

Stochastic processes

Stochastic process: set of random variables

 ${X(t) \mid t \in T}$

defined over the same probability space indexed by the parameter t, called $\ensuremath{\textit{time}}$

each X(t) random variable

takes values in the set Γ called state space of the process

Both T (time) and Γ (space) can be either *discrete* or *continuous*

Continuous-time process if the time parameter t is *continuous*

Discrete-time process

if the time parameter t is discrete

{X_n | n∈ T }

Joint probability distribution function of the random variables X (t_i) $Pr\{X (t_1) \leq x_1; X (t_2) \leq x_2; \ldots; X (t_n) \leq x_n\}$

for any set of times $t_i \in T$, $x_i \in \Gamma$, $1 \le i \le n$, $n \ge 1$

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

Analysis of Markov processes			
Continuous-time Markov chain			
$\{X(t) \mid t \in T\}$			
homogeneous if the one-step conditional pro	bability only depens on the		
interval width			
p_{ij} (s) =Prob{X(t+s) =j X(t) =i}	∀ t>0, ∀i,j∈ Γ		
Q = lim _{s→0} (P (s) - I)/s			
Q= [q _{ij}] matrix of state transition rates	(infinitesimal generator)		
If the stability conditions holds, we compute the $\pi = [\pi_0, \pi_1, \pi_2,]$ For ergodic Markov chain (irreducible and with	ne stationary state probability		
$\pi \mathbf{Q} = 0$ with $\Sigma_j \mathbf{T}$	r _j =1		
system of global balance equations			
S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy	SFM '07 - PE 7		

Definition of a queueing systems	Analysis of a queueing systems	
 The queueing system is described by the arrival process the service process the number of servers and their service rate the queueing discipline process the system or queue capacity the population constraints 	 system analysis Transient for a time interval, given the initial conditions Stationary in steady-state conditions, for stable systems Analysis of the associated stochastic process that represents system behavior Markov stochastic process birth and death processes 	
• Kendall's notation A/B/X/Y/Z A interarrival time distribution (Δ) B service time distribution (t_s) X number of servers (m) Y system capacity (in the queue and in service) Z queueing discipline A/B/X if Y = ∞ and Z = FCFS (<i>default</i>) Examples: A,B : D deterministic (constant) M exponential (Markov) E_k Erlang-k G general Examples of queueing systems: D(D(1, M/M(1, M/M/m (m>0), M/G(1, G/G/1)))	 Evaluation of a set of performance indices of the queueing system number of customers in the system number of customers in the queue number of customers in the queue response time tr waiting time twittization twittization throughput x random variables: evaluate probability distribution and/or the moments average performance indices average number of customers in the system R=E[n] mean response time 	
amo, A. Marin - Università Ca' Foscari di Venezia - Italy	S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy	

C	ueueing disciplines	
 scheduling algorithms 		
FCFS	first come first served	
LCFS	last come first served	
LCFSPr *	idem with pre-emption	
Random		
Round Robin	each customer is served for a fixed quantum δ	
PS *	Processor Sharing for $\delta \rightarrow 0$	
	all the customers are served at the same time	
	for service rate μ and n customers, each	
	receives service with rate μ /n	
IS *	Infinite Serves no queue (delay queue)	
SPIF	Shortest Processing Time First	
SKEIF	Shortest Remaining Processing Time First	
- with/without priority		
- abstract priority/depend	lent on service time	
- with/without pre-emption	n	
* Immediate service		
S. Balsamo, A. Marin - Università Ca' Foscari di Venezia -	Raly SFM '07 - PE	26

Queueing Networks

• A queueing system describes the system as a unique resource • A queueing network describes the system as a set of interacting resources Queueing Network a collection of service centers that provide service to a set of customers - open external arrivals and departures - closedconstant number of customers (finite population) - mixed if it is open for some types of customers, closed for other types - Customers arrive to a service center (node) (possibly external arrival for open QN) ask for resource service possibly wait to be served (queueing discipline) at completion time exit the node and - immediately move to another node - or exit the QN in closed QN customers are always in queue or in service S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy 27 SFM '07 - PE

Queueing Networks Definition

The network topology

models the customer behavior among the interconnected service centers

- assume a non-deterministic behavior represented by a probabilistic model

- p_{ij} probability that a customer completing its service in station i immediately moves to station j, $1{\leq}i{,}{\leq}\,M$
- ${\rm p}_{i0}$ for open QN probability that a customer completing its service in station i immediately exits the network from station i
- **P** = [p_{ij}], routing probability matrix 1≤i,j≤ M where 0≤ p_{ii} ≤1, $\sum_i p_{ii}$ =1 for each station i

A QN is well-formed if it has a well-defined long-term customer behavior:

- for a closed QN if every station is reachable from any other with a non-zero probability
- for an open QN add a virtual station 0 that represents the external behavior, that generates external arrivals and absorbs all departing customers, so obtaining a closed QN. Definition as for closed QN.

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

30

Types of customers: classes, chains In simple QN we often assume that all the customers are statistically identical Modeling real systems can require to identify different types of customers - service time - routing probabilities Multiple types of customers: concepts of class and chain. A chain forms a permanent categorization of customers a customer belongs to the same chain during its whole activity in the network A class is a temporary classification of customers a customer can switch from a class to another during its activity in the network (usually with a probabilistic behavior) The customer service time in each station and the routing probabilities usually depend on the class it belongs to Multiple-class single-chain QN Multiple-class and multiple-chain QN R set of classes of the QN R number of classes С set of chains С number of chains S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy 31 SFM '07 - PE

product-form solution of π (under certain constraints) $\pi(\mathbf{S}) = \frac{1}{G} d(n) \prod_{i=1}^{M} g_i(n_i)$	1) FC 2) PS
The stationary state probability π can be computed as the product of a set of functions each dependent only on the state of a station	4) LC
Other average performance indices can be derived by state probability $\pmb{\pi}$	For typ
Jackson theorem open exponential-FCFS networks	Let $\mu_i^{(c)}$
Gordon-Newell theorem closed exponential-FCFS networks	=> μ _i ^(c)
BCMP theorem open, closed, mixed QN with various types of nodes	Consid
	Consid
The solution is obtained as if	R class
the QN is formed by independent M/M/1 (or M/M/m) nodes	externa
	routing
Computationally efficient exact solution algorithms	that of through
Mean Value Analysis	
S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy SFM '07 - PE 44	S. Balsamo, A. Marin - Ur

BCMP Queueing Netwo	orks	
Types of node		
1) FCFS and exponential chain independent set 2) PS and Coxian service time 3) IS and Coxian service time	rvice time	
For types 2-4 the service rate may also depend on the c Let $\mu_i^{(c)}$ denote the service rate for node i and chain c. => $\mu_i^{(c)} = \mu_i$ for each chain c, for type-1 nodes.	ustomer chain.	
Consider single-class multiple-chain QN		
Consider open, closed, mixed QN with M nodes of types Poisson arrivals with parameter $\lambda(n)$ dependent on the <i>R</i> classes and <i>C</i> chains, population K ^(c) for each closed external arrival probabilities $p_{0,i}^{(c)}$ for each open chain c routing probability matrices P ^(c) for each chain $c \in C$, that define the traffic equation system derive the vie	1-4, poverall QN population n, chain $c \in C$, $\in C$, it ratio of (relative)	
throughputs e _i ^(c)		
$\mathbf{e}_{i}^{(c)} = \mathbf{p}_{0,i}^{(c)} + \mathbf{\Sigma}_{j} \mathbf{e}_{j}^{(c)} \mathbf{p}_{ji}$ $1 \le i \le M, 1 \le c \le C$		
S. Baisarno, A. Mann - Università Ca' Foscari di Venezia - Italy	SFM '07 - PE	45

Consider multi-class multiple-chain QN

Customers can move within a chain with class switching routing probability matrices $\mathbf{P}^{(c)} = [\mathbf{p}_{ir,js}^{(c)}]$ for each chain $c \in C$, that define the **traffic equation system** from which we derive the **visit ratio** of (relative) throughputs $\mathbf{e}_{ir}^{(c)}$

$$e_{ir}^{(c)} = p_{0,ir}^{(c)} + \Sigma_j \Sigma_{s \in \mathcal{R}^{(c)}} e_{js}^{(c)} p_{ir,js}^{(c)} \qquad 1 \leq i \leq M, s \in \mathcal{R}^{(c)}_i$$

 $\begin{array}{l} \text{Let } \rho_{ir}^{(c)} = e_{ir}^{(c)} / \mu_{ir}^{(c)} \\ \text{M nodes, } R \text{ classes } C \text{ chains, multi-class multi-chain } (R \neq C) \\ \textbf{n} = (\textbf{n}_{1}, \ldots, \textbf{n}_{M}) & \text{network state} \\ \textbf{n}_{i} = (\textbf{n}_{i}^{(1)}, \ldots, \textbf{n}_{i}^{(C)}) & \text{station i state, } 1 \leq i \leq M \\ \textbf{n}_{i}^{(c)} \text{ has components } \textbf{n}_{ir}^{(c)} \text{ for each class } r \in \ \mathcal{R}_{i}^{(c)} \end{array}$

 $\begin{array}{ll} n_i & \text{number of customers in station i} \\ n_i^{(c)} & \text{number of customers in station i and chain c} \\ n_{ir}^{(c)} & \text{number of customers in station i and class r of chain c} \end{array}$

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

50

1≤c≤C

Product-form QN and p M => M property	operties		Product-form QN and pr quasi-reversibility property	operties
For a single queueing system: an open queueing system holds $M \Rightarrow M$ property if under independent Poisson arrivals per class of customers then the departure processes are also independent Poisso $M \Rightarrow M$ property applies to the station in isolation It can be used to decide whether a station (with given queu service time distribution) can be embedded in a product-for A station with $M \Rightarrow M = >$ the station has a product An open QN where each station has the $M \Rightarrow M = >$ the for For a QN with stations with non-priority scheduling disciplin $M \Rightarrow M$ for every station \ll local back	in processes eing discipline and m QN ct-form solution QN has $M \Rightarrow M$ es property lance holds		 if the queue length at a given time t is independent of the arrival times of customers after t and of the departure times of customer before t then a queueing systems holds quasi-reversibility A QN with quasi-reversible stations => QN has Quasi-reversibility property is defined for isolated stations One can prove that all the arrival streams to a quasi-reversible system sh and Poisson, and all departure streams should be independent and Po A system is quasi-reversible <>> it has M ⇒ M 	product-form solution rould be independent
S. Belsamo, A. Marin - Università Ca' Foscari di Venezia - Italy	SFM '07 - PE	54	S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy	SFM '07 - PE

Product-form QN and properties

Station balance

A scheduling discipline holds station balance property if the service rates at which the customers in a position of the queue are served are proportional to the probability that a customer enters this position

symmetric scheduling disciplines

p position in the queue 1≤p≤n $\delta(p,n+1)$ probability that an arrival enters position p $\mu(n)$ service rate $\varphi_i(p,n)$ proportion of the service to position p A symmetric discipline is such that: $\delta(p,n+1) = \varphi_i(p,n+1)$ $\forall p, \forall n$

examples:

IS, PS, LCFSPr are symmetric but FCFS does not yields station balance $\delta(p,n+1) = 1$ if p=n+1, 0 otherwise, $\phi_i(p,n) = 1$, if p=1, 0 otherwise

station balance is defined for an isolated station

It is a sufficient condition for product-form

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

56

Product-form QN and properties

Insensitivity

For symmetric disciplines the QN steady state probabilities only depend on the **average** of the service time distribution and

the (relative) visit ratio

State probabilities and average performance indices are independent of - higher moments of the service time distribution

possibly different routing matrices that yield the same (relative) visit ratios

Note:

only symmetric scheduling disciplines allow product-form solution for non-exponential service distribution

symmetric disciplines immediately start serving a customer at arrival time => they are always pre-emptive discipline

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

Product-form QN: further extensions

Special forms of state-dependent routing

depending on state of the entire network or of subnetworks and/or single service centers

Special forms of QN with finite capacity queues and various **blocking** mechanisms various types of blocking constraints depending on blocking type, topology and types of stations

Batch arrivals and batch departures

Special disciplines example: Multiple Servers with Concurrent Classes of Customers

G-networks: QN with positive and negative customers that can be used to represent special system behaviors

Negative customer arriving to a station reduces the total queue length by one if the queue length is positive and it has no effect otherwise. They do not receive service. A customer moving can become either negative or remain positive Exponential and independence assumptions, solution based on a set of non linear traffic eq. Various extentions: e.g.,multi-class, reset-customers, triggered batch signal movement

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

58

Product-form QN: algorithms - single chain

Algorithms for closed QN with M stations and K customers (single chain)

Polynomial time computational complexity

Convolution

evaluation of the normalizing constant G and average performance indices

MVA

direct computation of average performance indices (mean response time, throughput, mean queue length) PASTA theorem (*arrival theorem*)

Convolution

based on a set of recursive equations, derivation of - marginal queue length distribution - mean queue length - mean response time - throughput - utilization time computational complexity: O(M K)	π _i (n _i) Ν _i R _i Χ _i U _i	
S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy	SFM '07 - PE	59

Product-form QN: Convolution Algorithm

Direct and efficient computation of the normalizing constant ${\bf G}$ in product form formula

Assume that stations

1,, D	have constan	nt service rate IS discipline (typ	e-3) (delay stations)	
D + 1,,D+I	have load inc	dependet service rates (load-ir	dependent)	
	(simple statio	ns)		
D + I + 1,, D	+ I + L = M ha	we load-dependent service rate	es	
G _j (k)	normalizing of k custome	constant for the QN considers and the first j nodes	ering a population	
$\mathbf{G}_{j} = (\mathbf{G}_{j}(0) \mathbf{G}_{j}(1)$) G _j (K))			
$G = \sum_{n \in E} \prod_{i=1}^{M} \xi$	$g_i(n_i)$	Then $G = G_M(K)$		
$G_{j}(k) = \sum_{n=0}^{k} f_{j}(k)$	$g_j(n) G_{j-1}(k-n)$	convolution of vectors	\mathbf{G}_j and $(\mathbf{g}_j(0) \dots \mathbf{g}_j(K))$) _j)
S. Balsamo, A. Marin - Università Ca' Foscari	di Venezia - Italy		SFM '07 - PE	60

Convolution Algorithm - multi-chain QN

For the first D stations with IS disciplines we immediately obtain, for $0 \le k \le K$

$G_{D}(\mathbf{K}) = \left[\sum_{j=1}^{D} \rho_{j}^{(1)}\right]^{K^{(1)}} \dots \left[\sum_{j=1}^{D} \rho_{j}^{(e)}\right]^{K^{(e)}} K^{(1)}$	1) ! K ^(c) !	
Throughput $X_j^{(c)} = e_j^{(c)} G_M(\mathbf{K}-1_c) / G_M(\mathbf{K})$		
Utilization $U_j^{(c)} = \rho_j^{(c)} G_M(\mathbf{K} \cdot 1_c) / G_M(\mathbf{K})$		
Mean queue length $N_j^{(c)} = \sum_{1 \le a \le K^{(c)}} \sum_{n: n^{(c)} = a}$	Prob{ n _i = n }	
Computational complexity $H = \prod_{1 \le c \le C} (K^{(c)} + 1)$ an iteration step of Convolution for a simple station requires for a load- dependent station requires	О(С Н) О(Н ²)	
Special case: QN where all the chains have K ^(c) = with load-independent stations, then	К=К/С , <i>О(М С К ^С)</i>	
S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy	SFM '07 - PE	65

Product-form QN: MVA

MVA

directly calculates the QN performance indices
avoids the explicitly computation of the normalizing constant
based on the arrival theorem and on Little's theorem

Arrival theorem

[Sevcik - Mitrani 1981; Reiser - Lavenberg 1980] In a closed product-form QN the steady state distribution of the number of customers at station i at customer arrival times at i is identical to

the steady state distribution of the number of customers at the same station at an arbitrary time with that user removed from the QN

This leads to a recursive scheme

Assume:

 1,..., D
 constant service rate and IS discipline (type-3) (delay stations)

 D + 1,...,D+I
 load independent service rates (simple stations)

 D + I + 1,..., D + I + L = M
 load-dependent service rates

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

Produc	t-form QN: MVA		
1) Mean response time			
$\mathbf{R}_{j}(\mathbf{K}) = 1 / \mu_{j}$	1≤j≤D, IS node (delay node)		
$R_{j}(K) = \frac{1}{\mu_{i}} (1 + N_{j}(K-1))$	D+1≤j≤D+I, simple node (load-	independent)	
J K		(Arrival theorem)	
$R_{j}(K) = \sum_{n=1}^{\infty} \frac{n}{\mu_{j}(n)} \pi_{j}(n-1) K-1$	l) K>0		
]	D+I+1≤j≤M, load-dependent		
2) Throughput			
$X_{j}(K) = \frac{K}{\sum_{i=1}^{M} \frac{e_{i}}{e_{j}} R_{i}(K)}$	for each node j	(Little's theorem)	
3) Mean queue length			
$N_j(K) = X_j(K) R_j(K)$	for each node j	(Little's theorem)	
S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy		SFM '07 - PE	67

Product-form QN: algorithms for multi-chain

Convolution

- MVA (Mean Value Analysis)
- Recal (Recursion by Chain Algorithm)
- DAC
- Tree convolution
- Tree-MVA

RECAL

- for networks with many customers classes but few stations

- main idea:

recursive scheme is based on the formulation of the normalizing constant G for C chains as function of the normalizing constant for C – 1 chain

```
- if K^{(c)} = \mathcal{K} for all the chains c, M and \mathcal{K} constant,
then for C \rightarrow \infty the time requirement is O(C^{M+1})
```

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

70

Product-form QN: algorithms for multi-chain

MVAC and DAC

- extends MVA with a recursive scheme on the chains
- direct computation of some performance parameters
- numerically robust, even for load-dependent stations
- possible numerical problems

Tree-MVA and Tree-Convolution

- for sparse network is sparse,
- (most of the chains visit just a small number of the QN stations)
- main idea: build a tree data structure where QN stations are leaves that are combined into subnetworks in order to obtain
- the full QN (the root of the tree)
- locality and network decomposition principle

For networks with class switching:

Note: it is possible to reduce a closed QN with C ergodic chains and class switching to an equivalent closed network with C chains without class switching

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

Approximate analysis of QN

Many approximation methods

Most of them do **not provide any bound** on the introduced error **Validation** by comparison with exact solution or simulation

Basic principles

- decomposition applied to the Markov process
- **decomposition** applied to the network (aggregation theorem)
- forced product-form solution
- for multiple-chain models: approximate algorithms for product-form QN based on MVA
- exploit structural properties for special cases
- other approaches

Various accuracy and time computational complexity

```
S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy
```

SFM '07 - PE

Process and Network Decomposition

Heuristics take into account the network model characteristics

NOTE: the identification of an appropriate state space partition affects the algorithm accuracy the time computational complexity

If the partition of E corresponds to a **NETWORK partition** into **subnetworks** \Rightarrow network decomposition subsystems are (possibly modified) subnetworks

The decomposition principle applied to QN is based on the **aggregation theorem** for QN

1. network decomposition into a set of subnetworks

analysis of each subnetwork in isolation to define an aggregate component
 definition and analysis of the new aggregated network

Exact aggregation (Norton's theorem) holds for product-form BCMP QN

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

74

Approximate analysis of QN

For multiple-chain QN approximate algorithms for product-form QN based on MVA - Bard and Schweitzer Approximation - (SCAT) Self-Correcting Approximation Technique generalized as the Linearizer Algorithm Main idea: approximate the MVA recursive scheme and apply an approximate iterative scheme Mean queue length For population K, the MVA recursive equations require $N_j^{(c)}$ (K - 1_d) for each chain d Approximation: $N_j^{(c)}$ (K - 1_d)= (|K - 1_d|_c / K^{(c)}) $N_j^{(c)}$ (K) where $|K - 1_d|_c = K^{(c)}$ if c=d = $K^{(c)}$ -1 if c=d

S. Balsamo, A. Marin - Università Ca' Foscari di Venezia - Italy

SFM '07 - PE

Example: database mirror

Model: open BCMP QN where a request is a customer

M = 3 stations

- station 1 represents the dispatcher
- station 2 the master
- station 3 the mirror

Assume Poisson arrivals of requests with rate λ

If we assume request independent routing => single chain QN, otherwise we should use a multi-chain model

A request can be fulfilled by the mirror with probability q and it generates a new request to the master with probability 1-q

```
dispatcher -> delay station

DB stations -> with PS queueing discipline Coxian service time distribution

Visit ratios: e_1=1, e_2=p+(1-p)(1-q), e_3=1-p

Then by setting \rho_i=\lambda e_i/\mu_i where \mu_i is the mean service rate of station i, i=1,2,3

BCMP formulas if \rho_i=<1

Examples: evaluate average response time for each node i R_i

and average overall response time
```

$R = R_1 + e_2 R_2 + e_3 R_3$

Possible parametric analysis of response time *R* as function of probability *p* to identify the optimal routing strategy S Batamo, A Marin - Universite Ca' Foscard II Venezie - Italy
SFM '07 - PE

