
Multi-Paradigm Modeling

Prof. William H. Sanders
D t t f El t i l d C t E i iDepartment of Electrical and Computer Engineering,

Information Trust Institute and
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
whs@uiuc.edu

www.mobius.uiuc.edu
www.perform.csl.uiuc.edu

Slide 1

p
www.iti.uiuc.edu

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Multi-Paradigm Modeling

• Multiple:
– Modeling Formalisms
– Model Composition Methods
– Measures and Measure Specification Methods

M d l S l i M h d– Model Solution Methods
– Model Connection Methods

• Developed by multiple research groups

Slide 2Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Outline

• Motivation: Dependability, Performance, and Performability
Evaluation

• The need for multi-formalism, multi-solution evaluation frameworksThe need for multi formalism, multi solution evaluation frameworks
– The Möbius modeling framework

• Model Specification Methods
– Atomic Models (e.g. SANs and PEPA)
– Reward Variable Specification

M d l C iti (d t t ti)– Model Composition (and state space generation)
– Model Connection

• Model Solution MethodsModel Solution Methods
– Simulation
– Analytic Methods

Slide 3

• Putting it all together

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Outline

• Motivation: Dependability, Performance, and Performability
Evaluation

• The need for multi-formalism, multi-solution evaluation frameworksThe need for multi formalism, multi solution evaluation frameworks
– The Möbius modeling framework

• Model Specification Methods
– Atomic Models (e.g. SANs and PEPA)
– Reward Variable Specification

M d l C iti (d t t ti)– Model Composition (and state space generation)
– Model Connection

• Model Solution MethodsModel Solution Methods
– Simulation
– Analytic Methods

Slide 4

• Putting it all together

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Motivation: Dependability Evaluation

d b l i h bili f d li ifi d i• Dependability is the ability of a system to deliver a specified service.
• System service is classified as proper if it is delivered as specified; otherwise it

is improper.
• System failure is a transition from proper to improper service.
• System restoration is a transition from improper to proper service.

improper
service

failure

i

proper
service

⇒ The “properness” of service depends on the user’s viewpoint!

restoration

Reference: J.C. Laprie (ed.), Dependability: Basic Concepts and Terminology,

Slide 5

p (), p y p gy,
Springer-Verlag, 1992.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Examples of Specifications of Proper Service

• k out of N components are functioning.
• every working processor can communicate with every other working

processor.
• every message is delivered within t milliseconds from the time it is sent.
• all messages are delivered in the same order to all working processors.g g p
• the system does not reach an unsafe state.
• 90% of all remote procedure calls return within x seconds with a correct

result.result.
• 99.999% of all telephone calls are correctly routed.

⇒ Notion of “proper service” provides a specification by which to evaluate a
system’s dependability.

Slide 6Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Dependability Measures: Availability

Availability - quantifies the alternation between deliveries of proper and
improper service.

– A(t) is 1 if service is proper at time t, 0 otherwise.
– E[A(t)] (Expected value of A(t)) is the probability that service is proper at

time t.
– A(0,t) is the fraction of time the system delivers proper service during

[0,t].
– E[A(0,t)] is the expected fraction of time service is proper during [0,t].
– P[A(0,t) > t*] (0 ≤ t* ≤ 1) is the probability that service is proper more

than 100t*% of the time during [0,t].g [,]
– A(0,t)t→∞ is the fraction of time that service is proper in steady state.
– E[A(0,t)t→∞], P[A(0,t)t→∞ > t*] as above.

Slide 7Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Other Dependability Measures

• Reliability - a measure of the continuous delivery of service
– R(t) is the probability that a system delivers proper service throughout [0,t].

• Safety - a measure of the time to catastrophic failure
– S(t) is the probability that no catastrophic failures occur during [0,t].
– Analogous to reliability, but concerned with catastrophic failures.g y, p

• Time to Failure - measure of the time to failure from last restoration. (Expected
value of this measure is referred to as MTTF - Mean time to failure.)

• Maintainability - measure of the time to restoration from last experienced
failure. (Expected value of this measure is referred to as MTTR - Mean time to
repair)repair.)

• Coverage - the probability that, given a fault, the system can tolerate the fault
and continue to deliver proper service.

Slide 8Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Illustration of the Impact of Coverage on Dependability

• Consider two well-known architectures: simplex and duplex.

λ

λ

Duplex System

λ

Simplex System

• The Markov model for both architectures is:

p y

2 c λ
1 12

μ
λ

1

λ

Slide 9

• The analytical expression of the MTTF can be calculated for each
architecture using these Markov models.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Illustration of the Impact of Coverage, cont.
• The following plot shows the ratio of MTTF (duplex)/MTTF (simplex) for

different values of coverage (all other parameter values being the same).
• The ratio shows the dependability gain by the duplex architecture.

1E+04

1E+03

1E+02

1E+01 c = 0.95

c = 0.99

⎞⎛ λ

1E+00
1E-04 1E-03 1E-02

• We observe that the coverage of the detection mechanism has a significant impact
h i h l 3 d h i i d d bili b

⎟
⎠

⎞
⎜
⎝

⎛
μ
λ raterepair torate failure of Ratio

Slide 10

on the gain: a change of coverage of only 10-3 reduces the gain in dependability by
the duplex system by a full order of magnitude.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Motivation: A Combined Performance/Dependability
Concept - Performabilityoncept erformab l ty

• Performability quantifies how well a system performs, taking into
account behavior due to the occurrence of faults.

• It generalizes the notion of dependability in two ways:
– includes performance-related impairments to proper serviceincludes performance related impairments to proper service.
– considers multiple levels of service in specification, possibly an

uncountable number.
• Performability measures are truly user-oriented, quantifying

performance as perceived by users.

Original reference: J. F. Meyer, “On Evaluating the Performability of
Degradable Computing Systems,” Proceedings of the 8th
International Symposium on Fault-Tolerant Computing, Toulouse,

Slide 11

International Symposium on Fault Tolerant Computing, Toulouse,
France, June 1978, pp. 44-49.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Slide 12Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Outline

• Motivation: Dependability, Performance, and Performability
Evaluation

• The need for multi-formalism, multi-solution evaluation frameworksThe need for multi formalism, multi solution evaluation frameworks
– The Möbius modeling framework

• Model Specification Methods
– Atomic Models (e.g. SANs and PEPA)
– Reward Variable Specification

M d l C iti (d t t ti)– Model Composition (and state space generation)
– Model Connection

• Model Solution MethodsModel Solution Methods
– Simulation
– Analytic Methods

Slide 13

• Putting it all together

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Integrated Modeling Framework Motivation

• No single formalism is best for representing all parts of a distributed
computing/communication system

Comp ter hard are net orks protocols and applications each– Computer hardware, networks, protocols, and applications each
call for a different representation

– Even within a “class” of application, different industry segments
use very different ways of representing a particular design

• No single solution method is adequate to solve all models
Di t t i l ti i ffi i t i b t i– Discrete-event simulation is efficient in many cases, but is
extremely slow in others (e.g., significant, but rare events), or
extreme system complexity)

• Research in new modeling methods and tools is significantly
hampered by the close link between model specification and model
solution methods, and the closed nature of existing tools

Slide 14

so ut o et ods, a d t e c osed atu e o e st g too s

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Modeling Complex System Behavior

• Modeling approach focuses on capturing system behaviors
and then measuring desired system propertiesg y p p

• Supports system with complex system behaviors, such as:
– Dynamic, state-dependant failure rates and probabilities
– Correlated failures and repairs
– Time- and state-dependent sequences of events
– User-specified redundancy, fail-over, recovery, repair

strategies
– Multiple distribution functions for event delays
– Custom behaviors defined by logical expressions

Slide 15Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Example Heterogeneous Model

Computer System

Hardware Network Application OS

Fault
Description Components Protocol Traffic Control/

Data Flow
Resource

Contention

VHDLFault Tree LOTOS,
Estelle

Queuing
Model

Block
Diagram
L

Stochastic
Petri Nets,

SANEstelle Model Language SANs

?
Slide 16

?
Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State of the Art: Single Formalism Tools
• Many performance/dependability evaluation tools have been developed that• Many performance/dependability evaluation tools have been developed that

provide a single modeling formalism, and support multiple solution methods, e.g.,
– Queueing networks, e.g., DyQN-Tool, HIT, LQNS, QNAP2, RESQ,

RESQME. Most tools support both simulation and product-form basedRESQME. Most tools support both simulation and product form based
solutions.

– Stochastic Petri nets and extensions, e.g., DSPNExpress, ESP, GreatSPN,
HiQPN-Tool, QPN-tool, SPNP, SPN2MGM, SPNL, SURF-2, TimeNET, and Q Q
UltraSAN. All tools support analytical/numerical solution; some support
simulation.

– Stochastic Process Algebras, e.g. EMPA, Dragon, PEPA Workbench,
TIPPtool, Two Towers, and Spades. All tools support analytical/-numerical
evaluation, some support simulation.

– Other modeling approaches, sometimes tailored to a specific application
d i MARCA DEPEND Fi HARP HIMAP P SAVEdomain, e.g., MARCA, DEPEND, Figaro, HARP, HIMAP, Peps, SAVE,
SPE*ED, and TANGRAM-II.

⇒ In most cases, each tool has multiple model solution methods (recognizing the fact
that no single solution method is sufficient in all cases) but a single model

Slide 17

that no single solution method is sufficient in all cases), but a single model
specification method.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State of the Art: Combination of Multiple Tools in a
Single Software Environment

• Several tools have been constructed the facilitate the combination of multiple
tools into a single environment, e.g.

IMSE (Integrated Modeling Support Environment) [Pooley 91]– IMSE (Integrated Modeling Support Environment) [Pooley 91]
• Contains tools for modeling, workload analysis, and system

specification
IDEAS (I d D i E i f A f C– IDEAS (Integrated Design Environment for Assessment of Computer
Systems and Communication Networks) [Fricks 96]

• Provides user interface to multiple tools without requiring a user to
l lti l i t f l d t t f tlearn multiple interface languages and output formats

– Freud [van Moorsel 98]
• Aims similar to those of ISME and IDEAS, but focuses on providing

a uniform interface to a variety of web-enabled tools

⇒ Focus is on building a common graphical interface for accessing multiple

Slide 18

g g p g p
tools and a common methods for reporting results.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State of the Art: Integrated Modeling Frameworks
• Integrated modeling frameworks aim to define an environment that can

accommodate multiple modeling formalisms, one or more ways to combine
models expressed in possibly different formalisms, and multiple model
solution methods e gsolution methods, e.g.
– SHARPE [Sahner 86, Sahner 96 …]

• Models expressed as combinatorial models, directed acyclic graphs,
Markov and semi-Markov models, product-form queueing networks,Markov and semi Markov models, product form queueing networks,
and GSPNs can be solved, and can exchange results expressed as
exponential-polynomial distribution functions

– SMART [Ciardo 96, Ciardo 97 …]
• Models expressed as SPNs, “software modeling language,” and

Markov chains can be solved, and can exchange results, possibly
repeatedly, using fixed-point iteration. Implements symbolic
representation of CTMCrepresentation of CTMC.

– APNN toolbox [Bause 98]
• Models converted to common “abstract PN notation” (APNN) and

can be solved in a variety of quantitative and functional analysis

Slide 19

can be solved in a variety of quantitative and functional analysis
methods.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Möbius Framework

FormalismModel Solver

FormalismModel Möbius SolverFormalism

F li

Model

M d l

Framework Solver

S l

M d l A b t t t ti f t

FormalismModel Solver

• Model: An abstract representation of some system
• Formalism: A modeling language
• Framework: A “language” in which modeling languages may be expressed

Slide 20Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Möbius Framework

• Open-ended, flexible
modeling environment.

Model
EditorsAFISolution

T h i
• Multi-formalism and multi-

solution framework
S l d l

Techniques

– Several model
specification languages

– Includes both simulationIncludes both simulation
and numerical analysis
solution techniques

ddi i l l i– Supports additional plug-in
modules using abstract
functional interface (AFI).

Slide 21

()

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

(Partial list of) Existing Möbius Modules

• Atomic Model formalisms
– Represent detailed component models
– Stochastic Activity Networks,

Buckets & Balls (Markov Chains) PEPABuckets & Balls (Markov Chains), PEPA,
Fault Trees, MODEST, AADL

• Compositional formalisms
– Combine atomic modelsCombine atomic models
– Rep Join, Graph, Action Synchronization

• Reward variables
– Define measures to evaluatee e easu es to eva uate
– Rate rewards, Impulse rewards

• Experiment Studies
– Vary model parametersy p
– Set and Range studies

• Solution techniques
– Distributed Simulation

Slide 22

– Analytical Solutions

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Model- and State-Level
Abstract Functional
Interfaces

Performs independently
of model structureInterfaces

Analysis: Simulation,

of model structure

Atomic Model A,
implements AFI

Atomic Model B

y ,
State-Space Exploration

and Transformation

Composed Model,

Atomic Model C
Atomic Model B

Performs independently of
representation of labelledComposed Model,

implements
Model AFI

representation of labelled
transition system

Implementation
of State Level AFI

using AFI State-Based Analysis:

Slide 23

using AFI y
Numerical CTMC analysis

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Model Support of the Abstract Functional Interface:
State Variables, Actions, and Properties

• Formally, a model in the Möbius framework is a set of “state variables,”
a set of “actions,” and set of “properties”

• State variables “contain” information about the state of the system being
modeled
– They have a type, which defines their “structure”ey ve ype, w c de es e s uc u e
– They have a value, which defines the “state” of the variable

• Actions prescribe how the value of state variables may change as a
f ti f tifunction of time

• Properties specify characteristics that may effect the solution of a model
• Other models and solvers may request information regarding or change y q g g g

to state of a model’s state variables, actions, and groups via the abstract
functional interface

• The format of this information is determined by the structure of a

Slide 24

• The format of this information is determined by the structure of a
model’s state variables and attributes of its actions

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State Variable Specification in the Möbius Framework

• The set of all state variable types is denoted T.
• The set T is constructed by repeated application of the following rules:

.
.

T
TZ

∈ℜ
∈

.2 then , If

.
t TTt

TS

⊂∈

∈

Restriction of a type

Set of names of state variables

....then ,...,, If
.2 then , If

2121

t

TtttTttt
TTt

nn ∈×××∈
∈∈ Sets of types (unordered)

Ordered lists of types2121 nn yp

Slide 25Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Action Specification in the Möbius Framework

• An action’s attributes specify how and when it changes state:

f l }{E bl d Σ
[0,1]) (:Delay

false}{true, :Enabled
≥→ℜ→Σ

→Σ

false} {true, :Interrupt
[0,1])(:Effort

→Σ
≥→ℜ→Σ

}{:Weight

}{ Z :Rank

∪ℜ→Σ

∪→Σ
≥

+

Undefined

Undefined

PPP},{DDD,:Policy
 : Complete

}{:Weight

→Σ
Σ→Σ

∪ℜ→Σ Undefined

Slide 26

PPP}...,{DDD,:Policy →Σ

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Model Execution Policies

• Models change state by the
firing of actions, according
to formalism-specific rules Worker

Effortp
hidden by AFI

• The execution policy is
defined on a per action and

Sometimes

p
per state basis
– Actions can be interrupted,

reset, continue with a

Always preserve

Minimum

prs

different distribution, or
continue with time same
distribution
G li d ifi

Always discard
Never

Always race-resample

prd
Always
discard

Always preserve
pri Sometimes

Minimum
Task
Effort

– Generalizes and unifies
existing execution policies

– Details can be in Deavours
and Sanders PNPM 2001

Sometimes

Interruption

reactivation

Slide 27

and Sanders, PNPM 2001.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State-Level Abstract Functional Interface Motivation
• Many ways towards few numerical procedures• Many ways towards few numerical procedures

– Variety of modeling formalisms
– Variety of CTMC representations

Disk-based

SKronecker MTBDDOn-the-fly Sparse
Matrix

I t f

P
RandomizationSORJacobi

Interface

PowerSOR

Goal: Interface to support common usage of different

Slide 28

pp g
representations

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Definition of State-Level AFI

• General idea: Represent modeling formalism abstractly as a
labeled transition system (LTS):

S: Set of states
δ: State transition relation with labels l and real value λ

Label l is used to distinguish events,
Value λ is used to carry the rate

In addition:

l,λ

In addition:
• Rate rewards per state

• Impulse rewards per transition in δ

• The interface exports information of concerning the LTS in an
OO way

Slide 29

containers & iterators

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State-Level AFI Functionality

• Container classes:
– getRow all (nonzero) elements of a row
– getColumn all (nonzero) elements of a columngetColumn all (nonzero) elements of a column
– getAllEdges all (nonzero) elements of a matrix

• Each of the methods returns a container which provides anEach of the methods returns a container which provides an
iterator class to access its elements one after the other

• Elements are transition objects derived from a template class
which allows access via functions:

StateType &row() ; StateType &col();
RateType &rate(); LabelType &label();

RateType &reward(int RewardNumber) ;

Slide 30

RateType &reward(int RewardNumber) ;

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Observed Performance,
Slowdown Percentage per Iteration Step

110 FMS Sparse
Jacobi
C i S

70

90 Courier Sparse
Jacobi
FMS Sparse SOR

50

Courier Sparse
SOR
FMS Kronecker
Jacobi

30
Jacobi
Courier Kronecker
Jacobi
FMS Kronecker

-10

10
FMS Kronecker
SOR
Courier Kronecker
SOR

Slide 31

107 states
10

104 105 106

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Outline

• Motivation: Dependability, Performance, and Performability
Evaluation

• The need for multi-formalism, multi-solution evaluation frameworksThe need for multi formalism, multi solution evaluation frameworks
– The Möbius modeling framework

• Model Specification Methods
– Atomic Models (e.g. SANs and PEPA)
– Reward Variable Specification

M d l C iti (d t t ti)– Model Composition (and state space generation)
– Model Connection

• Model Solution MethodsModel Solution Methods
– Simulation
– Analytic Methods

Slide 32

• Putting it all together

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Atomic Model Representation
• Multiple modeling languages available, including:p g g g , g

– Stochastic Activity Networks (‘SANs’), PEPA (textual-based process
algebra), Markov chains, Fault trees,

– Parameters of the model can be specified variables and set at analysisParameters of the model can be specified variables and set at analysis
time.

• Facilitate modeling of hardware, software, protocols, and application in a
unified mannerunified manner

Slide 33Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Notes on Stochastic Petri Nets
• SPNs are much easier to read write modify and debug than Markov chains• SPNs are much easier to read, write, modify, and debug than Markov chains.

• SPN to Markov chain conversion can be automated to afford numerical
solutions to Markov chains.

• Most SPN formalisms include a special type of arc called an inhibitor arc,
which enables the SPN if there are zero tokens in the associated place, and the
id tit (d thi) f ti E l dif SPN t i it i itidentity (do nothing) function. Example: modify SPN to give writes priority.

• Limited in their expressive power: may only perform +, -, >, and test-for-zero
operations.operations.

• These very limited operations make it very difficult to model complex
interactions.

• Simplicity allows for certain analysis, e.g., a network protocol modeled by an
SPN may detect deadlock (if inhibitor arcs are not used).

Slide 34

• More general and flexible formalisms are needed to represent real systems.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Stochastic Activity Networks
The need for more expressive modeling languages has led to severalThe need for more expressive modeling languages has led to several
extensions to stochastic Petri nets. One extension that we will examine is
called stochastic activity networks. Because there are a number of subtle
di ti ti l ti t SPN t h ti ti it t k diff tdistinctions relative to SPNs, stochastic activity networks use different
words to describe ideas similar to those of SPNs.

Stochastic activity networks have the following properties:

A general a to specif that an acti it (transition) is enabled• A general way to specify that an activity (transition) is enabled
• A general way to specify a completion (firing) rule
• A way to represent zero-timed eventsy p
• A way to represent probabilistic choices upon activity completion
• State-dependent parameter values

G l d l di ib i i i i

Slide 35

• General delay distributions on activities

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

SAN Symbols
Stochastic activity networks (hereafter SANs) have four new symbols inStochastic activity networks (hereafter SANs) have four new symbols in
addition to those of SPNs:

I t t d t d fi l bli di t d– Input gate: used to define complex enabling predicates and
completion functions

– Output gate: used to define complex completion functions

– Cases: (small circles on activities) used to specify probabilistic
choices

– Instantaneous activities: used to specify zero-timed events

Slide 36Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

SAN Enabling Rules
An input gate has two components:An input gate has two components:
• enabling_function (state) → boolean; also called the enabling
predicate
• input_function(state) → state; rule for changing the state of the model

i i i bl d if f d i h bliAn activity is enabled if for every connected input gate, the enabling
predicate is true, and for each input arc, the number of tokens in the
connected place ≥ number of arcs.

We use the notation MARK(P) to denote the number of tokens in place
PP.

Slide 37Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Example SAN Enabling Rule
Example:

IG1 Predicate:
if((MARK(P1)>0 && MARK(P2)==0)||

(MARK(P1)==0 && MARK(P2)>0))
return 1;etu ;

else return 0;

Activity a1 is enabled if IG1 predicate is true (1) and MARK(P3) > 0.

Slide 38

Activity a1 is enabled if IG1 predicate is true (1) and MARK(P3) 0.
(Note that in Möbius, “1” is used to denote true.)

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Cases
Cases represent a probabilistic choice of an action to take when an activityCases represent a probabilistic choice of an action to take when an activity
completes.

α

1−α

When activity a completes, a token is removed from place P1, and with probability
α, a token is put into place P2, and with probability 1 - α, a token is put into place
P3.P3.

Note: cases are numbered, starting with 1, from top to bottom.

Slide 39Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Output Gates
When an activity completes an output gate allows for a more general change in theWhen an activity completes, an output gate allows for a more general change in the
state of the system. This output gate function is usually expressed using pseudo-C
code.

Example OG Function
MARK(P) = 0;

1 - c

c

Slide 40Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Instantaneous Activities
Another important feature of SANs is the instantaneous activity An instantaneousAnother important feature of SANs is the instantaneous activity. An instantaneous
activity is like a normal activity except that it completes in zero time after it
becomes enabled. Instantaneous activities can be used with input gates, output
gates and casesgates, and cases.

Instantaneous activities are useful when modeling events that have an effect on theInstantaneous activities are useful when modeling events that have an effect on the
state of the system, but happen in negligible time, with respect to other activities in
the system, and the performance/dependability measures of interest.

Slide 41Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

SAN Terms
1 activation time at which an activity begins1. activation - time at which an activity begins

2. completion - time at which activity completes

3. abort - time, after activation but before completion, when activity is no longer
enabled

4. active - the time after an activity has been activated but before it completes or
aborts.

Slide 42

Illustration of SAN Terms

activity time

activation completion

t
activation aborted

enabled

completion

activity time

activity
time

activation completion

activity
time

and activation t

enabled

t

enabled

Slide 43

enabled

Completion Rules
When an activity completes the following events take place (in the orderWhen an activity completes, the following events take place (in the order
listed), possibly changing the marking of the network:

1. If the activity has cases, a case is (probabilistically) chosen.
2. The functions of all the connected input gates are executed (in an

nspecified order)unspecified order).
3. Tokens are removed from places connected by input arcs.
4. The functions of all the output gates connected to the chosen case p g

are executed (in an unspecified order).
5. Tokens are added to places connected by output arcs connected to

th hthe chosen case.

Ordering is important, since effect of actions can be marking-dependent.

Slide 44

O de g s po a , s ce e ec o ac o s ca be a g depe de .

Marking Dependent Behavior
Virtually every parameter may be any function of the state of the model ExamplesVirtually every parameter may be any function of the state of the model. Examples
of these are

• rates of exponential activities
t f th ti it di t ib ti• parameters of other activity distributions

• case probabilities

An example of this usefulness is a model of three redundant computers where the
coverage (probability that a single computer crashing crashes the whole system)
increases after a failure.

aa
case 1 0.1 + 0.02 * MARK(P)
case 2 0.9 – 0.02 * MARK(P)

c

1 - c

Slide 45Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Example Problem

• A database server is composed of a compute server and three file
servers, and can queue up to Nc requests at a time (including the one
in service).

• Requests arrive at rate λa and spend on average 1/λCPU time at the
compute server being processed.compute server being processed.

• The request is then forwarded to the file server that has the fewest
outstanding requests.

• Requests are processed at a rate of λD1, λD2, and λD3 for file servers
D1, D2, and D3 respectively.

• File server buffers may hold at most Nf requests (including requests inFile server buffers may hold at most Nf requests (including requests in
service); if all buffers are full, the request is discarded.

Slide 46Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

SAN Representation of Example Database Problem

λD1

λD2

λD3

Slide 47Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Gate Definition
Guard Predicate

Gate Functions for SAN

Guard Predicate
MARK(Queue) < GLOBAL_S(Nc)

Function
;

fGate Definition
Route Function

if (MARK(D1) == GLOBAL_S(Nf) &&
MARK(D2) == GLOBAL_S(Nf) &&
MARK(D3) GLOBAL S(Nf))MARK(D3) == GLOBAL_S(Nf))

return;
if (MARK(D1) < MARK(D2)) {

if (MARK(D1) < MARK(D3)) {
MARK(D1)++;MARK(D1)++;

} else {
MARK(D3)++;

}
} else {} else {

if (MARK(D2) < MARK(D3)) {
MARK(D2)++;

} else {
MARK(D3)++;

Slide 48

() ;
}

}

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

A Summary of PEPA

• PEPA stands for “Performance Evaluation Process Algebra”
[Hillston 96]

• Primitive process algebra actions become timed PEPA activities:

enter.exit.Spec (enter,r).(exit,s).Spec

• r and s are the parameters of exponentially distributed random
variables which determine the time it takes for each activity to y

complete

• What are the primitives for building PEPA models?

Slide 49Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

PEPA Combinators

1. Prefix: given an activity (a,r), and a process P, (a,r).P is a
process which performs the activity (a,r) and then becomes P

2. Choice: P + Q is a process which expresses competition
between P and Q

3. Cooperation: given processes P and Q, and a set of activity
names L, the process P <L> Q expresses the parallel

composition of P and Q with synchronization on L activities; c fcomposition of P and Q with synchronization on L activities; c.f.
increasing the number of tokens in a SAN place

4. Hiding: given a process P, and a set of activity names L, the g g p y
process P/L hides those names in L from further interaction

Slide 50Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Incorporating PEPA into Möbius

h bi A i i A i d lDue to the Möbius AFI, incorporating PEPA as an atomic model
formalism requires identifying the following:
– A useful notion of state variable
– A notion of action for changing state

We would like PEPA to be useful with respect to current
d d l f li i bl h ldcomposed model formalisms, so state variables should

• Be meaningful to a model with which the PEPA model is
composed (partner model), andp (p),

• When changed, effect an understandable change in the state
of the PEPA model

State Based Model Composition:
• Actions seem straightforward… (PEPA activities)
• but how can a partner model cause a meaningful change in the

Slide 51

• … but how can a partner model cause a meaningful change in the
state of a PEPA model?

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Parameterized PEPA (PEPAk)

• “Extend” PEPA to explicitly include process parameters in the syntax
• Employs a well-understood theory that dates back to the 1980s (e.g. p y y (g

[Milner 89]). The theory is not new, but the application is!

For example – a M/M/s/n queue:For example a M/M/s/n queue:

Queue[m,s,n] := [m < n] => (in,lambda).Queue[m+1,s,n]

+ [m > 0] => (out,mu*min(s,m)).Queue[m-1,s,n]

• For modeling convenience, we also include guards (and variable
communication via cooperating activities, not shown here)

Slide 52

• But have we invented a new stochastic process algebra?

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

PEPA Semantics for PEPAk

• Not really a new process algebra – we can translate a PEPAk
process definition into a set of indexed PEPA process definitions
– Process parameters become instantiated as indices to the

defining variable
Evaluate guards; eliminate subsequent behavior from definition– Evaluate guards; eliminate subsequent behavior from definition
if guard is false

– Evaluate expressions used in activity rates
– Use Milner’s construction to turn output activities into sums

over activities with indexed types (rates need no modification!)
Th b h i f PEPAk d l i Möbi i th th• The behavior of a PEPAk model in Möbius is the same as the
behavior of the PEPA model to which its semantics translate it.

Slide 53Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

The Mapping

• The state variables available for sharing with a partner model are
(approximately) the process parameters used in the definitions of
the PEPAk processesthe PEPAk processes
– When the process algebra model consists of the parallel

cooperation of several sequential components, we provide the p q p p
union of the process parameters (with some scoping
technicalities employed)

The o erall state of the process algebra model is the state of the• The overall state of the process algebra model is the state of the
process parameters, and the symbolic state of each sequential
component

• The Möbius actions are taken to be the individual unsynchronized
activities of each PEPAk component, along with every possible
combination of synchronized activities

Slide 54

combination of synchronized activities

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

• The ability of a partner model to unilaterally change some shared state

Implications for the Process Calculus
• The ability of a partner model to unilaterally change some shared state

has consequences for the process algebra – consider the following
example:

S[x] := [x!=1] => (a1,r).(b,s).S[1] S[x] := [x!=1] => (a1,r).S’[1]S[x] : [x! 1] > (a1,r).(b,s).S[1]

+ [x!=2] => (a2,r).(b,s).S[2]

+ [x!=3] => (a3,r).(b,s).S[3]

S[x] : [x! 1] > (a1,r).S [1]

+ [x!=2] => (a2,r).S’[2]

+ [x!=3] => (a3,r).S’[3]

S’[x] := (b,s).S[x]

• Furthermore, equivalence relations may not be employed for aggregation
of parameterized definitions – although they be used for non-

[] (,) []

of parameterized definitions although they be used for non
parameterized components (e.g., (P[2] || P[3]) may not be reduced).

Slide 55Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

What does Möbius use and generate?
F l Möbi ti t i l t th d t d t i h th it• For example, every Möbius action must implement a method to determine whether it
enabled to later “fire”. For a PEPA model, the method below is always used, and
provided in the PEPA base classes:

• Möbius generates C++ code for each specific PEPA model – for example, to
determine if a guard is satisfied in the current state, or to determine the effect of
firing an activity:

Slide 56Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Reward Variables in Mobius

Reward variables are a way of measuring performance- or
dependability-related characteristics about a model.

Examples:
– Expected time until service
– System availability

N b f i t d k t i i t l f ti– Number of misrouted packets in an interval of time
– Processor utilization
– Length of downtimeLength of downtime
– Operational cost
– Module or system reliability

Slide 57

y y

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Reward Structures

Reward may be “accumulated” two different ways:

– A model may be in a certain state or states for some period of
time, for example, “CPU idle” states. This is called a rate

dreward.
– An activity may complete. This is called an impulse reward.

The reward variable is the sum of the rate reward and the impulse
reward structures.

Slide 58Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Reward Structure Example
A web server failure model is used to predict profits When the web server is fullyA web server failure model is used to predict profits. When the web server is fully
operational, profits accumulate at $N/hour. In a degraded mode, profits accumulate
at Repairs cost $K./hour.6

1 N

()
⎪
⎩

⎪
⎨

⎧
=

0
6
1 N
N

mR
m is a fully functioning marking
m is a degraded-mode marking
otherwise

() ⎨
⎧−

=

⎩0

K
aC

otherwise

a is an activity representing repair

By carefully integrating the reward structure from 0 to t, we get the profit at time t.

()
⎩
⎨= 0

aC
otherwise

This is an example of an “interval-of-time” variable.

Slide 59Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Reward Variables

A d i bl is the s m of the imp lse and rate re ardA reward variable is the sum of the impulse and rate reward
structures over a certain time.

Let [t, t + l] be the interval of time defined for a reward variable:

– If l is 0, then the reward variable is called an instant-of-time
reward variable.

– If l > 0, then the reward variable is called an interval-of-time
reward variable.

– If l > 0, then dividing an interval-of-time reward variable by l

Slide 60

gives a time-averaged interval-of-time reward variable.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Reward Variable Specification

Reward Structure

Instant-of-Time
Interval-of-Time

Time-Average Interval-of-Time

t lim as t
goes to

[t, t + l]
lim as t

[t, t + l] [t, t + l]
lim as l
goes to
infinitygoes to

infinity [t, t + l] goes to
infinity[t, t + l]

lim as l
goes to

infinity
[t, t + l]
lim as t
goes to

Slide 61

infinity
g
infinity

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Specifying Reward Variables in Möbius
• When specifying a rate portion of a reward structure in Möbius you must define• When specifying a rate portion of a reward structure in Möbius, you must define

a predicate and function.
– predicate: while true (i.e., integer greater than 0 in C), accumulate the

rewardreward
– function: the value (i.e., double in C) to accumulate

• Note that both the predicate and function may be any C statement or expression.

Queue Length
Rate rewards

b d bsubnet = database
Predicate:

1
Function:Function:

MARK(Queue)
Impulse reward

none

Slide 62Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Model Composition Basics

• Model composition formalisms permit the construction of models from• Model composition formalisms permit the construction of models from
other models by sharing state variables or actions between models

• New model implements AFI, just like an atomic model
• State variable sharing can be of two types:

– Equivalence sharing, where a state variable or “part” of state variable
from one model is identified with a state variable or “piece” of statefrom one model is identified with a state variable or piece of state
variable in another model (information flow is bi-directional)

– Functional sharing, where the state of a state variable in one model is
defined to be a function of another submodel’s state (informationdefined to be a function of another submodel s state (information
flow is one-direction)

• Two complete or partial state variables can be equivalently shared if:
– Their structure is the same (as defined by the state variable

specification syntax presented earlier - in short, they are of the same
type).

Slide 63

yp)
– They have the same initial value

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Model Composition in Mobius
• Hierarchical model construction• Hierarchical model construction

– System model constructed by assembling multiple component models.
– Can combine models built with different formalisms

• Rapid model development
– Simple initial component models can be swapped out later for more complex ones.

• Multiple composition techniques provide flexibility in model construction
– Rep / Join Graph Composition (state sharing)
– General Grap Composition (State sharing)
– General Graph composition (action syncronization)

Slide 64Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Basic Model State-Space Generation in Mobius
If the activity delays are exponential it is straightforward to convert a SAN to aIf the activity delays are exponential, it is straightforward to convert a SAN to a
CTMC. We first look at the simple case, where there is no composed model.

Slide 65Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State Space (Generated by Möbius)

State No. CPUboards1 CPUboards2 NumComp (Next State, Rate)
1 3 3 2 (2,.p1λ),(3,p2λ),(4,P3λ),(5,p1λ),(6,p2λ,),(7,p3λ)
2 2 3 2 (8,p1λ),(3,p2λ),(4,p3λ),(9,p1λ),(10,p2λ),(11,p3λ)
3 0 3 1 (12,p1λ),(13,(p2+p3) λ)
4 0 3 04 0 3 0
5 3 2 2 (9,p1λ),(12,p2λ),(14,p3λ),(15,p1λ),(6,p2λ),(7,p3λ)
6 3 0 1 (10,p1λ),(13,(p2+p3) λ)
7 3 0 0
8 1 3 2 (3,(p1+p2) λ),(4,p3λ),(16,p1λ),(17,p2λ),(18,p3λ)
9 2 2 2 (16,p1λ),(12,p2λ),(14,p3λ),(19,p1λ),(10,p2λ),(11,p3λ)
10 2 0 1 (17,p1λ),(13,(p2+p3) λ)
11 2 0 0
12 0 2 1 (20,p1λ),(13,(p2+p3) λ)
13 0 0 0
14 0 2 0
15 3 1 2 (19,p1λ),(20,p2λ),(21,p3λ),(6,(p1+p2) λ),(7,p3λ)
16 1 2 2 (12,(p1+p2) λ),(14,p3λ),(22,p1λ),(17,p2λ),(18,p3λ)
17 1 0 1 (13, λ)
18 1 0 018 1 0 0
19 2 1 2 (22,p1λ),(20,p2λ),(21,p3λ),(10,(p1+p2λ),(11,p3λ)
20 0 1 1 (13, λ)
21 0 1 0
22 1 1 2 (20,(p1+p2) λ),(21,p3λ),(17,(p1+p2) λ),(18,p3λ)

Slide 66Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Underlying Markov Model (State Transition Rates Not Shown)

653 2 1 653 2 1

7124 10

9

15148 11

9

58

13

192016 17

Slide 67

2118 22

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Reduced Base Model Construction in Mobius

• “Reduced Base Model” construction techniques make use of composed model
structure to reduce the number of states generated.

• A state in the reduced base model is composed of a state tree and an impulse
reward.

• During reduced base model construction, the use of state trees permits an
algorithm to automatically determine valid lumpings based on symmetries in the

d d lcomposed model.

• The reduced base model is constructed by finding all possible (state tree,
impulse reward) combinations and computing the transition rates between states.

• Generation of the detailed base model is avoided.

Slide 68Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Example Reduced Base Model State Generation

Composed Model computer

Slide 69Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Example Reduced Base Model States and Transitions

2

R (NumComp = 2)

(state 1)

computer (CPUboards = 3)

coveredcovered

uncovered
catastrophic

1 1

R (NumComp = 2)

1 1

R (NumComp = 1)

1 1

R (NumComp = 0)

computer
(CPUboards = 3)

computer
(CPUboards = 2)

computer
(CPUboards = 3)

computer
(CPUboards = 0)

computer
(CPUboards = 3)

computer
(CPUboards = 0)

Slide 70

(state 4)(state 3)(state 2)

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Markov Chain of Reduced Base Model
(State Transition Rates not Shown)

32

1

4

32

8

65

8

97

1110

Slide 71

1312

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

State-Space Generation in Möbius
(For generating random process representations of models with all

exponential or exponential/deterministic timed activities)exponential or exponential/deterministic timed activities)

Print out states
and reward
variables

Print out absorbing
states. Useful to
detect problems p
when attempting a
steady-state
solution.

Place comments, as
specified by edit
comments, in file.

Slide 72

,

State-space generation must be done before all analytic/numerical solutions are done.
Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

MDD Representation of State-sharing Composed Models
(NSMC ’03)

• Join and Replicate operators
Join

SV1

SV1 M1 M2

Join Rep (3)

M1 M2
M1M1M1

⇒
p ()

M1

• Any atomic model formalism that can share state variables
– E.g., SAN, PEPAk, and Buckets and Balls

• Replicate induces symmetry
• Global and local actions

Slide 73Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

MDD Data Structure by Example

• Partitioning SVs based on
composition structure Join

Rep2 (N)

– Maximizing efficiency of
local SS exploration

– Simplifying global

IO porterror handlercpuRep1 (M)

memory
SS exploration

• Dependability model
of spacecraft flight control

y

Rep2MDD level
assignment

0

system Join

mem

Rep1

outer replicate

assignment

i li

1

2

3

mem

inner replicate

2+M

Slide 74Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Composed-Model Induced Lumping of CTMC

• Redundant states (paths)
• Rep node c implies

equivalence relation R
1 2

xRep

AM 1

x

equivalence relation Rc
1 2

2

1

1

AM

AM

1

2

• Overall equivalence relationOve a equ va e ce e a o
• Canonical representative state in each class min(v)
• may become exponentially large ⇒ break it up into many

extremely smaller MDDs ⇒ faster computation of

Slide 75

extremely smaller MDDs ⇒ faster computation of

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

SSG and Lumping Performance

• This is a worst case example: No local behavior
• Drastic decrease in number of states in the lumped SS (up to 6 orders of

magnitude)
i b f d i h l d b ill ll• Increase in number of nodes in the lumped state space but still small

compared to other entities
• Very small unlumped and lumped SS representation

Slide 76Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

CTMC Enumeration Performance

• Fairly fast iteration: Slowdown of 1 to 5 times, relative to direct sparse
matrix access

Slide 77

• Solve dramatically larger larger CTMCs

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Model Connection

• Model connection formalisms permit the construction of model
solutions from a set of models by exchanging “results” between the
modelsmodels

• The abstract functional interface provides the infrastructure necessary
to build connection formalisms

• “Results” can be:
– The mean and/or variance of a the a performance variable

Th d it di t ib ti f ti f f i bl– The density or distribution function of a performance variable
(e.g. exponential-polynomial distribution)

– Some automatically-constructed more-abstract model y
representation, e.g.,

• Hidden Markov model
M k d l t d P i

Slide 78

• Markov-modulated Poisson processes

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

General Connection Formalism

• A connected model is a set of solvable models, and a diagram for passing
results between those models
– Heterogeneous submodelsg
– General graph structure (cyclic or acyclic) submodels

Submodel A

Submodel ESubmodel D CF 3

CF 2

CF 1 Submodel CSubmodel B

Slide 79

DB 1

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Connection Solver
• The connection solver defines a multi-step solution processp p

– Solution from one model become inputs to a subsequent model.
– Perform fixed point iteration by defining a starting point and ending

condition on a cyclical graphcondition on a cyclical graph.
• Four connected model elements:

– Solver nodes define a sol. step
– Connection function nodes

combine multiple results using
mathematical and logical g
expressions.

– Database nodes import
previously computed solutionpreviously computed solution
results from the results database.

– Conduits connect nodes in the
graph and represent data passing

Slide 80

graph and represent data passing
between the nodes.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Outline

• Motivation: Dependability, Performance, and Performability
Evaluation

• The need for multi-formalism, multi-solution evaluation frameworksThe need for multi formalism, multi solution evaluation frameworks
– The Möbius modeling framework

• Model Specification Methods
– Atomic Models (e.g. SANs and PEPA)
– Reward Variable Specification

M d l C iti (d t t ti)– Model Composition (and state space generation)
– Model Connection

• Model Solution MethodsModel Solution Methods
– Simulation
– Analytic Methods

Slide 81

• Putting it all together

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Types of Discrete-Event Simulation in Mobius
• Basic simulation loop specifies how the trajectory is generated but does not• Basic simulation loop specifies how the trajectory is generated, but does not

specify how measures are collected, or how long the loop is executed.

H ll t d d h l (d h ti) th l i• How measures are collected, and how long (and how many times) the loop is
executed depends on type of measures to be estimated.

• Two types of discrete-event simulation are implemented in Mobius. The choice
of which one to use depends on what type of measures are to be estimated.

– Terminating - Measures to be estimated are measured at fixed instants of
time or intervals of time with fixed finite point and length.

– Steady-state - Measures to be estimated depend on instants of time whose
starting points are taken to be t →∞.

Slide 82Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Support for Generally Distributed Action
Timings in Mobius

• Mobius supports use of the following activity time distributions:

• exponential • normal • gamma • binomial• exponential • normal • gamma • binomial
• deterministic • lognormal • beta • negative binomial
• geometric • erlang • uniform • hyperexponential
• weibull • cond weibull

• Parameters for distributions are as given in the manual, and are
described in detail in [Law 91]described in detail in [Law 91]

• Note that all distributions are truncated at zero (since time does not
flow backwards) and hence a distribution’s mean (or other
h t i ti) t b ifi dcharacteristics) may not be as specified.

Slide 83Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Simulator Statistics Editor

i bl d iVariable Type and Times
for Terminating

Simulation

Batch Size andBatch Size and
Initial Transient in

Steady-State Simulation

Slide 84Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Simulator Statistics Editor

Estimator Types

Slide 85Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Simulator Statistics Editor

Confidence Interval
Width and Level

Slide 86Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Simulator Editor

Maximum and Minimum
Number of Replications to Run

Number of Batches between
each calculation of the variance

T L l f D b iTrace-Level for Debugging

File Name of Output File

Slide 87Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Numerical/Analytical Solution Techniques

1) Transient Solution
– Standard Uniformization (instant-of-time variables)()
– Adaptive Uniformization (instant-of-time variables)
– Interval-of-time Uniformization (expected value, interval-of-

time variables)

2) Stead state Sol tion2) Steady-state Solution
– Direct Solution (instant-of-time steady-state variables)
– Iterative Solution (instant-of-time steady-state variables)Iterative Solution (instant of time steady state variables)

Slide 88Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Möbius Analytical Solvers

Analytic Solvers (for reward variables only)

Model Class
Steady-
state or

Instant-of-time
or

Mean,
Variance, or

Applicable
Analytic

Transient Interval-of-time Distribution Solver
Steady-

state
Instant-of-timea Mean,

Variance, and
Distribution

dss and iss

f i d

All activities
exponential

i Instant-of-time Mean,
Variance, and
Distribution

trs and atrsTransient

Interval-of-time Mean ars

Exponential and
Deterministic

activities

Steady-
state

Instant-of-timeb Mean,
Variance, and
Distribution

diss and
adiss

a if only rate rewards are used, the time-averaged interval-of-time steady-state measure is
identical to the instant-of-time steady-state measure (if both exist).

b provided the instant-of-time steady-state distribution is well-defined. Otherwise, the time-
averaged interval of time steady state variable is computed and only results for rate

Slide 89

averaged interval-of-time steady-state variable is computed and only results for rate
rewards should be derived.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Transient Uniformization Solver
(for transient solution of instant-of-time variables)

I f i i bl iInstant-of-time variable time
points of interest. Multiple time
points may be specified,
separated by spacesseparated by spaces.

Number of digits of accuracy in
the solution Solution reported isthe solution. Solution reported is
a lower bound.

Volume of intermediate results
reported. “1” gives the greatest
volume, greater numbers less.

Slide 90Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Adaptive Uniformization Solver (atrs)
(for transient solution of instant-of-time variables)

Instant-of-time variable time
points of interest. Multiple time
points ma be specifiedpoints may be specified.

Number of digits of accuracy in
the solution Solution reported isthe solution. Solution reported is
a lower bound.

Volume of intermediate results
reported. “1” gives the greatest
volume, greater numbers less.

Slide 91Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Accumulated Reward Solver (ars)
(solves for expected values of interval-of-time and time-averaged interval-

of-time variables on intervals [t0 t1] when both t0 and t1 are finite)of time variables on intervals [t0, t1] when both t0 and t1 are finite)

Number of digits of
i haccuracy in the

solution. Solution
reported is a lower
bound

Series of time
intervals for which
solution is desired.

bound. Intervals are
separated by spaces.
Each interval can be
specified as t :tV l f specified as t1:t2.Volume of

intermediate results
reported. “1” gives the
greatest volume greatergreatest volume, greater
numbers less.

Th l t d d l i b d if i ti

Slide 92

The accumulated reward solver is based on uniformization,
so the hints given for the transient solver apply here as well.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Direct Steady-State Solver (dss)
(for steady-state solution of instant-of-time variables)

Stopping criterion used in
iterative refinement
phase, after direct

V l f

p ,
solution is done.

Number of rows to search
Volume of
intermediate
results reported.
“1” gives the

for the “best” pivot when
performing LU
decomposition

1 gives the
greatest volume,
greater numbers
less

“Grace” factor by which
elements may become
pivotsless. pivots

Value that, when multiplied by smallest matrix element, is
h h ld hi h l b d d i

Slide 93

threshold at which elements may be dropped in LU
decomposition.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Iterative Steady-State Solver (iss)
(for steady-state solution of instant-of-time variables)

Stopping criterionStopping criterion,
expressed as 10-x, where x is
given. The criterion used is
the infinity difference norm.the infinity difference norm.

SOR weight factor.
Values < 1 guarantee g
convergence, but slow it.
Values >= 1 speed
convergence, but may not
converge.

Maximum number of
it ti ll d

Slide 94

iterations allowed.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Outline

• Motivation: Dependability, Performance, and Performability
Evaluation

• The need for multi-formalism, multi-solution evaluation frameworksThe need for multi formalism, multi solution evaluation frameworks
– The Möbius modeling framework

• Model Specification Methods
– Atomic Models (e.g. SANs and PEPA)
– Reward Variable Specification

M d l C iti (d t t ti)– Model Composition (and state space generation)
– Model Connection

• Model Solution MethodsModel Solution Methods
– Simulation
– Analytic Methods

Slide 95

• Putting it all together

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Design of Experiments
• Models of complex systems contain many• Models of complex systems contain many

input parameters that define the behavior
of the system.

– Desire to know which parameter values
optimize specific output measures.

– Exhaustive exploration of the parameter
space of a large model is
computationally expensivecomputationally expensive.

• Design of Experiments techniques:
– Determine the degree of sensitivity

each response (output measure) has foreach response (output measure) has for
the various factors (input parameters) in
the model.

– Build a regression model of the
response and generate a response
surface to predict system behavior.

– Guide the user toward the factors that
optimize the desired response

Slide 96

optimize the desired response.
• Results imported from database.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Archiving and Visualization of Analysis Results

I t t d lt d t b t• Integrated results database stores
results produced by solution techniques
within Möbius.

• Share results between modules in• Share results between modules in
Möbius
and third-party SQL applications.

• Multiple plot types are supported:• Multiple plot types are supported:
– reward value vs. experiment
– reward value vs. time

b bili di ib i– probability distributions
• Compare results from different model

configurations and input values
• Export plot data to external graphing

software.
• Built on Postgres open-source SQL

d b d JF Ch l i

Slide 97

database system and JFreeChart plotting
library.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Möbius Users
• Government:

d b l i l A A j f b bili i ifi i f i– Used by multiple DARPA projects for probabilistic quantification of security:
• OASIS ITUA – Intrusion Tolerance By Unpredictable Adaptation
• OASIS Demo/Val – DPASA – Designing Protection and Adaptation into a

Survivability ArchitectureSurvivability Architecture
– NSF research projects on Next Generation Systems

• Academia:
– Site licenses at hundreds of academic sites for teaching and research– Site licenses at hundreds of academic sites for teaching and research.
– Used in graduate level system analysis course at Univ. of Illinois.
– Many others have used Möbius and developed materials in their classes.
– World-wide research community: Collaboration and with other researchers toWorld wide research community: Collaboration and with other researchers to

further develop new capabilities: Univ. of Dortmund, Univ. of Edinburgh,
Univ. of Erlangen, Univ. of Twente, Carleton University, and many others

• Industry:
– Corporate licenses to a range of industries:

• Defense/Military, satellites, telecommunications, biology/genetics
– Adopted as one of three Motorola corporate-wide “Availability Evaluation

T l ”

Slide 98

Tools”.
– Biologists and chemists use it to model genetic and chemical reactions

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Next Steps

• For more information:• For more information:
– Möbius Software Web pages

(www.mobius.uiuc.edu)(www.mobius.uiuc.edu)
– Performability Engineering Research Group Web

pages (www.perform.csl.uiuc.edu)
• Mobius is available free for academic use
• We welcome others to work with us and become Mobius

developers

Slide 99Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

