IInterpreted instruction set simulator (I--ISS)ISS)
A model of the processor interpreting the instruction stream  A model of the processor interpreting the instruction stream  
and accounting for clock cycle accurate or approximate time and accounting for clock cycle accurate or approximate time 
evaluationevaluation

Pros:Pros:
generally available from processor IP providergenerally available from processor IP provider
often integrates fast cache modeloften integrates fast cache model
considers target compiler optimizations and real data and code aconsiders target compiler optimizations and real data and code addressesddresses

Cons: Cons: 
requires target software development chain and full application requires target software development chain and full application (boot, RTOS, (boot, RTOS, 
Interrupt handling, etc)Interrupt handling, etc)
often low speedoften low speed
different integration problem for every vendor (and often for evdifferent integration problem for every vendor (and often for every CPU)ery CPU)
may be difficult to support communication models that require wamay be difficult to support communication models that require waiting to iting to 
complete an I/O or synchronization operationcomplete an I/O or synchronization operation
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Accuracy Accuracy vsvs Performance Performance vsvs CostCost

Hardware Emulation

Cycle accurate model

Cycle counting ISS

Static spreadsheet

Dynamic estimation

Accuracy Speed $$$*

+++ ---
--
+-

++ --
++ + -
+

-

++ ++

+++ +++
*$$$ = NRE + per model + per design



86

PA
R

A
D

ES

CoWareCoWare Platform Modeling EnvironmentPlatform Modeling Environment

Focus on computation/communication separationFocus on computation/communication separation

Leverage their LISA platform and Leverage their LISA platform and SystemCSystemC Transaction Transaction 
Level ModelsLevel Models
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CoWareCoWare Support for Multiple Abstraction LevelsSupport for Multiple Abstraction Levels
Support successive refinement for both processors and bus modelsSupport successive refinement for both processors and bus models
Depending on abstraction level, simulation performance of 100 toDepending on abstraction level, simulation performance of 100 to 200 200 KcyclesKcycles/sec/sec
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Refining the Refining the CControlontrol AlgoritmAlgoritm

UF Platform-in-the-Loop
C Code on platform model

Platform model

TF/RT Platform-in-the-Loop
C Code on platform model

Platform model

Model
level

Untimed, host data type

Untimed, target data type

Timed, target data type

Real target

Code basedModel based
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Model Based ControlModel Based Control--Platform CoPlatform Co--DesignDesign

Control 
Specification

•1
•OutData

•inData

•fc_event1

•fc_event_2

•SF-SS

•Merge

•MergeOutData

•function()
•InData1 •OutData

•FC-SS-2

•function()
•InData_2 •OutData

•FC-SS-1

•5
•InData_2

•4
•InData_1

•3
•InData

•2
•inputEvent_2

•1
•inputEvent_1

•InData_1

•InData_2

•InData

•OutData

•events

•1
•OutData

•inData

•fc_event1

•fc_event_2

•SF-SS

•Merge

•MergeOutData

•function()
•InData1 •OutData

•FC-SS-2

•function()
•InData_2 •OutData

•FC-SS-1

•5
•InData_2

•4
•InData_1

•3
•InData

•2
•inputEvent_2

•1
•inputEvent_1

•InData_1

•InData_2

•InData

•OutData

•events

ECU output devices ECU input devices
CPUs

RTOS

BIOS
Device Drivers

Net

Software Platform
(API services)

ECU output devices ECU input devices
CPUs

RTOS

BIOS
Device Drivers

Net

Software Platform
(API services)

Platform
Abstraction

•1
•OutData

•inData

•fc_event1

•fc_event_2

•SF-SS

•Merge

•MergeOutData

•function()
•InData1 •OutData

•FC-SS-2

•function()
•InData_2 •OutData

•FC-SS-1

•5
•InData_2

•4
•InData_1

•3
•InData

•2
•inputEvent_2

•1
•inputEvent_1

•InData_1

•InData_2

•InData

•OutData

•events

•1
•OutData

•inData

•fc_event1

•fc_event_2

•SF-SS

•Merge

•MergeOutData

•function()
•InData1 •OutData

•FC-SS-2

•function()
•InData_2 •OutData

•FC-SS-1

•5
•InData_2

•4
•InData_1

•3
•InData

•2
•inputEvent_2

•1
•inputEvent_1

•InData_1

•InData_2

•InData

•OutData

•events

•1
•OutData

•inData

•fc_event1

•fc_event_2

•SF-SS

•Merge

•MergeOutData

•function()
•InData1 •OutData

•FC-SS-2

•function()
•InData_2 •OutData

•FC-SS-1

•5
•InData_2

•4
•InData_1

•3
•InData

•2
•inputEvent_2

•1
•inputEvent_1

•InData_1

•InData_2

•InData

•OutData

•events

•1
•OutData

•inData

•fc_event1

•fc_event_2

•SF-SS

•Merge

•MergeOutData

•function()
•InData1 •OutData

•FC-SS-2

•function()
•InData_2 •OutData

•FC-SS-1

•5
•InData_2

•4
•InData_1

•3
•InData

•2
•inputEvent_2

•1
•inputEvent_1

•InData_1

•InData_2

•InData

•OutData

•events

void integratutto4_initializer( void )
{
/* Initialize machine's broadcast event variable */
_sfEvent_ = CALL_EVENT;

_integratutto4MachineNumber_ =
sf_debug_initialize_machine("integratutto4","sfun",0,3,0,0,0);

sf_debug_set_machine_event_thresholds(_integratutto4MachineNumber_,0,0);
sf_debug_set_machine_data_thresholds(_integratutto4MachineNumber_,0);

}



90

PA
R

A
D

ES

Platform DesignPlatform Design

ECU output devices ECU input devices
CPUs

RTOS

BIOS
Device Drivers

Net

Software Platform
(API services)

ECU output devices ECU input devices
CPUs

RTOS

BIOS
Device Drivers

Net

Software Platform
(API services)

Sensor/Actuator Layer

Application Software•1
•OutData

•inData

•fc_event1

•fc_event_2

•SF-SS

•Merge

•MergeOutData

•function()
•InData1 •OutData

•FC-SS-2

•function()
•InData_2 •OutData

•FC-SS-1

•5
•InData_2

•4
•InData_1

•3
•InData

•2
•inputEvent_2

•1
•inputEvent_1

•InData_1

•InData_2

•InData

•OutData

•events

•1
•OutData
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•fc_event1

•fc_event_2

•SF-SS
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•MergeOutData
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•4
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•3
•InData

•2
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•1
•inputEvent_1
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•InData

•OutData

•events

The software platform is 
cross applications and 
cross HW plats and is  
composed of 
parameterized  software 
components (sources)

The software 
application is 
composed of model-
based and hand-written 
application-dependent 
software components 
(sources)
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Platform Design and ImplementationPlatform Design and Implementation

Hardware, computation:Hardware, computation:
Cores:Cores:

Core selectionCore selection
Core instantiationCore instantiation

Coprocessors:Coprocessors:
Selection (Peripherals)Selection (Peripherals)
Configuration/SynthesisConfiguration/Synthesis

Instructions:Instructions:
ISA definition (VLIW)ISA definition (VLIW)
ISA Extension FlowISA Extension Flow

Hardware, communication:Hardware, communication:
BussesBusses
Networks Networks 

Software, granularity:Software, granularity:
Set of ProcessesSet of Processes
Process/ThreadProcess/Thread
Instruction sequencesInstruction sequences
InstructionsInstructions

Software, layers:Software, layers:
RTOSRTOS
HALHAL
Middle layersMiddle layers



93

PA
R

A
D

ES

AUTOSAR Software Platform StandardizationAUTOSAR Software Platform Standardization
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Hardware Design FlowHardware Design Flow

Not a unified approach to explore the different levels of Not a unified approach to explore the different levels of 
parallelismparallelism

The macro level architecture must be selectedThe macro level architecture must be selected
Implementing function in RTL (Implementing function in RTL (SystemCSystemC/C++ Flow)/C++ Flow)

Hardware implementation of RTOSHardware implementation of RTOS

Partition the function and implements some parts using a Partition the function and implements some parts using a 
dedicated Codedicated Co--ProcessorProcessor
Change Core Instruction Set Application (ISA):Change Core Instruction Set Application (ISA):

Parameterization of a configurable processorParameterization of a configurable processor
Custom extension of the ISACustom extension of the ISA
Define a new ISA (e.g. VLIW)Define a new ISA (e.g. VLIW)
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Traditional SystemTraditional System--OnOn--Chip Design FlowChip Design Flow
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C/C++ Synthesis FlowC/C++ Synthesis Flow
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Evolution of SystemEvolution of System--OnOn--Chip Design FlowChip Design Flow
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RAM

ROM

Hardwired Logic

General General 
Purpose Purpose 
32b CPU32b CPU

A/D

I/O

PHY

Implementing Function in RTLImplementing Function in RTL

General-purpose CPUs used in 
traditional SOCs are not fast enough for 
data-intensive applications, don’t have 
enough I/O or compute bandwidth, lacks 
efficiency

General-purpose CPUs used in 
traditional SOCs are not fast enough for 
data-intensive applications, don’t have 
enough I/O or compute bandwidth, lacks 
efficiency

Hardwired Logic
• High performance due 

to parallelism
• Large number of wires 

in/out of the block
• Languages /Tools 

familiar to many
But …
• Slow to design and verify
• Inflexible after tapeout
• High re-spin risk and cost
• Slows time to market

Hardwired Logic
• High performance due 

to parallelism
• Large number of wires 

in/out of the block
• Languages /Tools 

familiar to many
But …
• Slow to design and verify
• Inflexible after tapeout
• High re-spin risk and cost
• Slows time to market

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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SystemCSystemC/C/C++ Synthesis Flow++ Synthesis Flow
High Level Models:High Level Models:

TLM/TLM/SimulinkSimulink

SystemCSystemC/C++ Models/C++ Models IR: Control Flow Data GraphIR: Control Flow Data Graph

HighHigh--Level SynthesisLevel Synthesis Software ExtractionSoftware Extraction

HardwareHardware
implementationsimplementations

Software Cost Software Cost 
EstimationEstimation

Hardware Cost Hardware Cost 
EstimationEstimation

SoftwareSoftware
CompilationCompilation

Hw/Hw/SwSw IntegrationIntegration

PerformancePerformance
EstimationEstimation

Cost Function EvaluationCost Function Evaluation

Hardware RefinementHardware Refinement Software RefinementSoftware Refinement

Chunks Identification & Chunks Identification & 
System partitioningSystem partitioning

hardwarehardware softwaresoftware

Hw/Hw/SwSw CoCo--verificationverification

RTL Level
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DK Design SuiteDK Design Suite

CynthesizerCynthesizer

CeloxicaCeloxica and Forte Flowsand Forte Flows
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Coprocessor SynthesisCoprocessor Synthesis

Loosely coupled coprocessor that 
accelerates the execution of compiled 
binary executable software code 
offloaded from the CPU

Delivers the parallel processing 
resources of a custom processor. 
Automatically synthesizes 
programmable coprocessor from 
software executable (hw and sw). 
Maximizes system performance 
through memory access and bus 
communication optimizations. 
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CriticalblueCriticalblue ApproachApproach
Bottleneck Identification: Bottleneck Identification: 

Analyze the profiling results of the application software runninAnalyze the profiling results of the application software running on the main microprocessor. g on the main microprocessor. 
Manually identifies the specific tasks to be migrated to the copManually identifies the specific tasks to be migrated to the coprocessor.rocessor.

Architecture Synthesis and Performance Estimation: Architecture Synthesis and Performance Estimation: 
UserUser--defined constraints like gate count, clock cycle count, and bus defined constraints like gate count, clock cycle count, and bus utilizationutilization
Analysis of the instruction code and Analysis of the instruction code and architectearchitecte the coprocessor deploy the maximum parallelism consistent with the coprocessor deploy the maximum parallelism consistent with the input the input 
constraints. constraints. 
Estimation of gateEstimation of gate--count and performance including estimates of communication overhcount and performance including estimates of communication overhead with the main processor.ead with the main processor.

CoprocessorCoprocessor--Performance and Performance and ““WhatWhat--IfIf”” Analysis: Analysis: 
Generation of  an instructionGeneration of  an instruction-- and bitand bit--accurate C model of the coprocessor architecture used in conjuncaccurate C model of the coprocessor architecture used in conjunction with the main tion with the main 
processorprocessor’’s instructions instruction--set simulator (ISS). set simulator (ISS). 
Typical analysis: performance profiling, memoryTypical analysis: performance profiling, memory--access activity, and activation trace data access activity, and activation trace data 
The model also is used to validate the coprocessor within a stanThe model also is used to validate the coprocessor within a standard C or dard C or SystemCSystemC simulation environment. simulation environment. 

Hardware Synthesis and Microcode generation: Hardware Synthesis and Microcode generation: 
Generation of the coprocessor hardware, delivering synthesizableGeneration of the coprocessor hardware, delivering synthesizable RTL code in either VHDL or RTL code in either VHDL or VerilogVerilog and of the circuitry and of the circuitry 
thatthat’’s needed to enable the coprocessor to communicate with the main s needed to enable the coprocessor to communicate with the main processorprocessor’’s bus interface. s bus interface. 
Generation of the coprocessor microcode.Generation of the coprocessor microcode.
It automatically modifies the original executable code so that fIt automatically modifies the original executable code so that function calls are directed to a communications library. unction calls are directed to a communications library. 
This library manages the coprocessor handoff. It also communicatThis library manages the coprocessor handoff. It also communicates parameters and results between the main processor es parameters and results between the main processor 
and the coprocessor. and the coprocessor. 
Microcode can be generated independently of the coprocessor hardMicrocode can be generated independently of the coprocessor hardware, allowing new microcode to be targeted at an ware, allowing new microcode to be targeted at an 
existing coprocessor design.existing coprocessor design.
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Configurable and Extensible ProcessorConfigurable and Extensible Processor

External Bus
Interface

Base ISA Feature
Configurable Functions
Optional Function

Designer Defined Features (TIE)
Optional & Configurable

User Defined 
Queues / Ports 

up to 1M Pins

Xtensa
Local Memory 

Interface

Trace/TJAG/OCD

U
ser D

efined Execution U
nits, 

R
egister Files and Interfaces

Base ALU

Optional
Execution 

Units

Instruction Fetch / Decode 

Data 
Load/Store 

Unit

Register File 

User Defined 
Execution Unit

Vectra LX
DSP Engine

Processor Controls

Interrupts, 
Breakpoints, Timers

Load/Store Unit #2

Local
Instruction
Memories

Processor 
Interface (PIF) 
to System Bus 

Local Data
Memories

. . . . .

U
ser D

efined Execution Units, 
R

egister Files and Interfaces

. . .

Designer-defined  FLIX 
parallel execution 

pipelines - “N” wide

Base ISA 
Execution 
Pipeline

Fully Configurable Processor Features

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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operation TRUNCATE_16 {out AR z, in AR m}{}
{
assign z = {16'b0, m[23:8] };
}

The operation statement describes an entire new instruction, 
including:

Instruction name

Instruction format and arguments

Functional Behavior 

From this single statement, Tensilica’s technology generates 
processor hardware, simulation and software development 
tool support for the new instruction.

33

22

11

33
22

Instruction Extension : Instruction Extension : 
Simple ExampleSimple Example

11

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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More Complex ExtensionsMore Complex Extensions

operation MUL_SAT_16 {out AR z, in AR a, in AR b} {}
{
wire [31:0] m = TIEmul(a[15:0],b[15:0],1);

assign z = {16'b0,
m[31] ? ((m[31:23]==9'b1) ? m[23:8] : 16'h8000)

: ((m[31:23]==9'b0) ? m[23:8] : 16'h7fff) }; 
}
schedule ms {MUL_SAT_16} {def z 2;}

X
OPERAND2 RESULT

E1 E2

Pipeline Stage

SAT

OPERAND1

SAT

MUL

a bCore 32bit Register File 
(AR)

a

b

z

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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SIMD : Exploiting Data ParallelismSIMD : Exploiting Data Parallelism

operation MUL_SAT_2x16 {out AR z, in AR a, in AR b} {}
{

wire [31:0] m0 = TIEmul(a[15:0], b[15:0], 1);
assign z = {

m0[31] ? ((m0[31:23]==9'b1) ? m0[23:8] : 16'h8000)
: ((m0[31:23]==9'b0) ? m0[23:8] : 16'h7fff) };

}
schedule ms {MUL_SAT_2x16} {def z 2;}

SAT

MUL

a0 b0
a1 b1

a1 a0

b1 b0

a
b

Core  32bit Register File (AR)

wire [31:0] m1 = TIEmul(a[31:16],b[31:16],1);
wire [31:0] m0 = TIEmul(a[15:0], b[15:0], 1);
assign z = {m1[31] ? ((m1[31:23]==9'b1) ? m1[23:8] : 16'h8000)

: ((m1[31:23]==9'b0) ? m1[23:8] : 16'h7fff),
m0[31] ? ((m0[31:23]==9'b1) ? m0[23:8] : 16'h8000)

: ((m0[31:23]==9'b0) ? m0[23:8] : 16'h7fff) };

z

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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-- FLIXFLIX™™ Architecture Architecture 

Designer-Defined FLIX Instruction Formats with Designer-Defined Number of Operations

Example 4 – Operation, 32b Instruction Format

Example 5 – Operation, 64b Instruction Format

63 0
1 1 1 0Operation 5Op 4Operation 1 Op 3Operation 2

Example 3 – Operation, 64b Instruction Format

Operation 1 1 1 1 0Operation 3Operation 2
63

31

0

0

1 1 1 0Op. 4Op 3Op 2Op 1

FLIXFLIX™™ –– FFlexible lexible LLength ength IInstruction nstruction XXtensionstensions

Multiple, concurrent, independent, compound operations per instrMultiple, concurrent, independent, compound operations per instructionuction
Modeless intermixing of 16, 24, and 32 or 64 bit instructions Modeless intermixing of 16, 24, and 32 or 64 bit instructions 
Fast and concurrent code (concurrent execution) when neededFast and concurrent code (concurrent execution) when needed
Compact code when concurrency / parallelism isnCompact code when concurrency / parallelism isn’’t neededt needed
Full code compatibility with base 16/24 bit Xtensa ISAFull code compatibility with base 16/24 bit Xtensa ISA

Minimal overheadMinimal overhead
No VLIWNo VLIW--style codestyle code--bloatbloat
~2000 gates added control logic~2000 gates added control logic

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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Multi-issue instruction

L operations packed in one long instruction

M copies of storage and function

SIMD operation

Parallelism at Three Levels Parallelism at Three Levels 
in Extensible Instructionsin Extensible Instructions

Parallelism: L x M x N
Example:  3 x 4 x 3 = 36 ops/cycle

op

op

N dependent 
operations 

implemented 
as single 

fused 
operation 

const

register and constant inputs

reg

Fused operation

reg reg reg

op

Three forms of instruction-set parallelism:
• Very Long Instruction Word (VLIW)
• Single Instruction Multiple Data (SIMD) aka “vectors”
• Fused operations aka “complex operations”

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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Synthesizable RTLSynthesizable RTL

Synopsys/Cadence flowsSynopsys/Cadence flows

HardwareHardware

Scheduling assemblerScheduling assembler
Xtensa C/C++ Compiler: Xtensa C/C++ Compiler: 
vectorizing C/C++ compilervectorizing C/C++ compiler
Xtensa Instruction Set Xtensa Instruction Set 
Simulator Simulator –– Pipeline accuratePipeline accurate
DebuggersDebuggers
XTMP: System Modeling APIXTMP: System Modeling API
Bus Functional Model for HW/SW Bus Functional Model for HW/SW 
coco--simulation modelsimulation model
RTOS: VxWorks, RTOS: VxWorks, 
Nucleus, XTOSNucleus, XTOS

SoftwareSoftware

HW & SW automatically generatedHW & SW automatically generated

Integrated Development EnvironmentIntegrated Development Environment

TIE Development toolsTIE Development tools

C Development toolsC Development tools

Profiling & visualization toolsProfiling & visualization tools

Xtensa Xplorer Xtensa Xplorer 

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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Design FlowDesign Flow

Electronic
Specification
Configuration 
selection and 
custom-instruction 
description

Automation: Optimized Processor & 
Matching Software Tools

Xtensa
Processor
Generator *

* US Patent: 6,477,697

Use standard 
ASIC/COT 
design 
techniques 
and
libraries for 
any IC 
fabrication 
process

Iterate in hours

Complete Hardware Design
Source RTL, EDA scripts, test suite

Customized
Software Tools
C/C++ compiler 
Debuggers Simulators
RTOSes

Processor
Extensionsint main()

{
int i;
short c[100];
for (i=0;i<N/2;i++)
{

int main()
{
int i;
short c[100];
for (i=0;i<N/2;i++)
{

ANSI C/C++ Code
Source code

XPRES
Compiler

Optional Step
Runs in Minutes

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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Designing with many processorsDesigning with many processors

RAM
General General 
ControlControl

RISCRISC
A/D

I/O

PHY

ImageImage
LogicLogic

VideoVideo
LogicLogic

AudioAudio
LogicLogic

VideoVideo
LogicLogic

SecuritySecurity
LogicLogic

PacketPacket
LogicLogic

DSPDSP
LogicLogic

System-On-Chip (SOC)

RAM
General General 
ControlControl

RISCRISC
A/D

I/O

PHY

ImageImage
LogicLogic

VideoVideo
LogicLogic

AudioAudio
LogicLogic

VideoVideo
LogicLogic

SecuritySecurity
LogicLogic

PacketPacket
LogicLogic

DSPDSP
LogicLogic

Advanced System-On-Chip (SOC)

General General 
ControlControl
ProcessorProcessor

ImageImage
ProcessorProcessor

VideoVideo
ProcessorProcessor

AudioAudio
ProcessorProcessor

VideoVideo
ProcessorProcessor

SecuritySecurity
ProcessorProcessor

PacketPacket
ProcessorProcessor

DSPDSP
ProcessorProcessor

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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Many Possible ArchitecturesMany Possible Architectures

Processor
Master

Processor
Master

Processor
Master

Processor
Master

Memory
Slave

Memory
Slave

Output
Device
Slave

Input
Device
Slave

Shared Bus

Processor
Master

Processor
Master

Processor
Master

Memory
Slave

Memory
Slave

Output
Device
Slave

Input
Device
Slave

Cross-Bar

Processor
Master

Global
Memory

Slave

Global I/O
Slave

Global I/O
Slave

Processor
Master

Processor
Master

Processor
Master

Processor
Master

Processor
Master

Processor
Master

Processor
Master

Processor
Master

On-chip Routing Network

Processor
Master

I/O Processor

Data Crunching 
Processor

Output
Device
Slave

Processor
Master

Processor
Master

Queue

Queue

Queue

Dual-Port
Memory

Application-specific

Routing
Node

Routing
Node

Routing
Node

Routing
Node

Routing
Node

Routing
Node

Routing
Node

Routing
Node

Routing
Node

Global
Memory

Slave

Input
Device
Slave

bus

bus

Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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Multiprocessor Design FlowMultiprocessor Design Flow

Conceptual Model
Of Application

Partition Application
into Tasks

High-Level 
Architecture

Add Communication
Channels b/w Tasks

Refine Arch: Add 
TIE, Mems, Queues

Map Tasks to Processors & Comm. 
Channels to Queues, Shared Memories

Spec,Matlab,
C/C++, SystemC

µP1 µP2

µP3

Shared
Memory

µP1
µP2 µP3

Q1

Q2

SM

Shared
Memory

µP1
µP2 µP3

Q1

Q2

SMQ1

µP1

µP2

µP3

Q2

SM

Simulation Model
of System

Top-level RTL
Component RTL

Sample Test BenchSimulate, Profile, 
Analyze, Iterate

C/C++

Remap Tasks or comms

Change Comm Channels

Repartition Application Change Processor Config

Change System Architecture

Possible Solutions: top-down flow
Courtesy of Courtesy of Grant Martin, Chief Scientist, Tensilica
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From unstructured connectivity to a From unstructured connectivity to a ……
Courtesy of Courtesy of SONICS
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Communication Centric Design FlowCommunication Centric Design Flow

““Communication Centric PlatformCommunication Centric Platform””
SONIC, SONIC, PalmchipPalmchip
Concentrates on communicationConcentrates on communication

Delivers communication framework plus peripheralsDelivers communication framework plus peripherals
Limits the modeling effortsLimits the modeling efforts

SiliconBackplane™

(patented) {
SiliconBackplane
Agent™

Open Core 
Protocol™

MultiChip
Backplane™

DSP MPEGCPUDMA

C MEM I O

SONICs Architecture
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Behavioral modelsBehavioral models
Trace generationTrace generation
MonitorsMonitors
DisassemblersDisassemblers
Protocol checkersProtocol checkers
Performance analysisPerformance analysis
SystemC modelsSystemC models
Timing constraint propagationTiming constraint propagation
Synthesis script generationSynthesis script generation
FloorplannerFloorplanner interfaceinterface

SONICS Automated flowSONICS Automated flow Courtesy of Courtesy of SONICS
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OutlineOutline

Embedded System ApplicationsEmbedded System Applications

Platform based design methodologyPlatform based design methodology

Electronic System Level DesignElectronic System Level Design
Functions: Functions: MoCMoC, Languages, Languages
Architectures: Network, Node, Architectures: Network, Node, SoCSoC

MetropolisMetropolis

ConclusionsConclusions
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DesignDesign

MotivationMotivation
Design complexity and the need for verification and timeDesign complexity and the need for verification and time--toto--market constraints are market constraints are 
increasingincreasing
Semantic link between specification and implementation is necessSemantic link between specification and implementation is necessaryary

PlatformPlatform--Based DesignBased Design
MeetMeet--inin--thethe--middle approachmiddle approach
Separation of concernsSeparation of concerns

Function vs. architectureFunction vs. architecture
Capability vs. performanceCapability vs. performance
Computation vs. communicationComputation vs. communication

Metropolis FrameworkMetropolis Framework
Extensible framework providing simulation, verification, and synExtensible framework providing simulation, verification, and synthesis capabilitiesthesis capabilities
Easily extract relevant design information and interface to exteEasily extract relevant design information and interface to external toolsrnal tools

Released Sept. 15th, 2004Released Sept. 15th, 2004
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Metropolis: Target and GoalsMetropolis: Target and Goals

Target: Embedded System DesignTarget: Embedded System Design
Set-top boxes, cellular phones, automotive controllers, …

Heterogeneity:
computation: Analog, ASICs, programmable logic, DSPs, ASIPs, processors
communication: Buses, cross-bars, cache, DMAs, SDRAM, …
coordination: Synchronous, Asynchronous (event driven, time driven)

Goals:Goals:
Design methodologies:

abstraction levels: design capture, mathematics for the semantics
design tasks: cache size, address map, SW code generation, RTL generation, …

Tool set:
synthesis: data transfer scheduling, memory sizing, interface logic, SW/HW 
generation, …
verification: property checking, static analysis of performance, equivalence checking, 
…
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Metropolis ProjectMetropolis Project
Participants:

UC Berkeley (USA): methodologies, modeling, formal methods
CMU (USA): formal methods
Politecnico di Torino (Italy): modeling, formal methods
Universita Politecnica de Catalunya (Spain): modeling, formal methods
Cadence Berkeley Labs (USA): methodologies, modeling, formal methods
PARADES (Italy): methodologies, modeling, formal methods
ST (France-Italy): methodologies, modeling
Philips (Netherlands): methodologies (multi-media) 
Nokia (USA, Finland): methodologies (wireless communication)
BWRC (USA): methodologies (wireless communication)
Magneti-Marelli (Italy): methodologies (power train control)
BMW (USA): methodologies (fault-tolerant automotive controls)
Intel (USA): methodologies (microprocessors)
Cypress (USA): methodologies (network processors, USB platforms)
Honeywell (USA): methodologies (FADEC)
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Design Constraints 

&

Assertions

Function

Specification

Architecture (Platform)

Specification

Metropolis Infrastructure
• Design methodology
• Meta model of computation
• Base tools

- Design imports
- Meta model compiler
- Simulation

Synthesis/Refinement
• Compile-time scheduling of 

concurrency
• Communication-driven hardware 

synthesis
• Protocol interface generation

Analysis/Verification
• Static timing analysis of reactive 

systems
• Invariant analysis of sequential 

programs
• Refinement verification
• Formal verification of embedded 

software
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Meta Frameworks: MetropolisMeta Frameworks: Metropolis

Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing SemanticsKahn process
networks

dataflow

discrete
events

synchronous/
reactive

hybrid systems

continuous
time

Metropolis provides a process networks abstract 
semantics and emphasizes formal description of 
constraints, communication refinement, and joint 
modeling of applications and architectures.
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Metropolis Objects: adding quantity managersMetropolis Objects: adding quantity managers
Metropolis elements adhere to a Metropolis elements adhere to a ““separation of concernsseparation of concerns”” point of view.point of view.

Proc1P1 P2

I1 I2Media1

QM1

Active Objects
Sequential Executing Thread

Passive Objects
Implement Interface Services

Schedule access to 
resources and quantities

• Processes (Computation)

• Media (Communication)

• Quantity Managers (Coordination)
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A ProducerA Producer––Consumer ExampleConsumer Example

A process P producing integersA process P producing integers

A process C consuming integersA process C consuming integers

A media M implementing the communication services A media M implementing the communication services 

Proc P Proc C
Media M

∞
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package producers_consumer;
process P {

port IntWriter port_wr;
public P(String name) {}
void thread() {

int w = 0;
while (w < 30) {

port_wr.writeInt(w);
w = w + 1;

}
}}

package producers_consumer;
interface IntWriter extends Port{

update void writeInt(int i);
eval int nspace();

}

Writer: Process P (Producer)Writer: Process P (Producer)

P.mmmP.mmm: Process behavior definition: Process behavior definition

Proc P

Writer.mmmWriter.mmm: Port (interface) definition: Port (interface) definition
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Metro. Metro. NetlistsNetlists and Eventsand Events

Proc1

P1

Media1 QM1

Scheduled Netlist Scheduling Netlist

Global
Time

Metropolis Architectures are created via two netlists:
• Scheduled – generate events1 for services in the scheduled netlist.
• Scheduling – allow these events access to the services and annotate
events with quantities.

I1

I2

Proc2

P2

Event1 –
represents a 
transition in the 
action automata 
of an object. Can 
be annotated
with any number 
of quantities. 
This allows 
performance 
estimation. 

Related Work
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Key Modeling ConceptsKey Modeling Concepts
An An eventevent is the fundamental concept in the frameworkis the fundamental concept in the framework

Represents a transition in the Represents a transition in the action automataaction automata of an objectof an object
An event is owned by the object that exports itAn event is owned by the object that exports it
During simulation, generated events are termed as During simulation, generated events are termed as event instancesevent instances
Events can be annotated with any number of quantitiesEvents can be annotated with any number of quantities
Events can partially expose the state around them, constraints cEvents can partially expose the state around them, constraints can then an then 
reference or influence this statereference or influence this state

A A serviceservice corresponds to a set of corresponds to a set of sequences of eventssequences of events
All elements in the set have a common begin event and a common eAll elements in the set have a common begin event and a common end eventnd event
A service may be parameterized with argumentsA service may be parameterized with arguments

1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for Comparing Models of Computation, 
IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12, pg. 1217-1229, December 1998 
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Action AutomataAction Automata
Processes take Processes take actionsactions..

statements and some expressions, e.g.statements and some expressions, e.g.
y = y = z+port.fz+port.f();,  ();,  z+port.fz+port.f(),  (),  port.fport.f(),  i < 10, (),  i < 10, ……

only calls to media functions are only calls to media functions are observable actionsobservable actions

An An executionexecution of a given of a given netlistnetlist is a sequence of vectors of is a sequence of vectors of eventsevents..
event event : the beginning of an action, e.g. : the beginning of an action, e.g. B(B(port.fport.f()())), , 

the end of an action, e.g. the end of an action, e.g. E(E(port.fport.f()())), or null , or null NN
the the ii--thth component of a vector is an event of the component of a vector is an event of the ii--thth processprocess

An execution is An execution is legallegal ifif
it satisfies all coordination constraints, andit satisfies all coordination constraints, and
it is accepted by all action automata.it is accepted by all action automata.
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Execution semanticsExecution semantics

Action automaton:Action automaton:
one for each action of each processone for each action of each process

defines the set of sequences of events that can happen in executdefines the set of sequences of events that can happen in executing the ing the 
actionaction

a transition corresponds to an event:a transition corresponds to an event:
it may update shared memory variables:it may update shared memory variables:

process and media member variables
values of actions-expressions

it may have guards that depend on states of other action automatit may have guards that depend on states of other action automata and a and 
memory variablesmemory variables

each state has a selfeach state has a self--loop transition with the null N event.loop transition with the null N event.
all the automata have their alphabets in common:all the automata have their alphabets in common:

transitions must be taken together in different automata, if thetransitions must be taken together in different automata, if they correspond y correspond 
to the same event.to the same event.
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Action AutomataAction Automata

Return

B y=x+1 B x+1 E x+1 E y=x+1
y:=Vx+1

B x+1 E x+1 E y=x+1
y:=any

* = write y* * *

B x+1 E x+1
Vx+1 :=x+1

E x+1
Vx+1 :=any

write x

y=x+1

x+1

y=x+1;y=x+1;

0
0
0

B y=x+1 B x+1 E x+1NN N E y=x+1

5
0
0

5
5
0

1
0
0

1
1
0

Vx+1
y
x
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Semantics summarySemantics summary

Processes run sequential code concurrently, each at its own arbiProcesses run sequential code concurrently, each at its own arbitrary trary 
pace.pace.

ReadRead--Write and WriteWrite and Write--Write hazards may cause unpredictable resultsWrite hazards may cause unpredictable results
atomicity has to be explicitly specified.atomicity has to be explicitly specified.

Progress may block at synchronization pointsProgress may block at synchronization points
awaitsawaits
function calls and labels to which awaits or constraints refer.function calls and labels to which awaits or constraints refer.

The legal behavior of a The legal behavior of a netlistnetlist is given by a set of sequences of event is given by a set of sequences of event 
vectors.vectors.

multiple sequences reflect the nonmultiple sequences reflect the non--determinism of the semantics:determinism of the semantics:
concurrency, synchronization (awaits and constraints)concurrency, synchronization (awaits and constraints)
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ConstraintsConstraints
Two mechanisms are supported to specify constraints:

1. Propositions over temporal orders of states
execution is a sequence of states
specify constraints using linear temporal logic
good for scheduling constraints, e.g.

“if process P starts to execute a statement s1, no other process can start the statement 
until P reaches a statement s2.”

2. Propositions over instances of transitions between states
particular transitions in the current execution: called “actions”
annotate actions with quantity, such as time, power.
specify constraints over actions with respect to the quantities
good for real-time constraints, e.g.

“any successive actions of starting a statement s1 by process P must take place with at 
most 10ms interval.”
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Logic of Constraints (LOC)Logic of Constraints (LOC)

A transactionA transaction--level quantitative constraint languagelevel quantitative constraint language

Works on a sequence of events from a particular execution Works on a sequence of events from a particular execution 
tracetrace

The basic components of an LOC formula:The basic components of an LOC formula:
Boolean operators:    (not),   (or),   (and) and    (imply)Boolean operators:    (not),   (or),   (and) and    (imply)
Event names, e.g. Event names, e.g. ““inin””, , ““outout””, , ““StimuliStimuli”” or or ““DisplayDisplay””
Instances of events, e.g. Instances of events, e.g. ““Stimuli[0]Stimuli[0]””, , ““Display[10]Display[10]””
Annotations, e.g. Annotations, e.g. ““t(Display[5])t(Display[5])””
Index variable i, the only variable in a formula, e.g. Index variable i, the only variable in a formula, e.g. ““Display[iDisplay[i--5]5]””
and and ““Stimuli[i]Stimuli[i]””

→¬ ∧∨
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Throughput: “at least 3 Display events will be produced in any 
period of 30 time units”.

t (Display[i+3]) – t (Display[i]) <= 30

Other LOC constraints
Performance: rate, latency, jitter, burstiness
Functional: data consistency

Stimuli
FSM

Datapath

FIR

Display

( SystemC2.0 Distribution )

Stimuli : 0 at time 9
Display : 0  at time 13
Stimuli : 1 at time 19
Display : -6  at time 23
Stimuli : 2 at time 29
Display : -16  at time 33
Stimuli : 3 at time 39
Display : -13  at time 43 
Stimuli : 4 at time 49
Display : 6  at time 53

FIR Trace

LOC ConstraintsLOC Constraints
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MetaMeta--model: architecture componentsmodel: architecture components
An architecture component specifies services, i.e.

• what it can do:

• how much it costs:

medium Bus implements BusMasterService …{
port BusArbiterService Arb;
port MemService Mem; …
update void busRead(String dest, int size) {

if(dest== … ) Mem.memRead(size);
}

…

interface BusMasterService extends Port {
update void busRead(String dest, int size);
update void busWrite(String dest, int size);

}

interfaces, methods, coordination (awaits, constraints), netlists

quantities, annotated with events, related over a set of events
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MetaMeta--model: quantitiesmodel: quantities
• The domain D of the quantity, e.g. real for the global time,

• The operations and relations on D, e.g. subtraction, <, =,

• The function from an event instance to an element of D,

• Axioms on the quantity, e.g.

the global time is non-decreasing in a sequence of vectors of any 

feasible execution.
class class GTimeGTime extends Quantity {extends Quantity {

double t;double t;
double sub(double t2, double t1){...}double sub(double t2, double t1){...}
double add(double t1, double t2){double add(double t1, double t2){……}}
booleanboolean equal(double t1, double t2){ ... }equal(double t1, double t2){ ... }
booleanboolean less(double t1, double t2){ ... }less(double t1, double t2){ ... }
double A(event e, double A(event e, intint i){ ... }i){ ... }
constraints{constraints{

forall(eventforall(event e1, event e2, e1, event e2, intint i, i, intint j):j):
GXI.A(e1, i) == GXI.A(e2, j) GXI.A(e1, i) == GXI.A(e2, j) --> equal(A(e1, i), A(e2, j)) &&> equal(A(e1, i), A(e2, j)) &&
GXI.A(e1, i) < GXI.A(e2, j) GXI.A(e1, i) < GXI.A(e2, j) --> (less(A(e1, i), A(e2, j)) || equal(A(e1, i), A(e2. j)));> (less(A(e1, i), A(e2, j)) || equal(A(e1, i), A(e2. j)));

}}}}
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MetaMeta--model: architecture componentsmodel: architecture components
This modeling mechanism is generic, independent of services and This modeling mechanism is generic, independent of services and cost specified.cost specified.

Which levels of abstraction, what kind of quantities, what kind Which levels of abstraction, what kind of quantities, what kind of cost constraints should be of cost constraints should be 
used to capture architecture components?used to capture architecture components?

depends on applications:  depends on applications:  onon--going researchgoing research

Transaction:
Services:

- fuzzy instruction set for SW, execute() for HW 
- bounded FIFO (point-to-point)

Quantities:
- #reads, #writes, token size, context switches

Physical:
Services: full characterization
Quantities: time

CPU ASIC2ASIC1

Sw1 HwSw2

Sw I/F Channel I/F

Wrappers

Hw

Bus I/F

C-Ctl Channel Ctl

B-I/FCPU-IOs

e.g. PIBus 32b

e.g. OtherBus 64b...

C-Ctl

RTOS

Virtual BUS:
Services:

- data decomposition/composition
- address (internal v.s. external)

Quantities: same as above, different weights
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Quantity resolutionQuantity resolution
The 2The 2--step approach  to resolve quantities at each state of a step approach  to resolve quantities at each state of a netlistnetlist being executed:being executed:

1. 1. quantity requestsquantity requests

for each process for each process PiPi, for each event , for each event ee that that PiPi cancan take, find all the quantity constraints on take, find all the quantity constraints on ee..

In the metaIn the meta--model, this is done by explicitly requesting quantity annotationmodel, this is done by explicitly requesting quantity annotations at the relevant events, i.e. s at the relevant events, i.e. 
Quantity.request(event, requested quantities).Quantity.request(event, requested quantities).

2. 2. quantity resolutionquantity resolution

find a vector made of the candidate events and a set of quanfind a vector made of the candidate events and a set of quantities annotated with each of the events, such tities annotated with each of the events, such 
that the annotated quantities satisfy:that the annotated quantities satisfy:

all the quantity requests, andall the quantity requests, and
all the axioms of the Quantity types.all the axioms of the Quantity types.

In the metaIn the meta--model, this is done by letting each Quantity type implement a remodel, this is done by letting each Quantity type implement a resolve() method, and the solve() method, and the 
methods of relevant Quantity types are iteratively called.methods of relevant Quantity types are iteratively called.

theory of fixedtheory of fixed--point computationpoint computation
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Quantity resolutionQuantity resolution

The 2The 2--step approach is same as how schedulers work, e.g. OS schedulersstep approach is same as how schedulers work, e.g. OS schedulers, BUS schedulers, , BUS schedulers, 
BUS bridge controllers.BUS bridge controllers.

Semantically, a scheduler can be considered as one that resolvesSemantically, a scheduler can be considered as one that resolves a quantity called a quantity called execution execution 
index.index.

Two ways to model schedulers: Two ways to model schedulers: 

1. As processes: 1. As processes: 
explicitly model the scheduling protocols using the metaexplicitly model the scheduling protocols using the meta--model building blocksmodel building blocks
a good reflection of actual implementationsa good reflection of actual implementations

2. As quantities:2. As quantities:
use the builtuse the built--in request/resolve approach for modeling the scheduling protocolin request/resolve approach for modeling the scheduling protocolss
more focus on resolution (scheduling) algorithms, than protocolsmore focus on resolution (scheduling) algorithms, than protocols: suitable for higher level abstraction : suitable for higher level abstraction 
modelsmodels
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Programmable Arch. ModelingProgrammable Arch. Modeling

Computation ServicesComputation Services

Communication ServicesCommunication Services

Other ServicesOther Services

PPC405 MicroBlaze SynthSlaveSynthMaster

Processor
Local
Bus

(PLB)

On-Chip
Peripheral

Bus
(OPB)

OPB/PLB Bridge
Mapping 
Process

Computation Services
Read (addr, offset, cnt, size), Write(addr, offset, cnt, size), 
Execute (operation, complexity)

BRAM

Task Before Mapping
Read (addr, offset, cnt, size)
Task After Mapping
Read (0x34, 8, 10, 4)

Communication Services
addrTransfer(target, master)
addrReq(base, offset, transType, device)
addrAck(device)

dataTransfer(device, readSeq, writeSeq)
dataAck(device)
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Programmable Arch. ModelingProgrammable Arch. Modeling

Coordination ServicesCoordination Services
PPC Sched OPB SchedPLB SchedMicroBlaze

Sched

BRAM Sched General Sched

Request (event e)

-Adds event to pending 
queue of requested events

Resolve()

-Uses algorithm to select an 
event from the pending queue

PostCond()

-Augment event with information
(annotation). This is typically the 
interaction with the quantity manager

GTime



143

PA
R

A
D

ES

ProgProg. Platform Characterization. Platform Characterization

From Char Flow Shown

From Metro Model Design

From ISS for PPC
1. Douglas Densmore, Adam Donlin, A.Sangiovanni-Vincentelli, FPGA Architecture Characterization in 

System Level Design, Submitted to CODES 2005.
2. Adam Donlin and Douglas Densmore, Method and Apparatus for Precharacterizing Systems for Use 

in System Level Design of Integrated Circuits, Patent Pending.

Create database ONCE prior to 
simulation and populate with 
independent (modular) 
information.

1. Data detailing 
performance based on 
physical implementation.

2. Data detailing the 
composition of 
communication transactions.

3. Data detailing the 
processing elements 
computation.

Work with Xilinx Research Labs
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ModelingModeling & & CharChar. Review. Review

DedHW Sched

PLB Sched

BRAM Sched

Global
Time

PPC Sched

Task1 Task2

PPC

Task3 Task4

DEDICATED HW

BRAM

PLB

Scheduled Netlist Characterizer

Scheduling Netlist

Media (scheduled) Process

Quantity Manager Quantity
Enabled Event

Disabled Event
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Mapping in MetropolisMapping in Metropolis
Objectives:Objectives:

Map a functional network with an architectural network without cMap a functional network with an architectural network without changing hanging 
either of the twoeither of the two

Support design reuseSupport design reuse
Specify the mapping between the two in a formal waySpecify the mapping between the two in a formal way

Support analysis techniquesSupport analysis techniques
Make future automation easierMake future automation easier

Mechanism:Mechanism:
Use declarative Use declarative 
synchronization constraints synchronization constraints 
between eventsbetween events
One of the unique aspects One of the unique aspects 
of Metropolisof Metropolis

Functional 
Network

Arch. 
Network

synch(…), synch(…), …

Mapping Network
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Synchronization constraintsSynchronization constraints
Synchronization constraint between two events e1 and e2:Synchronization constraint between two events e1 and e2:

ltlltl synch(e1, e2)synch(e1, e2)
e1 and e2 occur e1 and e2 occur simultaneously or not at allsimultaneously or not at all during simulationduring simulation

Optional variable equality portion:Optional variable equality portion:
ltlltl synch(e1, e2: var1@e1 == var2@e2)synch(e1, e2: var1@e1 == var2@e2)
The value of The value of var1var1 in the scope of e1 is equal to the value of in the scope of e1 is equal to the value of var2var2 when e1 and when e1 and 
e2 occure2 occur
Can be useful for Can be useful for ““passingpassing”” values between functional and architectural values between functional and architectural 
models  models  
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Metropolis ExampleMetropolis Example

e1 = beg(P1, M1.read);
e2 = beg(T1, T1.read);
ltl synch(e1, e2: items@e1 == i@e2);
e3 = end(P1, M1.read);
e4 = end(T1, T1.read);
ltl synch(e3, e4);

P1

M1:
void read (int items)

{ … }

T1:
await {

(true;;) read (int i);
(true;;) write (int i);

}

CPU

Global
Time
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MetaMeta--model: mapping model: mapping netlistnetlist

Bus
ArbiterBus

Mem

Cpu OsSched

MyArchNetlist

mP1 mP2

MyFncNetlist

MP1 P2

Env1 Env2

B(P1, M.write) <=> B(mP1, mP1.writeCpu);   E(P1, M.write) <=> E(mP1, mP1.writeCpu);
B(P1, P1.f) <=> B(mP1, mP1.mapf);   E(P1, P1.f) <=> E(mP1, mP1.mapf);
B(P2, M.read) <=> B(P2, mP2.readCpu);   E(P2, M.read) <=> E(mP2, mP2.readCpu);
B(P2, P2.f) <=> B(mP2, mP2.mapf);   E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist
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MetaMeta--model: platformsmodel: platforms

interface MyService extends Port {  int myService(int d);  }

medium AbsM implements MyService{
int myService(int d) { … }

}

B(thisthread, AbsM.myService) <=> B(P1, M.read);
E(thisthread, AbsM.myService) <=> E(P2, M.write);

refine(AbsM, MyMapNetlist);

MyArchNetlistMyFncNetlist MP1 P2

B(P1, M.write) <=> B(mP1, mP1.writeCpu); 
B(P1, P1.f) <=> B(mP1, mP1.mapf);   E(P1, P1.f) <=> E(mP1, )
B(P2, M.read) <=> B(P2, mP2.readCpu); 
E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist1

MyArchNetlistMyFncNetlist MP1 P2

B(P1, M.write) <=> B(mP1, mP1.writeCpu); 
B(P1, P1.f) <=> B(mP1, mP1.mapf);   E(P1, P1.f) <=> E(mP1, )
B(P2, M.read) <=> B(P2, mP2.readCpu); 
E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist1

B(…) <=> B(…);
E(…) <=> E(…);

refine(AbsM, MyMapNetlist1)

MyArchNetlistMyFncNetlis
t

MP1 P2

B(P1, M.write) <=> B(mP1, mP1.writeCpu); 
B(P1, P1.f) <=> B(mP1, mP1.mapf);   E(P1, P1.f) <=> E(mP1, )
B(P2, M.read) <=> B(P2, mP2.readCpu); 
E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist2

M

B(…) <=> B(…);
E(…) <=> E(…);

refine(AbsM, MyMapNetlist2)

A set of mapping netlists, together with constraints on event relations to a given 
interface implementation, constitutes a platform of the interface.
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MetaMeta--model: recursive paradigm of platformsmodel: recursive paradigm of platforms

S

N N'

B(Q2, S.cdx) <=> B(Q2, mQ2.excCpu);   E(Q2, M.cdx) <=> E(mQ2, mQ2.excCpu);
B(Q2, Q2.f) <=> B(mQ2, mQ2.mapf);   E(Q2, P2.f) <=> E(mQ2, mQ2.mapf);

MyArchNetlistMyFncNetlist MP1 P2

B(P1, M.write) <=> B(mP1, mP1.writeCpu); 
B(P1, P1.f) <=> B(mP1, mP1.mapf);   E(P1, P1.f) <=> E(mP1, )
B(P2, M.read) <=> B(P2, mP2.readCpu); 
E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyMapNetlist1

MyArchNetl
ist

MyFncNe
tlist

MP1 P2
B(P2, M.read) <=> B(P2, mP2.readCpu); 
E(P2, P2.f) <=> E(mP2, mP2.mapf);

M
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ExerciseExercise

Evaluate the methodology with formal techniques applied.

• Function
– Input:  a transport stream for multi-channel 
video images
– Output: a PiP video stream

- the inner window size and frame color 
dynamically changeable

DEMUX PARSER

JUGGLER

MPEG RESIZE

MPEG

PIP

USRCONTROL

60 processes with 
200 channels
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MultiMulti--Media System: Abstraction LevelsMedia System: Abstraction Levels

∞

∞

∞

∞

DMA

DSP

RAMs RAMd

$

CPU$ $

HW

HW
MemFMemS

$

DSP

CPU

HW

HW

• Network of processes with sequential program for each

• Unbounded FIFOs with multi-rate read and write

•Communication refined to bounded FIFOs and shared 
memories with finer primitives (called TTL API):

allocate/release space, move data, probe space/data

• Mapped to resources with coarse service APIs
• Services annotated with performance models
• Interfaces to match the TTL API

• Cycle-accurate services and performance models
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Metropolis design environmentMetropolis design environment

Meta model 
compiler

Verification 
tool

Synthesis 
tool

Front end

Meta model language

Simulator 
tool

...Back end1

Abstract syntax trees

Back end2 Back endNBack end3

Metropolis
interactive

Shell

•Load designs

•Browse designs

•Relate designs
refine, map etc

•Invoke tools

•Analyze results

Verification 
tool

Functional Spec

Communication Spec
Constraints

Architecture
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Backend Point ToolsBackend Point Tools

Synthesis/refinement:Synthesis/refinement:
QuasiQuasi--static schedulingstatic scheduling
Scheduler synthesis from constraint formulasScheduler synthesis from constraint formulas
Interface synthesisInterface synthesis
Refinement (mapping) synthesisRefinement (mapping) synthesis
ArchitectureArchitecture--specific synthesis from concurrent processes for:specific synthesis from concurrent processes for:

Hardware (with known architecture)Hardware (with known architecture)
Dynamically reconfigurable logicDynamically reconfigurable logic

Verification/analysis:Verification/analysis:
Static timing analysis for reactive processesStatic timing analysis for reactive processes
Invariant analysis of sequential programsInvariant analysis of sequential programs
Refinement verificationRefinement verification
Formal verification for softwareFormal verification for software
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ConclusionsConclusions
The tradeThe trade--off between hardware and software starts long before the RTL desoff between hardware and software starts long before the RTL design ign 
of an of an SoCSoC
Starting from the system specification:Starting from the system specification:

Functionality, i.e., WHAT the system is required to doFunctionality, i.e., WHAT the system is required to do
Constraints, i.e., the set of requirements that restrict the desConstraints, i.e., the set of requirements that restrict the design space by taking into ign space by taking into 
consideration non functional aspects of the design such as cost,consideration non functional aspects of the design such as cost, power power 
consumption, performance, fault tolerance and physical dimensionconsumption, performance, fault tolerance and physical dimensions.s.
Architecture, i.e., the set of available components from which tArchitecture, i.e., the set of available components from which the designer can he designer can 
decide HOW she can implement the functionality satisfying the codecide HOW she can implement the functionality satisfying the constraintsnstraints

The PBD methodology progresses towards the implementation of theThe PBD methodology progresses towards the implementation of the design design 
““mappingmapping”” the functionality of the design to the available components.the functionality of the design to the available components.

The library of available components (they can be already fully dThe library of available components (they can be already fully designed or they can esigned or they can 
be considered virtual components) is called a platform. be considered virtual components) is called a platform. 
Mapping implies the selection of the components, of their intercMapping implies the selection of the components, of their interconnection scheme onnection scheme 
and of the allocation of the functionality to eachand of the allocation of the functionality to each
Several models and methods are applied to achieve the final implSeveral models and methods are applied to achieve the final implementationementation
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Thank  you!!Thank  you!!


