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ESL Design il

¢ Designing embedded systems requires addressing concurrently
different engineering domains, e.g., mechanics, sensors, actuators,
analog/digital electronic hardware, and software.

< In this tutorial, we focus on Electronic System Level Design (ESLD),
traditionally considered as the design step that pertains to the
electronic part (hardware and software) of an embedded system.

¢ ESL design starts from system specifications and ends with a
system implementation that requires the definition and/or selection
of hardware, software and communication components
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Embedded Systems

« Computational
—but not first-and-foremost a computer

 Integral with physical processes
—Sensors, actuators

 Reactive
—at the speed of the environment

 Heterogeneous

—hardware/software, mixed
architectures

 Networked
—shared, adaptive

eellular phones

Source: Edward A. Lee



FUNCTION OF CONTROLS
Typical commercial HVAC application
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$4 billion development effort
40-50% system integration & validation cost




Electronics and the Car

More than 30% of the cost of a car i1s now In Electronics
*00% of all innovations will be based on electronic systems
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Complexity, Quality, & Time To Market today

Memory
Lines Of Code
Productivity

Residual Defect
Rate @ End Of Dev

Changing Rate
Dev. Effort
Validation Time
Time To Market

256 Kb

50.000
6 Lines/Day

3000 Ppm

3 Years
40 Man-yr
5 Months
24 Months

i
PWT UNIT BODY INSTRUMENT| TELEMATIC
GATEWAY CLUSTER UNIT

128 Kb

30.000
10 Lines/Day

2500 ppm

2 Years
12 Man-yr
1 Month
18 Months

184 Kb

45.000
6 Lines/Day

2000ppm

1 Year
30 Man-yr
2 Months
12 Months

8 Mb

300.000
10 Lines/Day*

1000 ppm

<1 Year
200 Man-yr

2 Months
< 12 Months

*C* CODE

FABIO ROMEO, Magneti-Marelli
DAC, Las Vegas, June 20th, 2001
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Distributed Car Systems Architectures

(n —
8 8— Mobile Communications Navigation ©
. %
Information g &5 @2
Systems o = | £
@ L MOST DAB Access to 2
Firewire : WWW
Fire
Wall
& - Theft warning
Bod 52 Alr
Y. 35 Conditioning .
Electronics | g &
>
L CAN _ o
‘% Lin 2060 WMBEIE Light Module =
n Gate =
T Way T
[0
- ABS o
© |
S5 | |
G 3 Shift by Engine
> c Wire Management
System o7
Electronics | © o
o) —
= % o =
2S | £E0 0 o
S| 355 x 2
00 | ©o T.=
w c ==
)
L T

11



< mas W W N

o

Design R

¢ From an idea...
¢ ... build something that performs a certain function

¢ Never done directly:

+ Some aspects are not considered at the beginning of the development:

¢ Node and Network
¢ Processes and Processors
¢ SoC Software and Hardware

+ the designer wants to explore different possible implementations in order to
maximize (or minimize) a cost function

¢ The solution is a trade-off among:

+ Mechanical partition
+ Hardware partition: analog and digital
+ Software partition: low, middle and application level

12



(Automotive) V-Models: Car level it

Development
of Distributed
System
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¢ What: and Validation
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(Automotive) V-Models: Subsystem Level E

T

Development of
Sub-System

Sub-System Sign-Off!

Development of |
ECU/ Sens./Actrs./Mech.

Mechanical Part (s)

Part(s) Integration,
Calibration, and Test

Development

€ What: Functionality
€ How: Architecture

¢ Trading (ES):
+ Algorithm complexity (hw/sw)
+ Sensors/Actuators

€ Abstractions ?

& Cost evaluation ?

ECU |
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(Automotive) V-Models: ECU level (Hw/Sw) Fi

DATE 2005
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Automotive Open System
Architecture (AUTOSAR):

Standardized, openly
disclosed interfaces

HW independent SW layer
Transferability of functions
Redundancy activation

AUTOSAR RTE:

by specifying interfaces and
their communication
mechanisms, the
applications are decoupled
from the underlying HW and
Basic SW, enabling the
realization of Standard
Library Functions.

€ What: Functionality
& How: Architecture

¢ Trade (ES):
+ Hardware
+ Software

& Abstractions ?

& Cost evaluation ?

ECU SW

Development

ECU HW
Development

ECU SW

Implementation

| —

ECU Sign-Off!

ECU HW/SW
Integration and Test

ECU SW Integration
and Test
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(Automotive) V-Models JiiHi
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Sign-Off!
System \ Sub-System(s)
Development of o : \\\ Integratlon, TESt,
Sub-System 2 W Ty and Validation
\

Sub-System Sign-Off!

| ECU/ Sens./Actrs./Mech.
Part(s) Integration,

Development of
Mechanical Part (s)

ECU . Calibration, and Test
Development | _
ECU Sign-Off!
ECUSW =~ ECU HW/SW
Development Integration and Test
ECUHW | /| ECUHW
Development Sign-Off!
ECUSW |~ ECU SW Integration
Implementation ~~ and Test

16



w
......

Common Situation in Industry R

¢ Different hardware devices and architectures

@ Increased complexity

@ Non-standard tools and design processes

4 Redundant development efforts

¢ Increased R&D and sustaining costs

@ Lack of standardization results in greater quality risks

< Customer confusion

17



How to...

€ How to propagate functionality from top to bottom

How to evaluate the trade offs

.

4 How to cope with:
+ Design Time
+ Design Reuse
+ Design Heterogeneity
€ How to abstract with models that can be used to reason
about the properties

18



w
IIIIII

Heterogeneity in Electronic Design giis

@ Heterogeneity In:

+ Specification:
¢ formal/semi-formal/natural language
¢ MoC
¢ Language

+ Analysis

+ Synthesis:
¢ Manual/automatic/semi-automatic

+ Verification
+ Methodology
+ Design Process

19
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4
¢ Platform based design methodology

\ 4
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Separation of concerns gt

4 Computation versus Communication
@ Function versus Architecture

¢ Function versus Time

21



Separation of Concerns (1990 Vintage!)
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Principles of Platform methodology: P
Meet-in-the-Middle i

¢ Top-Down:

+ Define a set of abstraction layers

+ From specifications at a given level, select a solution (controls, components) in
terms of components (Platforms) of the following layer and propagate
constraints

¢ Bottom-Up:

+ Platform components (e.g., micro-controller, RTOS, communication primitives)
at a given level are abstracted to a higher level by their functionality and a set of
parameters that help guiding the solution selection process. The selection
process Is equivalent to a covering problem if a common semantic domain is
used.

23



Platform Models for Model Based Development
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Meet-Iin-the-middle
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Aspects of the Hw/Sw Design Problem

€ Specification of the system (top-down)

€ Architecture export (bottom-up)
+ Abstraction of processor, of communication infrastructure, interface between hardware and software, etc.

4 Partitioning

+ Partitioning objectives
¢ Minimize network load, latency, jitter,
¢ Maximize speedup, extensibility, flexibility
¢ Minimize size, cost, etc.

+ Partitioning strategies
¢ partitioning by hand
¢ automated partitioning using various techniques, etc.

€ Scheduling
+ Computation
+ Communication
¢ Different levels:
+ Transaction/Packet scheduling in communication
+ Process scheduling in operating systems
+ Instruction scheduling in compilers
+ Operation scheduling in hardware

€ Modeling the partitioned system during the design process

26



Platform-based Design

ASICs SRAM

Sonics Silicon Backplane

Sl [ ver | o
Interface ntertace Interface
S stem (Software + Hardware)

Platform
<_>

Tensilica
Xtensa
RISC CPU

pace

Platform
Mapping

Platform
Design-Space
Export

Baseband
Processor

Space

Xilinx | ADCp
FPGA

Frontend
i 1 DAC

Intercom Platform (BWRC, 2001)
¢ Platform: library of resources defining an abstraction layer

+ hide unnecessary details
« expose only relevant parameters for the next step
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Formal Mechanism

Function

Closure under
constrained composition
(term algebra)

Function Space
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Mapping

Platform Instance

Function Space Semantic Platform

Function Mapped
Instance

Admissible Refinements
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Platform stack & design refinements

Platform 1 @ gpplication instance

Platform i platform i instance

: plat.2

Platform 2 = instance Platform
Mapping

— . eeees Refinement

Platform
olat. 3 Design-Space

Platform 3 instance Export

——

*

Platform 4 « implementation instance

Platform i+1 platform i+1 instance
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Automotive Supply Chain:
Tier 1 Subsystem Providers




SIGN

Powertrain System Specifications

v
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¢ Electronic System Level Design

+ Functions: MoC, Languages

¢

\ 4
\ 4

w
llllll

33



w
IIIIII

Design Formalization A

@ Model of a design with precise unambiguous semantics:

¢ Implicit or explicit relations: inputs, outputs and (possibly)
state variables

@ Properties
€ “Cost” functions

€ Constraints

Formalization of Design + Environment =

closed system of equations and inequalities over some algebra.

34



What: Functional Design

¢ Arigorous design of functions requires a mathematical framework
+ The functional description must be an invariant of the design

+ The mathematical model should be expressive enough to capture easily the functions

¢ The different nature of functions might be better captured by heterogeneous model of
computations (e.g. finite state machine, data flows)

¢ The functional design requires the abstraction of

+ Time (i.e. un-timed model)
¢ Time appears only in constraints that involve interactions with the environment

+ Data type (i.e. infinite precision)
4 Any implementation MUST be a refinement of this abstraction (i.e. functionality is
“guaranteed”):
+ E.g. Un-timed -> logic time -> time
+ E.g. Infinite precision -> float -> fixed point

35



Models of Computation FiiH

| ]
L

Definition: A mathematical description that

€ FSMs .
has a syntax and rules for computation of
# Discrete Event Systems the behavior described by the syntax
(semantics). Used to specify the semantics
¢ CFSMs of computation and concurrency.

4 Data Flow Models

¢ Petri Nets

¢ The Tagged Signal Model
4 Synchronous Languages and De-synchronization

4 Heterogeneous Composition: Hybrid Systems and Languages
¢ Interface Synthesis and Verification

¢ Trace Algebra, Trace Structure Algebra and Agent Algebra

36



Usefulness of a Model of Computation

@ EXpressiveness
¢ Generality
€ Simplicity
¢ Compilability/ Synthesizability
& Verifiability
The Conclusion

One way to get all of these is to mix diverse, simple models of computation,
while keeping compilation, synthesis, and verification separate for each MoC. To
do that, we need to understand these MoCs relative to one another, and
understand their interaction when combined in a single system design.

37



Reactive Real-time Systems

# Reactive Real-Time Systems
+ “React” to external environment
« Maintain permanent interaction
+ ldeally never terminate

« timing constraints (real-time)

€ As opposed to
« transformational systems

+ Interactive systems

w
......
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Models Of Computation for reactive systems i

R

¢ \We need to consider essential aspects of reactive systems:

+ time/synchronization
+ concurrency

+ heterogeneity

# Classify models based on:

+ how specify behavior

<*

how specify communication

<*

Implementability

<*

composability

L 2

availability of tools for validation and synthesis

39



Models Of Computation
for reactive systems

+ Main MOCs:

¢

¢

¢

¢

¢

¢

¢

Communicating Finite State Machines
Dataflow Process Networks

Petri Nets

Discrete Event

(Abstract) Codesign Finite State Machines

Synchronous Reactive
Task Programming Model

+ Main languages:

¢

¢

¢

¢

StateCharts
Esterel

Dataflow networks
Simulink

UML
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Models Of Computation
for reactive systems

¢ Main MOCs:

+ Communicating Finite State Machines

¢

¢

¢

¢

¢

¢

Dataflow Process Networks
Petri Nets

Discrete Event

Codesign Finite State Machines
Synchronous Reactive

Task Programming Model

+ Main languages:

*

¢

¢

StateCharts
Esterel

Dataflow networks
Simulink

UML

<
<
a

-
-
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; %_;ti%ﬁ -
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The Synchronous Programming Model ity

@ Synchronous programming model” is dealing with
concurrency as follows:

« non overlapping computation and communication phases taking
zero-time and triggered by a global tick

@ Widely used and supported by several tools: Simulink,
SCADE, ESTEREL ...

@ Strong constraints on the final implementation to preserve
the separation between computation and communication
phases

"A. Benveniste and G. Berry: The synchronous approach to reactive and real-time systems, Proc IEEE, 1991

42



The Synchronous Reactive (SR) MoC ®) Gt

¢ Discrete model of time (global set of totally ordered “time ticks™)
¢ Blocks execute atomically at every time tick

¢ Blocks are computed in causal order (writer before reader)

¢ State variables (MEMs) are used to break combinatorial paths

4 Combinatorial loops have fixed-point semantics

MEM
Y, U= W4
Uk %[>— Yk: G*Uk - G*Wk-l
Vi 5 , W, Wi= VitY = Vi tG*W, 4

) S, A. Edwards and E. A. Lee, “The semantics and execution of a synchronous block-diagram language”,

Science of Computer Programming, 48(1):21-42, jul 2003. 42



w
IIIIII

The Task Programming Model Jiifins

@ The Task Programming Model (TPM)

+ Atask is a logically grouped sequence of operations
« Each task is released for execution on an event/time reference
+ Task execution can be deferred as long as it meets its deadline

« Task scheduling is priority-based possibly with preemption
¢ Priorities can be static or dynamic

« Communication between tasks occurs:
¢ Locally: via shared variables
¢ Globally: via communication network

+ Qutput values depend on scheduling

® Represented by Task Graphs

44
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\ 4
\ 4

¢ Electronic System Level Design

+ Functions: MoC, Languages

+ Architectures: Network, Node, SoC

\ 4
\ 4
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(Automotive) V-Models: Car level

Distributed
System
Sign-Off!
Sub-System(s)
Integration, Test,
and Validation

Development |-
of Distributed
System

38 —
2 2 Mobile Communications Navigation [
F=i [e]
. g,
Information g b I &
Systems 5 = n T .:é' =
) e MOST —D AB ccess to @
= Firewire = - WWW
ire
Wall
2 - Theft warning
Bod >0 Air
oay. 38 Conditioning
Electronics | g &
S - |
. 2 CAN Door Module ; @
§ Lin o Light Module E
3 ey i
£ g
]
@
e I I
S 3 Engine
2k Management
System o7 Gate
Electronics | © o Way
o -
£§| % —
> Cc =0 D o
25|28 g
= >8 £
0a &2 Steer by el
“ 5 Wire G
= T
exiRal

46



0 E e
w

Distributed Embedded Systems: Architectural Design  fiiiis

WA

The Design Components at work

TS |

Functional
unctions Networks Solution
Patterns

1 Evaluation

Mapping and Iteration

Topologies

Solution n+1
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Co-Design Problem R

€ From:
+ amodel of the functionality (e.g. TPM or SPM)
+ amodel of the platform (abstraction of topology, network protocol, CPU, Hw/Sw etc)

& Allocate:

¢ The tasks to the nodes
¢ The communication signals to the network segments

€ Schedule:

¢ The task sets in each node
¢ The packets (mapping signals) in each network segment

4 Such that:
¢ The system is schedulable and the cost is minimized

4 Design solutions:
+ Architectural constrains
+ Analytical approaches
+ Simulation models

48
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The Time Triggered Approach L

WA W

¢ Time Triggered Architecture: Global notion of time

« Communication and computation are synchronized and MUST HAPPEN
AND COMPLETE in a given cyclic time-division schema

€ Time-Triggered Architecture (TTA) C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz

. . . T B T S S A 1
4 Find optimal allocation and L 2 o
scheduling of a Time Triggered TPM L5 % | |l

Round 1 Round 2 Round 3 Round 4 Round 5

o

a) Schedule length of 24 ms

4 AnImproved Scheduling Technique for Time- ) : Lo
Triggered Embedded Systems, Paul Pop, Petru Eles, ' '

- =
w
o o
w
-
-

[ ] P3 P3
and Zebo Pen
. g . . . '-1 m ms
& Extensible and Scalable Time Triggered Scheduling — R R —
, EEWei Zheng, Jike Chong, Claudio Pinello, Sri b) Sehodle Length of 22 ms e @
Kanajan, Alberto L. Sangiovanni-Vincentelli Il . ; : ; -El
R w2 E
S S My mz|my|
4 Models of bus/network speed and —— Im-md - R.H I
. 5 1‘ap 1 cxamp (=4
t0p0|0gy (HW) and WCET (HW/SW) are ¢) Schedule length of 20 ms
needed
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The Holistic Scheduling and Analysis gt

I:TT IHET Tasks:
B Node: 171 T13- To g
CINodey: Ty 5. Ty 4. T2 2 123

4 Based on a Time and Event Triggered
Task Graph Model allocated to a set

053 Messages:
ST. 115 T4
DYN: T1.6-T25

of nodes

+ Worst Case Execution Time of Tasks and Communication time of each
message are known

# Construct a correct static schedule for the TT tasks and ST messages (a
schedule which meets all time constraints related to these activities) and
conduct a schedulability analysis in order to check that all ET tasks meet

. .
th el r dead | I n eS ' Bus access cycle or Round (Ty,,,)

Static phase.  Dwvnamic phase  Static phase Drnamic phase

- — —_ — —

. . N o o | O | il

= = = ] T == | =)= o | &l e

= = =] g || oS == = = LA | L

-] & B =1 |ee | =

=11 3 = |28

Holistic Scheduling and Analysis of Mixed Time/Event-Triggered Distributed Embedded Systems (2002) Traian Pop, Petru Eles,
Zebo Peng
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Network Calculus Modelings

& Network calculus:

+ “Network calculus”, J-Y Le Boudec and P. Thiran, Lecture Notes in Computer Sciences vol.

2050, Springer Verlag

DATé ' ARTIST2 Embedded Systems Design
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Event Models Hiti

DAT-er * ARTIST2 Embedded Systems Design

Event models

% event stream model w. parameters

» individual events replaced by stream variables with parameters
period, jitter, min. distance, ...

t tJ te2 te3
tL‘_J_' tp l XXX

el

% Network Calculus
» individual events replaced by sum of events in sliding time window

At
A At+J T: period
q(nt) ??+(A!)={—I; ] At+J J: jitter
5 A _
) \ \ "
upper bound 3 o \ — - K ————_ lower bound
I"/ el I\ At—J

> Af

bz i — "I-'
. — _ At—J
Ji,— & ,—I‘ U(Af)—t T J r
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Composition and Analysis
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% independently scheduled subsystems are coupled by data flow

— subsystems coupled by stream of data
= interpreted as activating events
= coupling corresponds to event propagation

Provide:
 Schedulability check
e Qutput stream models

Other strategy to search solutions
(allocation and scheduling)

Px transformation based on:
comp 1 comp 2
-@ -1l ] -® .+ OQutput event dependency
« WCET
(p,) -l (P) :
NE% ¢/ « BCET
scheduling scheduling
comp 1 event stream comp 2

Compositional analysis principle

environment model

4

h

local analysis

find fix point where derive output event model

input and output
models converge

Xy

until convergence or non-schedulability [~

!

map to input event model

% flexible and modular !
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Executable Model: Computation and Communication ‘i
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Communication Refinement: Platform Model
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(Automotive) V-Models: Subsystem Level Hiiti

T

Development of
Sub-System

Sub-System Sign-Off!

Development of |
ECU/ Sens./Actrs./Mech.

Mechanical Part (s)

Part(s) Integration,
ECU Calibration, and Test

Development
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Control system design FiiH

4 Specifications given at a Motion Generation Function: F6

high level of abstraction:
+ known input/output relation
(or properties) and constraints
on performance indexes

4 Control algorithms design

Repartition of F& in sub-functions inside the Engine Control Unit

€ Mapping to different architectures using performance estimation techniques and
automatic code generation from models

€ Mechanical/Electronic architecture selected among a set of candidates
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HW/SW implementation architecture it

- a set of possible hw/sw implementations is given
by
- M different hw/sw implementation architectures
- for each hw/sw implementation architecture m €{1,...,M},

- a set of hw/sw implementation parameters z
- e.g. CPU clock, task priorities, hardware frequency, etc.

» an admissible set X, of values for z

Application Customer ;
Libraries Libraries i CCP

| ! !
'3 §§- Application | | KWP 2000
i 83 =1k Specific W Transport
Bla |z Software

B[R]

Application Programming Interface, OSEK

I/O drivers & handlers
> 20 configurable modules

uControllers Library
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The classical and the ideal design approach giti

¢ Classical approach (decoupled design)
« controller structure and parameters
¢ are selected in order to satisfy system specifications

+« Implementation architecture and parameters
¢ are selected in order to minimize implementation cost

« If system specifications are not met, the design cycle is repeated

¢ |deal approach

+ both controller and architecture options are selected at the
same time to
¢ minimize implementation cost

¢ satisfy system specifications

+ too complex!!
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Algorithm Explorations and Control Synthesis

Powertrain System Specifications

Powertrai n Syste Evnsens] Capture System
Behavior Decomposition Architecture
Functional Partitioning and Capture
Network Optimization ElectricdMechanical

Architecture

Refinement

y
Operational Capture Electronic
Architecture (ES Architecture

HW/SW \/er”y

partitioning Performance
N W

HW and SW .
Components Verify Component]
Implementation

Design Mechanical
Components

PARADES

Hention Spore

o
A

Y

n_l_m@jm b ~ 1 Functional struc. & par. (J)
| ' [ Functional Decomposition

Only SW componen

Functional struc. & par. (i)
(i )

Control struc. & par. (. ¢)
= Control Strategies

control struc, & por. o)

B

{rospl

Limplem, strue, & por. (s
implementation abstraction layer

‘ %ﬁg%ﬁ%‘?@%ﬁ%’%‘%m& Spoce
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Implementation abstraction layer L

WA W

€ Wwe introduce an implementation abstraction layer

+ which exposes ONLY the implementation non-idealities that affect the

performance of the controlled plant, e.g.
control loop delay

quantization error

sample and hold error

computation imprecision

* o 2 4

¢ at the implementation abstraction layer, platform instances
are described by

¢ different implementation architectures

+ for each implementation architecture

¢ aset of implementation parameters
+ e.g. latency, quantization interval, computation errors, etc.

¢ an admissible set X of values for
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Effects of controller implementation in the
controlled plant performance

Q Controller

v [
Bl O

4 modeling of implementation non-idealities:

¢ Au, Ar, Aw:time-domain perturbations
¢ control loop delays, sample & hold , etc.

« n,,n.n,:value-domain perturbations

¢ quantization error, computation imprecision, etc.
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Algorithm Development

Control Algorithm Design

e Control Algorithm Specification

Model and Simulation files

RPM
3050

Simulink model

Calibrations data

Time history data

einputEveni—M-eve
nts

2950
0

3000 l-'% ||[||::>

sinputEvent_2

sInData

sInData_1
-InDataE?a %

10 20 30

Time History

40

“InData. | "DA&

Simulink Model

*MerR5uD:

Calibration

data

-

*MergeOutData

i
%% .Outbata

N

@@

Simulation Results

COR_AVCPMAX

o 10 20 30 40

v rAY) Juv
PARAB_CPMAX_P
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(Automotive) V-Models: ECU level (Hw/Sw) L

ECU Sign-Off!

ECUSW ~— ECU HW/SW
Development Integration and Test
ECUHW | /| ECUHW
Development Sign-Off!
ECUSW |~ ECU SW Integration
Implementation and Test
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(Automotive) V-Models: ECU level (Hw/Sw)

ff!

ECU B Calibration, and
Development .
ECU Sign-Off!
ECU SW B [ EcuHWISW
Development Integration and Test
ECU HW f~ ECUHW
Development Sign-Off!

ECU SW v ECU SW Integration
Implementation and Test
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Control Algorithm Implementation Strategy g

4 Control algorithms are mapped to the target platform to
achieve the best performance/cost trade-off.

+ In most cases the platform can accommodate in software the
control algorithms, if not:

« New might be required or
« New might be implemented or

« New must be explored.
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Platform Design Strategy

€ Minimize software development time

+ Maximize model based software

¢ Software generation is possible today from several MoC and languages:
+ StateCharts, Dataflow, SR, ...

¢ Implement the same MoC of specification or guarantee the equivalence

¢ Fitinto the chosen software architecture to maximize reuse at component
level

+ E.g. AUTOSAR for automotive

« Maximize the reuse of hand-written software component
¢ Define application and platform software architecture

€ Minimize the change requests for the hardware platform
+ Implement as much as possible in software
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PARADES

System Platform Definition

The software

application is
composed of model-
based and hand-written
application-dependent
1 software components

Application Software

(sources

Software Platform
(API services)

Standardization 5 .
auresan Device Drivers

Y oo onin ey BIOS
i CPUs
b : ECU output devices ECU input devices

Transferability of functions
Redundancy activation

AUTOSAR RTE:
by specifying interfaces and
their communication

from the underkying HW and

ECU-Hardwaar
el &
wormaes | | et e T Lewre  Library Functions.
[ O =) e T
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Software Implementation Flow

Application Software

g

ator Layer

{}

The software
application is
composed of model-

based and hand-written
application-dependent
software components
(sources)
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Exampe of Specification of Control Algorithms B

llllll
--------

@ A control algorithm is a (synch or a-synch) composition of
extended finite state machines (EFSM).

control-logic

data-flow computational blocks

-IIII.../
““‘- Ny

b,

\ T
L 4
L 4
«function() “
@—-} +InData_2 «OutData °
sInData_2 e
*InData_. =
*FC-SS-1 ]
L
L 4
L 4
*Merge __"_}.
4 sInDatal «outl¥a| \ ®outData
( > «InData_1 * 54,. R * “ *OutD
eInData_1 N
LN [ L a ll\krgeOutData
*FC-SS-2
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Code Generation

=

¢ Mapping a functional model to software platform:
+ Data refinement
+ Software platform services mapping (communication and computation)
+ Time refinement (scheduling)

¢ Data refinement

+ Float to Fixed Point Translation.
¢ Range, scaling and size setting (by the designer).
¢ Worst case analysis for internal variable ranges and scaling.

+ Signals and parameters to C-variables mapping.

¢ Software platform model:

+ variables and services (naming).
¢ Access variable method are mapped with variable classes.

+ execution model:

¢ Multi-rate subsystems are implemented as multi-task software components scheduled by an OSEK/VDX
standard RTOS

¢ Time refinement
+ Task scheduling

72



Mapping Control Algorithms to the Platform it

i nt_l ’I sevents
-in:nt 2 A 4

- E)

o «fc_eventl f *
..... - - Da‘;_uzncnor:()ou' : :
- o o L Application Software
1D a.flunlt'ionoomcm > i provees '.
InData_1 — «MergeOutData II
Automatic synthesis f ‘
7/\ T~

From high level models:

e Automatic translation to C/C++ code

* (Semi)-Automatic data refinement for
computation

 Automatic refinement of communication
services

Flow examples:

ASCET, Simulink/eRTW/TargetLink, UML

Software Platform
(API services)

Device Drivers
BIOS
CPUs

ECU output devices ECU input devices

Handwritten code '
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Example: Gasoline Direct Injection Engine Control

Modelled % of Model
Components SLOC Compiled SLOC
Platform
Components 26-HandCoded 26500 0%
Application 86-AutomCoded 90%
Components 13-HandCoded 93600
% of the total memory occupation

ROM % RAM %
Platform 17.9 2.9
Application 82.1 97.1
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Example: Gasoline Direct Injection Engine Control

@ Tremendous increase in application-software productivity:

« Up to 4 time faster than in the traditional hand-coding cycle.

€ Tremendous decrease In verification effort:
+ Close to 0 ppm

€ Tremendous reuse of modes and source code
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PARADES

Defining the Platform

Application Space (Features)

Application Software

Application Instances

Platform
Specification

1| Platform API

Software
Platform

Platform Design
Space Exploration

Network Communicatior

Network Communlc}s

Network Communication

Platform Instance

Input devices

v

Architectural Space (Performance)
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Simulation Based (C/C++/SystemC) Exploration Flow ‘it

WHATE |

Different Languages

B -

Algorithm
Analysis

- Platform Export

Defined MoC _
and Languages

Mapping Build

B

Code Generation (Synthesis)

L l
Sifnulation and

Simulator Performance Estimation
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SystemC and OCP Abstraction Levels

8 ;; aaw i
< mas @ W OE

g ] 1'-‘- “{
WA

Communication (I/F)

SystemC

Abstraction Accuracy

Abstraction Removes

Untirned Functional

Prograrnmers View (PV)

Time Resource
Sharing

Programmers View +
Time (PVT)

r
-

Transaction (L-2

Clocks, protocols

Bus cycle Accurate (BCA) | +Clock cycle Transfer (L-1) Wire registers
Pin Cycle Accurate (PCA) | +Pin/clock RTL (L-0) Gates
Computation

Untimed Functional (UTF)

Time Functional (TF)

Register Transfer (RT) +Clock cycle
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Mapping application to platform

—

LN

== 1

PARADES

e

HL

= S
= \ ' ' s
= iir
LY — .
‘u.‘\ \ I — v
AT o -
S\ \ ’?T :
£,
i \
CPUload% IRQ/s
15 2000
10 1000
5
0 0

O mapping “zero" B mapping "uno” O mapping "due” O mapping “tre"

task switching (attivazioni/s)

10000

5000

0

O mapping “zero" @ mapping "uno” O mapping "due” O mapping “tre"

O mapping “"zero" B mapping "uno” O mapping "due” O mapping “tre"

numero di task

T

15

10

5

0

O mapping “zero" B mapping “uno” O mapping "due” O mapping “tre"
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SW estimation

€ SW estimation 1S needed to
+ Evaluate HW/SW trade-offs

+ Check performance/constraints
¢ Higher reliability

+ Reduce system cost
¢ Allow slower hardware, smaller size, lower power consumption

llllll
llllll
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SW estimation: Static vs. Dynamic Jritii

¢ Static estimation
+ Determination of runtime properties at compile time
+ Most of the (interesting) properties are undecidable => use approximations

« An approximation program analysis is safe, if its results can always be depended on.
¢ E.G.WCET, BCET

+ Quality of the results (precision) should be as good as possible

4 Dynamic estimation
+ Determination of properties at runtime

+ DSP Processors
¢ relatively data independent
¢ most time spent in hand-coded kernels
¢ static data-flow consumes most cycles
¢ small number of threads, simple interrupts

+ Regular processors
¢ arbitrary C, highly data dependent
¢ commercial RTOS, many threads
¢ complex interrupts, priorities
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SW estimation overview T

€ Two aspects to be considered

+ The structure of the code (program path analysis)
¢ E.g.loops and false paths

+ The system on which the software will run (micro-architecture modeling)
¢ CPU (ISA, interrupts, etc.), HW (cache, etc.), OS, Compiler

& Level at which it I1s done

+ Low-level
¢ e.g. gate-level, assembly-language level
¢ Easy and accurate, but long design iteration time

+ High/system-level
¢ Fast: reduces the exploration time of the design space
¢ Accurate “enough”: approximations are required

¢ Processor model must be cheap
+ ‘“what if” my processor did X
+ future processors not yet developed
+ evaluation of processor not currently used
¢ Must be convenient to use
+ no need to compile with cross-compilers and debug on my desktop
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SW estimation in VCC L

RO W

¢ An virtual processor functional model with its own ISA estimating
computation time based on a table with instruction time
Information

+ Pros:
¢ does not require target software development chain (uses host compiler)
¢ fast simulation model generation and execution
¢ simple and cheap generation of a new processor model
¢ Needed when target processor and compiler not available

« Cons:

¢ hard to model target compiler optimizations (requires “best in class” Virtual
Compiler that can also as C-to-C optimization for the target compiler)

¢ low precision, especially for data memory accesses
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SW estimation by ISS

¢ A model of the processor interpreting the instruction stream
and accounting for clock cycle accurate or approximate time
evaluation

+ Pros:
¢ generally available from processor IP provider
¢ often integrates fast cache model
¢ considers target compiler optimizations and real data and code addresses

+ Cons:

¢ requires target software development chain and full application (boot, RTOS,
Interrupt handling, etc)

¢ often low speed
¢ different integration problem for every vendor (and often for every CPU)

¢ may be difficult to support communication models that require waiting to
complete an I/O or synchronization operation
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Accuracy vs Performance vs Cost

Hardware Emulation

Accuracy

Cycle accurate model

Cycle counting ISS

Dynamic estimation

Static spreadsheet

*$$$ = NRE + per model + per design
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CoWare Platform Modeling Environment JHHE

€ Focus on computation/communication separation

@ Leverage their LISA platform and SystemC Transaction
Level Models

Code
Generat:o ) \
e Retargetable 7 \
Application Bie Libra
+ Architecture, MP-SoC laracy
. Integration )
Processor Bus
Profiling Profiling

Platform
Creation
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CoWare Support for Multiple Abstraction Levels

€ Support successive refinement for both processors and bus models

ml-
O NE & &
< mw om W

a1
FHILEL

MR W

¢ Depending on abstraction level, simulation performance of 100 to 200 Kcycles/sec

LISA core Bus interface SystemC Phase
bus [ ]
Instruction 1
Accurate
(I2) > S IEEEEE— |
model | LISA2TLM §= 2
% Functional API # g --------
converter
q 2 + TLM 3
Cycle model T
Accurate ] LISAZTLM .
(CA) é CA API # B 4
model Bus E converter L
Cycle || § & —— et | {1102
W LISA2RTL 3 5
(BCA) converter i RTL
RTL E model 6
model -i
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Refining the Control Algoritm

Model based

Model
level

Model-in-the-Loop
Controller madel

o

3

L]
]
o
=5
-
|

A
i

Code based

Untimed, host data type
Untimed, target data type
Timed, target data type
Real target

Software-in-the-Loop
C Code on host PC

Processor-in-the-Loop
C Code o target piocessor

TF/RT Platform-in-the-Loop
C Code on platform model

UF Platform-in-the-Loop

C Code on platform model

Balim e
mehim & (ld 23]

i prisi{Amil

o

Plant model or stimulus signals

v

‘E .i F!
=

Platform model Evaluation boad

oy ———— e e

Plant model or stimulus signals Plant model or stimulus signals Plant mode| or stimulus signals Plant model or stimulus signals
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Model Based Control-Platform Co-D

e | s 51512 |

PARADES
]

dows Help

JsPacE
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15t =0 [118112] s (472 gz " | deviali
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production code host s

CHO—>
PinputEvent_1 events
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«function()
*InData «fc_event_2 I “nData_ 2 +OutData) \
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D “InData_1 P [finDatal - -Out L «OutData
eInData_1 *MergeOutData
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InData_1 | | *MergeOutData
2 Function/
Control Platform
Mapping
p Verification
oid g 04 er( void
broad e ab
e A
egra 04 ne
debug e egra 04 0,3,0,0,0
aepug e e o][0] 10| 04 e
debug da old eg 04 e

Software Platform
API| services)

Device Drivers
BIOS
CPUs
ECU output devices ECU input devices
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PARADES

Platform Design

._._._i}._._._.

Software Platform
(API services)

Standardization

auresan Device Drivers

AUTOSAR — ECU Software Architecture
: Aiismatie Qi Syeiies BIOS

o M e W . . —_ | Architecture (AUTOSAR):
Standardized. openty
SETEN RESN tl chicaad tatrome CPUs
AUTOSAR Runtiame E_n'ﬂ-ﬂflrnnr!! {RTE) — HW independent SW layer
- £ = Transferability of functions
Redundancy activation

ECU output devices ECU input devices

| AUTOSAR RTE:
by specifying interfaces and

their communication
mechanisms. the

| applications are decoupled

| from the underlyng HW and
Basic SW. enabling the
realization of Standard

s Library Functions.
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Choosing an Implementation Architecture

Application Space (Features)

Application Software

Application Instances

Platform
Specification

1| Platform API

Software
Platform

Platform Design
Space Exploration

Network Communicatior

Network Communic}s

Network Communication

Platform Instance

Input devices

v

Architectural Space (Performance)
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Platform Design and Implementation

ﬂlardware, computation:

+ Cores:
¢ Core selection
¢ Core instantiation
+ Coprocessors:
¢ Selection (Peripherals)
¢ Configuration/Synthesis
+ Instructions:

¢ ISA definition (VLIW)
¢ ISA Extension Flow

&Hardware, communication:

+ Busses

k + Networks

~

.......

e

KSoftware, granularity:

L

-

+ Set of Processes

+ Process/Thread

+ Instruction sequences
+ Instructions

oftware, layers:
+ RTOS

+ HAL
+ Middle layers

~
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AUTOSAR Software Platform Standardization %]
Standardization
" AUTESAR
AUTOSAR — ECU Software Architecture

Automotive Open System
Architecture (AUTOSAR):

Application

Sortuars e AUTOSAR

AUTOSAR

Application
Software
Component

ALITOSAR =
Standardized, openly
disclosed interfaces

HW independent SW layer

AUTOSAR AUTOSAR
Interface Interface

AUTOSAR Runtime Environment (RTE)

L X it i X Transferability of functions
Standardized =
Standardized Standardized AUTOSAR AUTOSAR ' -
Interface P;:;";L?g:f Interface Interface Interface Redundancy aCtlvatlon
Services Communication - .
Abstraction AUTOSAR RTE:
Standardized Standardized Standardized - . .
_g interface i it scs by specifying interfaces and
operating 5 | — L i | £ OmE e their communication
stem |o o .
Sy Standardized Rilvers mechanisms, the
Interface . .
" applications are decoupled

AUTOSAR
Software

Fempone Interface

16 Thursday, 24 Febuary 2005

Microcontroll ar
Abstraction

APl 2 AP 1
Standard VFB & RTE RTE K earPo
Software I relevant II relevant

from the underlying HW and
Basic SW, enabling the
realization of Standard
Library Functions.

4
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The Different Levels of Parallelism to Exploit e
B Data Level Parallelism Instruct. Lotal Date]_Memori*!Registen! File
— Inherent in most BB alg.’s Memory L
— SIMD Architecture EU, see; |EU
B High Efficiency Control
B Compiler issues Unit
B Amdahl’'s Law !
B |[nstruction Level Parallelism Instruct. Local Data Memory / Register File
: Memory JIEi i
— VLIW Architecture T
W Compiler friendly instruction 1 EU1‘ EU, | [EUs| ese |EU,
W Register file issues word |~ irol ¥
— Complex Instructions LR !

B Task Level Parallelism
— Multiple Interleaved Threads Data
2 Memory
®m Relaxed Memory Requirements
® Increased Latency Control

— Multiple Processors Core Unit
(ASIPs, Coprocessors, Accelerators)

Best Results By Exploiting All Levels Of Parallelism ! ‘




Hardware Design Flow HEHH

TN |
AR

@ Not a unified approach to explore the different levels of
parallelism

€ The macro level architecture must be selected

« Implementing function in RTL (SystemC/C++ Flow)
¢ Hardware implementation of RTOS

« Partition the function and implements some parts using a
dedicated Co-Processor

+ Change Core Instruction Set Application (ISA):

¢ Parameterization of a configurable processor
¢ Custom extension of the ISA
¢ Define a new ISA (e.g. VLIW)
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Traditional System-On-Chip Design Flow

“Traditional” Hardware Software Flow

System Architect _
Specification(s) (MATLAR, 8PW, C/Ct)

Wi ro-
archilectare
Doli

HDL - RTL

+ Design BTl

- Debug i i

+ Verification ch I p Desl g ner .< Design

{(Manual Methods)

RTL ArealTirming
Oplimizalivn

] Synthesis |

Placo & Rowle

Menior: ;

“Graphics’ L o v oo
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C/C++ Synthesis Flow

C Synthesis Enables Faster Architectural
Exploration and Shorter Time to RTL

Algorithm Functional
Description

System Architect4
(MATLAB, SPW, C/C++)

Floating Point

Fixed Point
C++ Model

r

C Synthesis

Micro-
architecture
Definition

Synthesis

Place & Route

Chip Designer S
(Manual Methods) i

Hardware
ASIC/FPGA

0

RTL Area/Timing
Optimization

thesis

Place & Route

Hardware
ASIC/FPGA

IDE

GMSRIE

WCR, DATE. March 2006
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Evolution of System-On-Chip Design Flow

An Evolution of the “Traditional” Flow

]

u

Paper Specification J

System High Level

High Level Model

|

Model Executable

Floating Point
Specification

. Hardware :
Virtual Prototype High Level ¢ Consiste

Verificati¢g:

Fixed Point

Modal

C Synthesis

Application '

18

. HDL - RTL
— E Co-Verification Ny - Design

» Debug
BSP (drivers)

» Verification

Place & Route

/

Hardware
ASIC/IFPGA

Software . Hardware

Menior:

-1 34 "
Graph'G WCR. DATE. March 2006
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Implementing Function in RTL

General-purpose CPUs used in
traditional SOCs are not fast enough for
data-intensive applications, don’'t have
enough 1/0O or compute bandwidth, lacks
efficiency

General
A/D

Purpose
32b CPU

Hardwired Logic

24
<

Hardwired Logic

* High performance due
to parallelism

e Large number of wires
in/out of the block

» Languages/Tools
familiar to many

But ...

» Slow to design and verify
* Inflexible after tapeout
 High re-spin risk and cost
» Slows time to market

Courtesy of Grant Martin, Chief Scientist, Tensilica
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SystemC/C++ Synthesis Flow

High Level Models:
TLM/Simulink

IR: Control Flow Data Graph I

C/CHENVIOEEIS

4 N\

High-Level Synthesis _uhunks Identlf_lc_:atl_on &r Software Extraction
System partitioning
SZ 7 SZ
Hardware Software
Implementations Cost Function Evaluation Compilation
U 4 > < > 4 > U

Hardware Cost Performance || Software Cost

Estimation Estimation Estimation
| < > |
>| Hw/Sw Integration |<
R N et S Ny _
Hardware Refinement :> Hw/Sw Co-verification Software Refinement

\ hardware j RTL Level software j
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Celoxica and Forte Flows

DK Design Suite

Specify

Matlab/ [
Simulink . Llao Desig

Cynthesizer

HW <= a .
[ o
[ " = = atio
2 RTL Simulator S Software ISS | TLM
- Synthesis
IDE
Soﬂw_a re Power Optimization
Compiler Reusable
pu— Testbench
@ EDIF _ RTL
a _ _. L
. FPGA Vendor
- Synthesis 4 g Place & Route
To ASIC
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Coprocessor Synthesis gk

¢ Loosely coupled coprocessor that
accelerates the execution of compiled
binary executable software code
offloaded from the CPU

|| |||n|“||

Software Mapping

+ Delivers the parallel processing

Offload i ‘i | crm‘ralmfgD Creat
resources of a custom processor. runctions | [ ceecce KR

Sl Coprocessor
Synthesis

+ Automatically synthesizes
programmable coprocessor from programmae ) Rl _Peromares A
software executable (hw and sw). ¥

Software
Ensure
Optimum
Performance

+ Maximizes system performance

through memory access and bus Rardware

. . . . . Output
communication optimizations.
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Criticalblue Approach

.
el

=

4 Bottleneck Identification:
+ Analyze the profiling results of the application software running on the main microprocessor.
+ Manually identifies the specific tasks to be migrated to the coprocessor.

€ Architecture Synthesis and Performance Estimation:
+ User-defined constraints like gate count, clock cycle count, and bus utilization

+ Analysis of the instruction code and architecte the coprocessor deploy the maximum parallelism consistent with the input
constraints.

+ Estimation of gate-count and performance including estimates of communication overhead with the main processor.

€ Coprocessor-Performance and “What-If” Analysis:

+ Generation of an instruction- and bit-accurate C model of the coprocessor architecture used in conjunction with the main
processor’s instruction-set simulator (ISS).

+ Typical analysis: performance profiling, memory-access activity, and activation trace data
+ The model also is used to validate the coprocessor within a standard C or SystemC simulation environment.

€ Hardware Synthesis and Microcode generation:

+ Generation of the coprocessor hardware, delivering synthesizable RTL code in either VHDL or Verilog and of the circuitry
that's needed to enable the coprocessor to communicate with the main processor’s bus interface.

+ Generation of the coprocessor microcode.
+ It automatically modifies the original executable code so that function calls are directed to a communications library.

+ This library manages the coprocessor handoff. It also communicates parameters and results between the main processor
and the coprocessor.

+ Microcode can be generated independently of the coprocessor hardware, allowing new microcode to be targeted at an
existing coprocessor design.
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Configurable and Extensible Processor

Courtesy of Grant Martin, Chief Scientist, Tensilica

te%ilica Fully Configurable Processor Features
T e————————

Processor Controls

Trace/TJAG/OCD

Instruction Fetch / Decode

Designer-defined FLIX Base ISA
parallel execution Execution
fipelines -“N” wide Pipeline

Interrupts,
Breakpoints, Timers

Local
Instruction

Register File

Base ALU Memories

Optional
Execution
Units

Processor
<+— |nterface (PIF)
to System Bus

External Bus

User Defined Interface

Queues / Ports

up to 1M Pins User Defined

Execution Unit Local Data
Il Base ISA Feature

Memories
Vectra LX
I configurable Functions DSP Engine

[ optional Function Data Xtensa
I Optional & Configurable Load/Store Unit #2 Load/Store Local Memory
Designer Defined Features (TIE) Unit Interface

S99.}I91U| pue Sa|I4 JalsIBoy
‘S]iun uonN9ax3 paulaq 1asn

saoe)Ialu| pue sajiH Ja1sibay
‘S]lUN uonN9YaxX3 paulaq J19sn
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Instruction Extension : - HEH
. Courtesy of Grant Martin, Chief Scientist, Tensilica
Simple Example

o @

operation TRUNCATE 16 {out AR z, in AR m}}

{
(:) assign z = {16"b0, m[23:8] };
+

The operation statement describes an entire new instruction,
including:

@ Instruction name
@ Instruction format and arguments
@ Functional Behavior

From this single statement, Tensilica’s technology generates
processor hardware, simulation and software development
tool support for the new instruction.
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More Complex Extensions i

Courtesy of Grant Martin, Chief Scientist, Tensilica

operation MUL_SAT_16 {out AR z, in AR a, iIn AR b} {}

{
wire [31:0] m = TlEmul(a[15:0],b[15:0],1);

assign z = {16"b0,
m[31] ? ((M[31:23]==9"b1) ? m[23:8] : 16*h8000)
> ((M[31:23]==9"b0) ? m[23:8] : 16"h7fffF) };

}
schedule ms {MUL_SAT 16} {def z 2;}

d .
Core 32bit Register File < b Pipeline Stage
E1l : E2

- @
OPERAND1
b @ OPERAND2

?* RESULT
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SIMD : Exploiting Data Parallelism B

RO o
Courtesy of Grant Martin, Chief Scientist, Tensilica

operation MUL_SAT 2x16 {out AR z, In AR a, In AR b} {}
{
wire [31:0] ml1 = TIEmul(a[31:16],b[31:16],1);
wire [31:0] mO = TiIEmul(a[15:0], b[15:0], 1);
assign z = {m1[31] ? ((M1[31:23]==9"b1) ? m1[23:8] : 16"h8000)

 ((m1[31:23]==9"b0) ? ml1[23:8] : 16h7ffr),
mo[31] ? ((mO[31:23]==9"b1) ? mO[23:8] : 16"h8000)
- ((mO[31:23]==9"b0) ? mO[23:8] :- 16"h7ffF) };
ks
schedule ms {MUL_SAT 2x16} {def z 2;}
al bl
Core 32bit Register File (AR) qok\ b9§/
a al a0
b bl b0

Z SAT
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- FLIX" Architecture Bl

Courtesy of Grant Martin, Chief Scientist, Tensilica

Multiple Instruction Issues -

PARADES
WEpE
L1

& FLX - Flexible Length Instruction Xtensions

€ Multiple, concurrent, independent, compound operations per instruction
+ Modeless intermixing of 16, 24, and 32 or 64 bit instructions
+ Fast and concurrent code (concurrent execution) when needed
+ Compact code when concurrency / parallelism isn’'t needed
+ Full code compatibility with base 16/24 bit Xtensa ISA

€  Minimal overhead
+ No VLIW-style code-bloat
+ ~2000 gates added control logic

Designer-Defined FLIX Instruction Formats with Designer-Defined Number of Operations

63 0
Operation 1 Operation 2 Operation 3 1(1(110
Example 3 — Operation, 64b Instruction Format
63 0
Operation 1 Operation2 Op3 | Op 4 Operation 5 1111110
Example 5 — Operation, 64b Instruction Format
31 0

Opl Op2  Op3 @ 1111110
Example 4 — Operation, 32b Instruction Format
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Parallelism at Three Levels HEEy

llllllll

In Extensible Instructions Haatd

Courtesy of Grant Martin, Chief Scientist, Tensilica

L operations packed in one long instruction

M copies of storage and function . . ; :
— Multi-issue instruction

register and constant inputs

reg

reg

SIMD operation

r€g || const

N dependent
operations
implemented
as single
fused
operation

reg

Fused operation

Three forms of instruction-set parallelism:

* Very Long Instruction Word (VLIW)

 Single Instruction Multiple Data (SIMD) aka “vectors”
» Fused operations aka “complex operations”

Parallelism: L x M x N
Example: 3 x4 x 3 = 36 ops/cycle
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HW & SW automatically generated JiHH

N W
Courtesy of Grant Martin, Chief Scientist, Tensilica

Software
+ Scheduling assembler

+ Xtensa C/C++ Compiler:
vectorizing C/C++ compiler

+ Xtensa Instruction Set
Simulator - Pipeline accurate

Debuggers
XTMP: System Modeling API

Bus Functional Model for HW/SW
co-simulation model

RTOS: VxWorks,
Nucleus, XTOS

Xtensa Xplorer
+ Integrated Development Environment

+ TIE Development tools

+ C Development tools

+ Profiling & visualization tools

.

L 4

<>

<>

Hardware
+ Synthesizable RTL

<>

+ Synopsys/Cadence flows
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Design Flow i

Courtesy of Grant Martin, Chief Scientist, Tensilica

Automation: Optimized Processor &

Matching Software Tools.........__

Complete Hardware Design
Source RTL, EDA scripts, test suite

-
int i;

short c[100]; m

y 4
tensilica

Source code

int main()

for (i=0;i<N/2;i++) _ o = Ty S

i

1

1

1

1

1

1

1

1

1

1

1

1

1

1 | | |
1 | o
' [ =

: o e i [
! | —— s
| —
! i — =
! | — Tl
1 | 222 =
| | ————

. o e

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Use standard
- ASIC/COT
Xtensa ; - desrign
. t
! Processor g HeS
: * _ g
| Specification Generator Customized gg;alrées for
- ' Configuration Software Tools  faprication
XPRES i selection and C/C++ compiler process
C il : custom-instruction Debuggers Simulators
ompiler \ description RTOSes

‘Optional Step
Runs in Minutes

Ilterate in hours

* US Patent: 6,477,697
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Designing with many processors

Courtesy of Grant Martin, Chief Scientist, Tensilica

General
Control
RISC

General

Control
Processor

Imege \/[e[=To) \ideo

_ i : Image Video Video
Locjle Logic Logic

Processor Processor Processor

Audio Packet
Loegic Logic

Audio Packet

Processor Processor

SECUNLY DSP

: Security DSP
Logjic Logic

Processor Processor

System-On-Chip (SOC) Advanced System-On-Chip (SOC)
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Exploiting MP: R

M any POSSI b I e ArCh IteCtu rES Courtesy of Grant Martin, Chief Scientist, Tjﬁij:

PARADES

Shared Bus On-chip Routing Network

Processor Processor Processor
Processor Processor Processor Processor Master R il

Master Master Master Master Routing Routing
Node et Node_

a X
Processor Processor Processor
bus Master Master Master
- X
Routing , |Routing ) |Routing
Node ~] Node —] Node

a A A
Processor Processor Processor
Master Master Master

Routing » |Routing Routing
Node 2] Node Node [

[
»

v

Ik

Al Al
Cross-Bar Application-specific
Processor bus
Master
Data Crunchin Queue
Processor Processor g Processor
Master Master > |I|I|
ﬂ‘ Queue A 4 ’
.| Processor
v 7y v Master
/O Processo * *
Processor

Master
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Multiprocessor Design Flow Hiit

Courtesy of Grant Martin, Chief Scientist, Tensilica

PARADES

A  Possible Solutions: top-down flow
tensilica
------------ : Spec,Matlab, ——
R C/C++, SystemC
— i
———————————— : C/C++
Partition Application High-Level
into Tasks Architecture
Add Communication Refine Arch: Add
Channels b/w Tasks TIE, Mems, Queues

!

Map Tasks to Processors & Comm.
Channels to Queues, Shared Memories

~

~—~

(ad

Repartition Application Simulation Model Top-level RTL Change Processor Config
v\ of System Component RTL - )
Change Comm Channels . . Sample S Change System Architecture
Simulate, Profile,
Remap Tasks or comms Ana|yze’ Iterate
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From unstructured connectivity to a ...

Courtesy of SONICS

a7/
=% %

| "? A 'cim-"“

& psp = CPU =MPEG: ,.a CPU
J = P

1.,\‘* IJ ﬁh 1.'i

CPU

&/ DSP 4| CPU amrmw. s
S—

\-!P‘EG*" CI’U

.,"ﬁ-

{.PI.J =M

A ﬂ&wn

PEC =
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Communication Centric Design Flow

€ “Communication Centric Platform™
« SONIC, Palmchip

+ Concentrates on communication
¢ Delivers communication framework plus peripherals
¢ Limits the modeling efforts
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SOI\”CS AUtomated ﬂOW Courtesy of SONICS %:lﬁz:;;
E] _ - o x|
QIEIEI T _| 1] 7] =12 !
' Mone* -

8

Status

Create Hetlist | J
i
_H

H
IP Portfolio
n
goslavezd
Remmay gosizies
Mmem
MemMax-1.2 i i
Behavioral models
+ OCP 2.0-1.0 =S :
OCPTI-1.0 gcslavel gcmasterd fomaster] fomasters .
+ APB Bridge—1.0 gosiave Qfg?asrer Qfg?as?er qigm&'ﬂ‘ aF gesizve gosiave gesiave T r ace g e n a) r atl O n
o

&Monitors
#Disassemblers

#Protocol checkers
&Performance analysis

& SystemC models

s & Timing constraint propagation
¢ #Synthesis script generation

&Floorplanner interface

()
J

n in o
gcslavezs foslavez? foslavezd
qosiave gosiave gesiave
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QOutline

¢ Embedded System Applications
¢ Platform based design methodology

¢ Electronic System Level Design
+ Functions: MoC, Languages
+ Architectures: Network, Node, SoC

¢ Metropolis

¢ Conclusions
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Metropolis: an Environment for System-Level 5w
Design

4 Motivation
+ Design complexity and the need for verification and time-to-market constraints are
Increasing

+ Semantic link between specification and implementation is necessary

¢ Platform-Based Design
+ Meet-in-the-middle approach

+ Separation of concerns
¢ Function vs. architecture
¢ Capability vs. performance
¢ Computation vs. communication

4 Metropolis Framework
+ Extensible framework providing simulation, verification, and synthesis capabilities
+ Easily extract relevant design information and interface to external tools

@ Released Sept. 15th, 2004
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Metropolis: Target and Goals Fti

WA W

¢ Target: Embedded System Design
+ Set-top boxes, cellular phones, automotive controllers, ...

+ Heterogeneity:
¢ computation: Analog, ASICs, programmable logic, DSPs, ASIPs, processors
¢ communication: Buses, cross-bars, cache, DMAs, SDRAM, ...
¢ coordination: Synchronous, Asynchronous (event driven, time driven)

& Goals:

+ Design methodologies:
¢ abstraction levels: design capture, mathematics for the semantics
¢ design tasks: cache size, address map, SW code generation, RTL generation, ...

+ Tool set:

¢ synthesis: data transfer scheduling, memory sizing, interface logic, SW/HW
generation, ...

¢ verification: property checking, static analysis of performance, equivalence checking,
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Metropolis Project

Participants:

¢

L4

¢

UC Berkeley (USA): methodologies, modeling,

CMU (USA):

Politecnico di Torino (ltaly): modeling,

Universita Politecnica de Catalunya (Spain): modeling,
Cadence Berkeley Labs (USA): methodologies, modeling,
PARADES (ltaly): methodologies, modeling,

ST (France-Italy): methodologies, modeling

Philips (Netherlands): methodologies (multi-media)

Nokia (USA, Finland): methodologies (wireless communication)
BWRC (USA): methodologies (wireless communication)
Magneti-Marelli (Italy): methodologies (power train control)
BMW (USA): methodologies (fault-tolerant automotive controls)
Intel (USA): methodologies (microprocessors)

Cypress (USA): methodologies (network processors, USB platforms)
Honeywell (USA): methodologies (FADEC)
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Metropolis Framework

Function Design Constraints Architecture (Platform)

Specification S Specification

Assertions

Metropolis Infrastructure
e Design methodology
 Meta model of computation
e Base tools
- Design imports
- Meta model compiler
- Simulation

Synthesis/Refinement Analysis/Verification

Compile-time scheduling of  Static timing analysis of reactive
concurrency systems

Communication-driven hardware |§ ¢ Invariant analysis of sequential
synthesis programs

Protocol interface generation « Refinement verification

 Formal verification of embedded
software



Meta Frameworks: Metropolis

Tagged Signal Semantics

Metropolis provides a process networks abstract
semantics and emphasizes formal description of

constraints, communication refinement, and joint
modeling of applications and architectures.




Metropolis Objects: adding quantity managers it
¢ Metropolis elements adhere to a “separation of concerns” point of view.

e Processes (Computation)

Active Objects
Sequential Executing Thread

e Media (Communication)

Passive Objects
- Implement Interface Services
Ill:l Media, D I, g

e Quantity Managers (Coordination)

Schedule access to
resources and quantities
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A Producer-Consumer Example Jith

@ A process P producing integers

@ A process C consuming integers

€ A media M implementing the communication services
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Writer: Process P (Producer)

¢ Writer.mmm: Port (interface) definition

package producers_consumer;

interface IntWriter extends Port{
update void writelnt(int 1);
eval 1nt nspace();

Sy
’

P.mmm: Process behayior definition

package producers_ consumer;
process P {
port IntWriter port wr;
public P(String name) {}
void thread() {
int w = 0;
while (w < 30) {
N~ port wr.writelnt(w);
w=w+ 1;
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Metro. Netlists and Events L

WA W

Metropolis Architectures are created via two netlists:
- Scheduled — generate events?! for services in the scheduled netlist.
e Scheduling — allow these events access to the services and annotate

events with quantities. Related Work

Scheduled Netlist Scheduling Netlist

represents a
transition in the
action automata
of an object. Can
be

with any number
of quantities.
This allows
performance
estimation.
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Key Modeling Concepts JHiHi
¢ An event is the fundamental concept in the framework
+ Represents a transition in the action automata of an object
An event is owned by the object that exports it
During simulation, generated events are termed as event instances
Events can be annotated with any number of quantities

Events can partially expose the state around them, constraints can then
reference or influence this state

¢ A service corresponds to a set of sequences of events
+ All elements in the set have a common begin event and a common end event
+ A service may be parameterized with arguments

<

<

<

<

1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for Comparing Models of Computation,

IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12, pg. 1217-1229, December 1998
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Action Automata B

WA W

€ Processes take actions.
+ Statements and some expressions, e.g.
y = z+port.f();, z+port.f(), port.f(), i <10, ...
+ only calls to media functions are observable actions

4 An execution of a given netlist is a sequence of vectors of events.
+ event : the beginning of an action, e.g. B(port.f()),
the end of an action, e.g. E(port.f()), or null N
+ the i-th component of a vector is an event of the i-th process

¢ An execution is legal if
+ it satisfies all coordination constraints, and
+ it is accepted by all action automata.
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Execution semantics T

RO W

& Action automaton:

+ one for each action of each process
¢ defines the set of sequences of events that can happen in executing the
action
+ atransition corresponds to an event:

¢ it may update shared memory variables:
+ process and media member variables
+ values of actions-expressions
¢ it may have guards that depend on states of other action automata and
memory variables

+ each state has a self-loop transition with the null N event.

+ all the automata have their alphabets in common:

¢ transitions must be taken together in different automata, if they correspond

to the same event. 130
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Action Automata BT

WA W

®y=x+1;
y=x+1 B y:x+::| ~ B X"'l:f\ E x+1 e E 3-/_=x+1 :
Y=V, i1 _
write y
BXx+1 EXx+1 Ey=x+1
S S y:=any g
B x+1 Ex+1
X+1 NV =X+
write x|
Ex+1
=
Vx+1 -=any
Vx+1 51 51
y 0 00 51
X 0 00 00

By=x+1 N Bx+1 N N EXx+1 Ey=x+1

Return
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Semantics summary L

€ Processes run sequential code concurrently, each at its own arbitrary
pace.

€ Read-Write and Write-Write hazards may cause unpredictable results
+ atomicity has to be explicitly specified.

4 Progress may block at synchronization points
¢+ awaits

+ function calls and labels to which awaits or constraints refer.

@ The legal behavior of a netlist is given by a set of sequences of event
vectors.

+ multiple sequences reflect the non-determinism of the semantics:

concurrency, synchronization (awaits and constraints)
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Constraints

Two mechanisms are supported to specify constraints:

1. Propositions over temporal orders of states
+ execution is a sequence of states
+ specify constraints using linear temporal logic

+ good for scheduling constraints, e.g.

“if process P starts to execute a statement s1, no other process can start the statement
until P reaches a statement s2.”

2. Propositions over instances of transitions between states

+ particular transitions in the current execution: called “actions”
+ annotate actions with quantity, such as time, power.
+ specify constraints over actions with respect to the quantities

+ good for real-time constraints, e.g.

“any successive actions of starting a statement s1 by process P must take place with at
most 10ms interval.”
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Logic of Constraints (LOC) i

MR W

€ A transaction-level quantitative constraint language

@ Works on a sequence of events from a particular execution
trace

@ The basic components of an LOC formula R

+ Boolean operators (not) (or) (and) and (imply)
Event names, e.g. “in”, “out”, “Stimuli” or “Display”
Instances of events, e.g. “Stimuli[O]”, “Display[10]™

L 4

<&

<

Annotations, e.g. “t(Display[5])”

Index variable i, the only variable in a formula, e.g. “Display[i-5]”
and “Stimuli[i]”

L 4
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LOC Constraints B

Stimuli : 0 at time 9
Display : 0 attime 13 FIR
Stimuli : 1 at time 19
Display : -6 at time 23
Stimuli : 2 at time 29 FSM
Display : -16 at time 33 : :
Stimuli : 3 at time 39 Stimull
Display : -13 at time 43
Stimuli : 4 at time 49
Display : 6 attime 53

A 4
A 4

Display

Datapath

FIR Trace ( SystemC2.0 Distribution )

Throughput: “at least 3 Display events will be produced in any
period of 30 time units”.

t (Display[i+3]) — t (Display[i]) <= 30
Other LOC constraints

Performance: rate, latency, jitter, burstiness
Functional: data consistency
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Meta-model: architecture components JiiHi
An architecture component specifies services, i.e.
e what it can do:
Interfaces, methods, coordination (awaits, constraints), netlists

e how much it costs:
guantities, annotated with events, related over a set of events

interface BusMasterService extends Port {
update void busRead(String dest, int size);
update void busWrite(String dest, int size);

}

medium Bus implements BusMasterService ...{
port BusArbiterService Arb;
port MemService Mem; ...
update void busRead(String dest, int size) {
if(dest== ... ) Mem.memRead(size);

}
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Meta-model: quantities R

The domain D of the quantity, e.g. real for the global time,
The operations and relations on D, e.g. subtraction, <, =,
The function from an event instance to an element of D,

Axioms on the quantity, e.g.
the global time is non-decreasing in a sequence of vectors of any

feasible execution.

class GTime extends Quantity {

double t;

double sub(double t2, double t1){...}

double add(double t1, double t2){...}

boolean equal(double t1, double t2){ ... }

boolean less(double t1, double t2) ... }

double A(evente, inti){ ... }

constraints{
forall(event el, event €2, int i, int j):
GXIL.A(el, i) == GXI.A(e2, j) -> equal(A(el, i), A(e2, ))) &&
GXI.A(el, i) < GXILA(e2, j) -> (less(A(el, i), A(e2, ))) || equal(A(el, i), A(e2.))));

1}
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Meta-model: architecture components Hiiiy

¢ This modeling mechanism is generic, independent of services and cost specified.

€ Which levels of abstraction, what kind of quantities, what kind of cost constraints should be

used to capture architecture components?

+ depends on applications: on-going research

CPU ASIC1 ASIC2

Swil Sw2 Hw Hw

C-C SwI/F Channel Ctl_=1 o nnel 1 =C:Ct
]

—+—
RTOS e.g. PIBus 32b

e.g. OtherBus 64b...

Transaction:
Services:
- fuzzy instruction set for SW, execute() for HW
- bounded FIFO (point-to-point)
Quantities:

- #ireads, #writes, token size, context switches
|

Virtual BUS:
Services:
- data decomposition/composition
- address (internal v.s. external)
Quantities: same as above, different weights

Physical:
Services: full characterization
Quantities: time
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Quantity resolution

The 2-step approach to resolve quantities at each state of a netlist being executed:

1.
for each process Pi, for each event e that Pi can take, find all the quantity constraints on e.

In the meta-model, this is done by explicitly requesting quantity annotations at the relevant events, i.e.
Quantity.request(event, requested quantities).

find a vector made of the candidate events and a set of quantities annotated with each of the events, such
that the annotated quantities satisfy:

+ all the quantity requests, and
+ all the axioms of the Quantity types.

In the meta-model, this is done by letting each Quantity type implement a resolve() method, and the
methods of relevant Quantity types are iteratively called.

+ theory of fixed-point computation
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Quantity resolution Lo

¢ The 2-step approach is same as how schedulers work, e.g. OS schedulers, BUS schedulers,
BUS bridge controllers.

4 Semantically, a scheduler can be considered as one that resolves a quantity called execution
index.

¢ Two ways to model schedulers:

1. As processes:
+ explicitly model the scheduling protocols using the meta-model building blocks
+ agood reflection of actual implementations

2. As gquantities:
+ use the built-in request/resolve approach for modeling the scheduling protocols

+ more focus on resolution (scheduling) algorithms, than protocols: suitable for higher level abstraction
models
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Programmable Arch. Modeling i

4 Computation Services

PPC405 MicroBlaze SynthMaster SynthSlave

Computation Services
Read (addr, offset, cnt, size), Write(addr, offset, cnt, size),
Execute (operation, complexity)

¢ Communication Services

Processor On-Chip BRAM Communication Services
Local Peripheral addrTransfer(target, master)
Bus Bus addrReq(base, offset, transType, device)
addrAck(device
(PLB) (OPB) (device)

dataTransfer(device, readSeq, writeSeq)
dataAck(device)

& Other Services

Mapping Task Béter&/isiapimiang

OPB/PLB Bridge Process Read (Bxa@4, Gffsdt, 4it, size)
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Programmable Arch. Modeling JHHI

< Coordination Services

PPC Sched MicroBlaze PLB Sched OPB Sched
Sched
@AM Sc@ @eral S@

PostCond()
Request (event e) Resolve()

-Augment event with information
-Adds event to pending (aM5SEaQ9y AR $9[Mebian the
queue of requested events int¥RItiATNithetRenfliagtityenanager

HL- -
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Prog. Platform Characterization JHHT
Create database ONCE prior to
simulation and populate with 5 \
independent (modular : :
inforrr)n ation ( ) Metropolis Characterizer Mode—l-\:
g S —
- % Execution Time z .
1. Data detailing for Processing =|| Physical
performance based on = E 5 Timing
physical implementation. T
. Transaction Cycles
2. Data detailing the o3 _
.. S i.e. PLB/OPB transaction
CompOSItlon of cycle counts
communication transactions.
— -

3. Data detailing the

processing elements
computation. From Metro Model Design

From Char Flow Shown

Work with Xilinx Research Labs From ISS for PPC

1. Douglas Densmore, Adam Donlin, A.Sangiovanni-Vincentelli, FPGA Architecture Characterization in
System Level Design, Submitted to CODES 2005.

2. Adam Donlin and Douglas Densmore, Method and Apparatus for Precharacterizing Systems for Use
in System Level Design of Integrated Circuits, Patent Pending. 143




Modeling & Char. Review JHiHi
 — — — — ’ i'"sléh'e'éh]]h'g]ﬁ'e}i[s'{ """"""""
Taskl Task?2 LTask3 \ ETask4 \
DEDICATED HW ' DedHW Sched

L
PLB - \PLB Sched

BRAM ; E@AM Sched \

Scheduled Netlist Characterizer |
“Media (scheduied) TS Process T TTTTTTTTTTT ! -
—— @ Enabled Event o eem————

Quantity Manager w @ Disabled Event
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Mapping in Metropolis JHHE

¢ Objectives:

+ Map a functional network with an architectural network without changing
either of the two

¢ Support design reuse

+ Specify the mapping between the two in a formal way
¢ Support analysis techniques
¢ Make future automation easier

¢ Mechanism:

+ Use declarative _
synchronization constraints
between events

+ One of the unique aspects
of Metropolis
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Synchronization constraints i

€ Synchronization constraint between two events el and e2:
+ |tl synch(el, e2)
+ el and e2 occur simultaneously or not at all during simulation

¢ Optional variable equality portion:
+ |tl synch(el, e2: varl@el == var2@e2)

« The value of varl in the scope of el is equal to the value of var2 when el and
e2 occur

+ Can be useful for “passing” values between functional and architectural
models
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Metropolis Example




Meta-model: mapping netlist

MyMapNetlist
B(P1, M.write) <=> B(mP1, mPl.writeCpu); E(P1, M.write) <=>E(mP1, mPl.writeCpu);
B(P1, P1.f) <=> B(mP1, mPl.mapf); E(P1, P1l.f) <=>E(mP1, mPl.mapf);
B(P2, M.read) <=> B(P2, mP2.readCpu); E(P2, M.read) <=>E(mP2, mP2.readCpu);
B(P2, P2.f) <=> B(mP2, mP2.mapf); E(P2, P2.f) <=>E(mP2, mP2.mapf);

MyFncNetlist MyArchNetlist J— ]

5 P o —()—o 2 CE Q
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Meta-model: platforms

PARADES

A set of mapping netlists, together with constraints on event relations to a given
interface implementation, constitutes a platform of the interface.

interface MyService extends Port { int myService(int d); }

refine(AbsM, My

medium AbsM implements MyService
int myService(intd) { ...}

MyMapNetlist]
B(P1, M.write) <=> B(mP1,

2R Pl 7 PP mP
B(P2, M.read) <=>B(P2, m
E(P2, P2.f) <=> E(mP2, mP

NI

mP1.writeCpu);
|.mapf); E(P1, P1.f)

2.readCpu);
.mapf);

t

yA

K

M.mySefvice) 8¢> BEL Bl(repd);

£ FE&2; B(wiite);

AyMapNetlistl

B(P1, M.write) <=> B(mP1, mPl.writeCpu);

B(P1, P1.f) <=>B(mP1, mP1l.mapf); E(P1, P1l.f) <=>E(mP1,)
B(P2, M.read) <=> B(P2, mP2.readCpu);

E(P2, P2.f) <=> E(mP2, mP2.mapf);
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Meta-model: recursive paradigm of platforms

B(Q2, S.cdx) <=>B(Q2, mQ2.excCpu); E(Q2, M.cdx) <=>E(mQ2, mQ2.excCpu);
B(Q2, Q2.f) <=> B(mQ2, mQ2.mapf); E(Q2, P2.f) <=> E(mQ2, mQ2.mapf);

> (P °
0

MyMapNetlistl

B(P1, M.write) <=> B(mP1, mPl.writeCpu);

B(P1, P1.f) <=>B(mP1, mP1.mapf); E(P1, P1.f) <=>E(mP1,)
B(P2, M.read) <=> B(P2, mP2.readCpu);

E(P2, P2.f) <=> E(mP2, mP2.mapf);

MyF% T

B(82 Mg = B(P2
o ™3 P nf
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Metropolis Driver: Picture-in-Picture Design | T

< 1
......

Exercise gt

Evaluate the methodology with formal techniques applied.

e Function
— Input: a transport stream for multi-channel
video images

— Qutput: a PiP video stream

- the inner window size and frame color
dynamically changeable

[ USRCONTROL

/ PIP YVY V \

MPEG RESIZE

v

y

)4

DEMUX

PARSER

YVY

A 4

JUGGLE

MPEG 60 processes with

\ / 200 channels 151
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Multi-Media System: Abstraction Levels JHHI

—

» Network of processes with sequential program for each

e Unbounded FIFOs with multi-rate and

Communication refined to bounded FIFOs and shared
memories with finer primitives (called TTL API):

» Mapped to resources with coarse service APIs S

» Services annotated with performance models

 Interfaces to match the TTL API Q@
CP

« Cycle-accurate services and performance models @ RAMs|IRAMd

HW

vemslvemd 18 [Dsp
HW

CPU @ 152




Metropolis design environment i

eLoad designs
*Browse designs

*Relate designs
refine, map etc

eInvoke tools

*Analyze results

i
=

@unication Spec CNChiteCtUD
< Constraints >

@ctional Spec !
Meta model language

Meta model
compiler

Metropolis
IHETEIEIRE Back end, |l Back end, il Back end, Back end,
Shell
C O D, o, D
Simulator Synthesis Verification Verification
tool tool tool tool
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Backend Point Tools

@ Synthesis/refinement:
+ Quasi-static scheduling

<>

Scheduler synthesis from constraint formulas

<>

Interface synthesis

<>

Refinement (mapping) synthesis

<>

¢ Hardware (with known architecture)
¢ Dynamically reconfigurable logic

@ Verification/analysis:
+ Static timing analysis for reactive processes
+ Invariant analysis of sequential programs
+ Refinement verification
+ Formal verification for software

Architecture-specific synthesis from concurrent processes for:

<

154



Conclusions T

RO W

€ The trade-off between hardware and software starts long before the RTL design
of an SoC

€ Starting from the system specification:
«  Functionality, i.e., WHAT the system is required to do

+  Constraints, i.e., the set of requirements that restrict the design space by taking into
consideration non functional aspects of the design such as cost, power
consumption, performance, fault tolerance and physical dimensions.

« Architecture, i.e., the set of available components from which the designer can
decide HOW she can implement the functionality satisfying the constraints
¢ The PBD methodology progresses towards the implementation of the design
“mapping” the functionality of the design to the available components.

«  The library of available components (they can be already fully designed or they can
be considered virtual components) is called a platform.

«  Mapping implies the selection of the components, of their interconnection scheme
and of the allocation of the functionality to each

+  Several models and methods are applied to achieve the final implementation
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