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Multi-Paradigm Modeling

e Multiple:
— Modeling Formalisms
— Model Composition Methods
— Measures and Measure Specification Methods
— Model Solution Methods
— Model Connection Methods

« Developed by multiple research groups
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Outline

Motivation: Dependability, Performance, and Performability
Evaluation

The need for multi-formalism, multi-solution evaluation frameworks
— The Mo0bius modeling framework
Model Specification Methods
— Atomic Models (e.g. SANs and PEPA)
— Reward Variable Specification
— Model Composition (and state space generation)
— Model Connection
Model Solution Methods
— Simulation
— Analytic Methods
Putting it all together
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Motivation: Dependability Evaluation

Dependability is the ability of a system to deliver a specified service.

System service is classified as proper if it is delivered as specified; otherwise it
IS improper.

System failure is a transition from proper to improper service.

System restoration is a transition from improper to proper service.

failure

Improper
service

proper
service

restoration

= The “properness” of service depends on the user’s viewpoint!

Reference: J.C. Laprie (ed.), Dependability: Basic Concepts and Terminology,
Springer-Verlag, 1992.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author. Slide 5




Examples of Specifications of Proper Service

» kout of N components are functioning.

e every working processor can communicate with every other working
processor.

» every message iIs delivered within t milliseconds from the time it is sent.
» all messages are delivered in the same order to all working processors.
» the system does not reach an unsafe state.

* 90% of all remote procedure calls return within x seconds with a correct
result.

o 99.999% of all telephone calls are correctly routed.

= Notion of “proper service” provides a specification by which to evaluate a
system’s dependability.
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Dependability Measures: Availability

Availability - quantifies the alternation between deliveries of proper and
Improper service.

— A(t) 1s 1 if service is proper at time t, O otherwise.

— E[A(t)] (Expected value of A(t)) is the probability that service is proper at
time t.

— A(0,1) is the fraction of time the system delivers proper service during
[0,t].
— E[A(0,t)] is the expected fraction of time service is proper during [0,t].

— P[A(0,t) >t"] (0 <t"<1)isthe probability that service is proper more
than 100t™% of the time during [0,t].

— A(0,t)._,,, Is the fraction of time that service Is proper in steady state.
— E[A(0,Y).,..]: P[A(O,1),,., > t] as above.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author. Slide 7




Other Dependability Measures

« Reliability - a measure of the continuous delivery of service
— R(t) is the probability that a system delivers proper service throughout [O,t].

« Safety - a measure of the time to catastrophic failure
— S(t) is the probability that no catastrophic failures occur during [0,t].
— Analogous to reliability, but concerned with catastrophic failures.

« Time to Failure - measure of the time to failure from last restoration. (Expected
value of this measure is referred to as MTTF - Mean time to failure.)

« Maintainability - measure of the time to restoration from last experienced
failure. (Expected value of this measure is referred to as MTTR - Mean time to
repair.)

« Coverage - the probability that, given a fault, the system can tolerate the fault
and continue to deliver proper service.
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Illustration of the Impact of Coverage on Dependability

e Consider two well-known architectures: simplex and duplex.
A
— k — — I—
A
Duplex System

Simplex System

 The Markov model for both architectures is:

A A

e The analytical expression of the MTTF can be calculated for each
architecture using these Markov models.
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Illustration of the Impact of Coverage, cont.

» The following plot shows the ratio of MTTF (duplex)/MTTF (simplex) for
different values of coverage (all other parameter values being the same).

» The ratio shows the dependability gain by the duplex architecture.
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* We observe that the coverage of the detection mechanism has a significant impact
on the gain: a change of coverage of only 10-3 reduces the gain in dependability by
the duplex system by a full order of magnitude.
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Motivation: A Combined Performance/Dependability
Concept - Performability

« Performability quantifies how well a system performs, taking into
account behavior due to the occurrence of faults.

* |t generalizes the notion of dependability in two ways:
— Includes performance-related impairments to proper service.

— considers multiple levels of service in specification, possibly an
uncountable number.

o Performability measures are truly user-oriented, quantifying
performance as perceived by users.

Original reference: J. F. Meyer, “On Evaluating the Performability of
Degradable Computing Systems,” Proceedings of the 8th
International Symposium on Fault-Tolerant Computing, Toulouse,
France, June 1978, pp. 44-49.
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THE MYTHICAL FIVE NINES. 99.999%. AS CLOSE TO PERFECT AS YOU
CAN GET WITHOUT BREAKING SOME LAW OF NATURE.

For a server operating system, the five nines are a measure of reliability that translates into just over five minutes of server
downtime per year.* For your business, that means servers are up and running when people need them. Of course, rumors
of this 99.999% uptime usually start under ideal lab conditions. But where are these five nines when your business needs
them? If you're using Microsoft® Windows® 2000 Server-based solutions, they may be closer than you think. Today Starbucks,
FreeMarkets and MortgageRamp, an affiliate of GMAC Commercial Mortgage, are using Windows 2000 Server-based
systems designed to deliver 99.999% server uptime. Of course, not all installations require this level of reliability, but one
thing is for sure: The Windows 2000 Server family can help you get to the level of reliability you need. In fact, industry
leaders such as Compaq, Hewlett-Packard, Unisys, Stratus and Motorola Computer Group can work with you to deliver
solutions with up to five nines uptimé. To learn more about server solutions you can count on, visit

i ft.com/wi servers Soffware for the Agile Business,

[)jWndomszy 7 Microsoft
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Outline
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Integrated Modeling Framework Motivation

* No single formalism is best for representing all parts of a distributed
computing/communication system

— Computer hardware, networks, protocols, and applications each
call for a different representation

— Even within a “class” of application, different industry segments
use very different ways of representing a particular design

* No single solution method is adequate to solve all models

— Discrete-event simulation is efficient in many cases, but is
extremely slow in others (e.qg., significant, but rare events), or
extreme system complexity)

» Research in new modeling methods and tools is significantly
hampered by the close link between model specification and model
solution methods, and the closed nature of existing tools
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Modeling Complex System Behavior

* Modeling approach focuses on capturing system behaviors
and then measuring desired system properties

o Supports system with complex system behaviors, such as:
— Dynamic, state-dependant failure rates and probabilities
— Correlated failures and repairs
— Time- and state-dependent sequences of events

— User-specified redundancy, fail-over, recovery, repair
strategies

— Multiple distribution functions for event delays
— Custom behaviors defined by logical expressions
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Example Heterogeneous Model

Computer System

_—

o~

Hardware Network Application 0S
Fault . Control/ Resource
Description SIS Rickee et Data Flow Contention
\ 4 \ 4 4 \ 4 A 4 \ 4
. Block Stochastic
Fault Tree VHDL SOLRORT Queuing Diagram Petri Nets,
Estelle Model
Language SANSs
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State of the Art: Single Formalism Tools

* Many performance/dependability evaluation tools have been developed that
provide a single modeling formalism, and support multiple solution methods, e.g.,
— Queueing networks, e.g., DyQN-Tool, HIT, LONS, QNAP2, RESQ,
RESQME. Most tools support both simulation and product-form based
solutions.

— Stochastic Petri nets and extensions, e.g., DSPNEXxpress, ESP, GreatSPN,
HiQPN-Tool, QPN-tool, SPNP, SPN2MGM, SPNL, SURF-2, TimeNET, and
UltraSAN. All tools support analytical/numerical solution; some support
simulation.

— Stochastic Process Algebras, e.g. EMPA, Dragon, PEPA Workbench,
TIPPtool, Two Towers, and Spades. All tools support analytical/-numerical
evaluation, some support simulation.

— Other modeling approaches, sometimes tailored to a specific application
domain, e.g., MARCA, DEPEND, Figaro, HARP, HIMAP, Peps, SAVE,
SPE*ED, and TANGRAM-I1.

= In most cases, each tool has multiple model solution methods (recognizing the fact
that no single solution method is sufficient in all cases), but a single model
specification method.
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State of the Art: Combination of Multiple Tools in a
Single Software Environment

» Several tools have been constructed the facilitate the combination of multiple
tools into a single environment, e.g.

— IMSE (Integrated Modeling Support Environment) [Pooley 91]
 Contains tools for modeling, workload analysis, and system
specification
— IDEAS (Integrated Design Environment for Assessment of Computer
Systems and Communication Networks) [Fricks 96]

» Provides user interface to multiple tools without requiring a user to
learn multiple interface languages and output formats

— Freud [van Moorsel 98]

« Aims similar to those of ISME and IDEAS, but focuses on providing
a uniform interface to a variety of web-enabled tools

= Focus is on building a common graphical interface for accessing multiple
tools and a common methods for reporting results.
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State of the Art: Integrated Modeling Frameworks

* Integrated modeling frameworks aim to define an environment that can
accommodate multiple modeling formalisms, one or more ways to combine
models expressed in possibly different formalisms, and multiple model

solution methods, e.g.

— SHARPE [Sahner 86, Sahner 96 ...]
» Models expressed as combinatorial models, directed acyclic graphs,
Markov and semi-Markov models, product-form queueing networks,
and GSPNs can be solved, and can exchange results expressed as

exponential-polynomial distribution functions

— SMART [Ciardo 96, Ciardo 97 ...]

» Models expressed as SPNs, “software modeling language,” and
Markov chains can be solved, and can exchange results, possibly
repeatedly, using fixed-point iteration. Implements symbolic

representation of CTMC.

— APNN toolbox [Bause 98]
* Models converted to common “abstract PN notation” (APNN) and
can be solved in a variety of quantitative and functional analysis

methods.
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Model

Madbius Framework

Formalism

Model

Formalism

Model

Mobius

| Framework

Solver

Formalism

Model: An abstract representation of some system

Formalism: A modeling language
Framework: A “language” in which modeling languages may be expressed

A

Solver

Solver
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Mobius Framework

Model
Editors

e Open-ended, flexible _
modeling environment. Solution  AFI

: : _ Techniques
o Multi-formalism and multi-
solution framework

— Several model
specification languages

— Includes both simulation
and numerical analysis
solution techniques

— Supports additional plug-in
modules using abstract
functional interface (AFI).
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o Atomic Model formalisms

— Represent detailed component models
— Stochastic Activity Networks,

Buckets & Balls (Markov Chains), PEPA,

— Define measures to evaluate

— Rate rewards, Impulse rewards
Experiment Studies

— Vary model parameters

Fault Trees, MODEST, AADL i el

« Compositional formalisms P ‘
— Combine atomic models ===
— Rep Join, Graph, Action Synchronization =
* Reward variables ==

— Set and Range studies
Solution techniques

— Distributed Simulation

— Analytical Solutions

(Partial list of) Existing Mébius Modules

=] ]|

[ ]
Mébius

Mabius Symbolic State Space Generator 1.7.1

R
q.?. A
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Model- and State-Level
Abstract Functional
Interfaces

Performs independently
of model structure

Atomic Model A,
Implements AFI

Atomic Model B
Atomic Model C

Performs independently of
representation of labelled
transition system
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Model Support of the Abstract Functional Interface:
State Variables, Actions, and Properties

« Formally, a model in the Md&bius framework is a set of “state variables,”
a set of “actions,” and set of “properties”

« State variables “contain” information about the state of the system being
modeled

— They have a type, which defines their “structure”
— They have a value, which defines the “state” of the variable

« Actions prescribe how the value of state variables may change as a
function of time

» Properties specify characteristics that may effect the solution of a model

e Other models and solvers may request information regarding or change
to state of a model’s state variables, actions, and groups via the abstract
functional interface

« The format of this information is determined by the structure of a
model’s state variables and attributes of its actions
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State Variable Specification in the Maobius Framework

* The set of all state variable types is denoted T.
 The set T is constructed by repeated application of the following rules:

ZeT,.
ReT.

SeT. Setof names of state variables
IfteT,then2' =T. Restriction of a type

IfteT, then2teT.  Setsof types (unordered)
If t,15...,1, €T, thenty xty x...xt, € T. Ordered lists of types

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author. Slide 25




Action Specification in the Mdbius Framework

e An action’s attributes specify how and when it changes state:

Enabled: ¥ — {true, false}
Delay :X—>(R=>—-[0,1])
Effort X —> (R >->[0,1])
Interrupt: £ — {true, false}

Rank :¥ — Z" u{Undefined}

Weight ;T — %= u{Undefined}
Complete DB
Policy: T —{DDD, ..., PPP}
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Model Execution Policies

* Models change state by the
firing of actions, according Worker
to formalism-specific rules Effprt
hidden by AFI

e The execution policy Is
defined on a per action and

Sometimgss

per Stai[e basis _ AEWays preserv@®

— Actions can be interrupted,

reset, continue with a Min
i .. ) Inimum
different distribution, or Always discardprd Always preserve Task
continue with time same - Never “Always P gginetimedEffort
distribution discard
. - AlwaysQrace-resample

— Generalizes and unifies

existing execution policies  sometimesOresctivation

— Details can be in Deavours
and Sanders, PNPM 2001.

Interruption
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State-Level Abstract Functional Interface Motivation

Many ways towards few numerical procedures
— Variety of modeling formalisms
— Variety of CTMC representations

On-the-fly

Kronecker

Disk-based

MTBDD

Sparse
Matrix

T [ interface |

Jacobi

SOR

Goal: Interface to support common usage of different

Power

Randomization

representations
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Definition of State-Level AFI

* General idea: Represent modeling formalism abstractly as a
labeled transition system (LTS):

S: Set of states
0. State transition relation with labels | and real value A
Label | is used to distinguish evc?r}:[s,
Value A is used to carry tlee+ate—— @
In addition:
e Rate rewards per state
e Impulse rewards per transition in o

e The interface exports information of concerning the LTS in an
OO0 way

~> | containers & erators
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State-Level AFI Functionality

« Container classes:
— getRow  all (nonzero) elements of a row
— getColumn all (nonzero) elements of a column
— getAllEdges all (nonzero) elements of a matrix

o Each of the methods returns a container which provides an
Iterator class to access its elements one after the other

» Elements are transition objects derived from a template class
which allows access via functions:
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Observed Performance,

Slowdown Percentage per Iteration Step

110 =& FMS Sparse
Jacobi
90 =& Courier Sparse
Jacobi
== FMS Sparse SOR
70
=>&= Courier Sparse
SOR
S0 =¥=FMS Kronecker
Jacobi
30 =®— Courier Kronecker
Jacobi
=+=FEMS Kronecker
10 SOR
= Courier Kronecker
SOR
-10
104 10° 106 107 states
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Outline

e Model Specification Methods
— Atomic Models (e.g. SANs and PEPA)
— Reward Variable Specification
— Model Composition (and state space generation)
— Model Connection
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Atomic Model Representation

* Multiple modeling languages available, including:
— Stochastic Activity Networks (‘“SANs’), PEPA (textual-based process
algebra), Markov chains, Fault trees,
— Parameters of the model can be specified variables and set at analysis
time.
« Facilitate modeling of hardware, software, protocols, and application in a
unified manner

Factory: Assemblyl ine

B8 dpasa-dv-dm2: client_publish - File Edit ‘iew Elements Help
File Edit view Elements Help
s <o 1 - 5 o o @Al AlA =]
15 ser_component D 06 Component_ID =
File Edit Help Font
pubish_n progtess. Faillire
timeliness_check |G
ar 1= 4,5; ‘
br 1= 4.0; o
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o Consumel[a,b] = [a » 0] => [outa, ar
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| ok
o= o Breakdowm = (outa, T).Breakdowm + |
PawerSupply Fil BethiotarFail MachineF il
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4
B . Wabius Fault Tree Editor 1.7.1
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Notes on Stochastic Petri Nets

« SPNSs are much easier to read, write, modify, and debug than Markov chains.

 SPN to Markov chain conversion can be automated to afford numerical
solutions to Markov chains.

« Most SPN formalisms include a special type of arc called an inhibitor arc,
which enables the SPN if there are zero tokens in the associated place, and the
identity (do nothing) function. Example: modify SPN to give writes priority.

« Limited in their expressive power: may only perform +, -, >, and test-for-zero
operations.

« These very limited operations make it very difficult to model complex
Interactions.

« Simplicity allows for certain analysis, e.g., a network protocol modeled by an
SPN may detect deadlock (if inhibitor arcs are not used).

» More general and flexible formalisms are needed to represent real systems.
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Stochastic Activity Networks

The need for more expressive modeling languages has led to several
extensions to stochastic Petri nets. One extension that we will examine is
called stochastic activity networks. Because there are a number of subtle
distinctions relative to SPNs, stochastic activity networks use different
words to describe ideas similar to those of SPNs.

Stochastic activity networks have the following properties:

» A general way to specify that an activity (transition) is enabled

» A general way to specify a completion (firing) rule

« A way to represent zero-timed events

« A way to represent probabilistic choices upon activity completion
« State-dependent parameter values

» General delay distributions on activities
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SAN Symbols

Stochastic activity networks (hereafter SANs) have four new symbols in

addition to those of SPNs:

— Input gate:«f used to define complex enabling predicates and

completion functions

— Output gate: pm used to define complex completion functions

— Cases: IE (small circles on activities) used to specify probabilistic

choices

— Instantaneous activities: | used to specify zero-timed events

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author.

Slide 36




SAN Enabling Rules

An Input gate has two components:

 enabling_function (state) — boolean; also called the enabling
predicate

 Input_function(state) — state; rule for changing the state of the model

An activity is enabled if for every connected input gate, the enabling
predicate Is true, and for each input arc, the number of tokens in the
connected place > number of arcs.

We use the notation MARK(P) to denote the number of tokens in place
P.
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Example SAN Enabling Rule

Example:

F1
|51

Fa

IG1 Predicate:
IT((MARK(P1)>0 && MARK(P2)==0)|1|
(MARK(P1)==0 && MARK(P2)>0))
return 1;
else return O;

Activity al is enabled if IG1 predicate is true (1) and MARK(P3) > 0.
(Note that in Mdbius, “1” Is used to denote true.)
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Cases

Cases represent a probabilistic choice of an action to take when an activity
completes.

P2
F1

When activity a completes, a token is removed from place P1, and with probability

o, a token is put into place P2, and with probability 1 - o, a token is put into place
P3.

Note: cases are numbered, starting with 1, from top to bottom.
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Output Gates

When an activity completes, an output gate allows for a more general change in the

state of the system. This output gate function is usually expressed using pseudo-C
code.

Example OG Function
MARK(P) =0;

alE

act

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author. Slide 40




Instantaneous Activities

Another important feature of SANSs is the instantaneous activity. An instantaneous
activity is like a normal activity except that it completes in zero time after it
becomes enabled. Instantaneous activities can be used with input gates, output

gates, and cases.

Instantaneous activities are useful when modeling events that have an effect on the

state of the system, but happen in negligible time, with respect to other activities in
the system, and the performance/dependability measures of interest.
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SAN Terms

. activation - time at which an activity begins
. completion - time at which activity completes

. abort - time, after activation but before completion, when activity is no longer
enabled

. active - the time after an activity has been activated but before it completes or
aborts.
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activa

activa

Illustration of SAN Terms

tion completion

<«— activity time —»

<+— enabled —>

activity time

— >

completion 7 T
tion and activation completion ////
Y
. activity _ | activity «— enabled —»|
time time
A

enabled
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Completion Rules

When an activity completes, the following events take place (in the order
listed), possibly changing the marking of the network:

1. If the activity has cases, a case is (probabilistically) chosen.

2. The functions of all the connected input gates are executed (in an
unspecified order).

3. Tokens are removed from places connected by input arcs.

4. The functions of all the output gates connected to the chosen case
are executed (in an unspecified order).

5. Tokens are added to places connected by output arcs connected to
the chosen case.

Ordering is important, since effect of actions can be marking-dependent.
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Marking Dependent Behavior

Virtually every parameter may be any function of the state of the model. Examples
of these are

* rates of exponential activities
» parameters of other activity distributions
* case probabilities

An example of this usefulness is a model of three redundant computers where the
coverage (probability that a single computer crashing crashes the whole system)
Increases after a failure.

a
case 1 0.1 + 0.02 * MARK(P)
ale case 2 0.9 -0.02 * MARK(P)

C
P act
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Example Problem

A database server is composed of a compute server and three file

servers, and can queue up to N, requests at a time (including the one
In service).

» Requests arrive at rate A, and spend on average 1/A.p time at the
compute server being processed.

e The request is then forwarded to the file server that has the fewest
outstanding requests.

» Requests are processed at a rate of Ay,, Ap,, and Apg for file servers
D1, D2, and D3 respectively.

* File server buffers may hold at most N; requests (including requests in
service); If all buffers are full, the request is discarded.
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SAN Representation of Example Database Problem

Guard

Arrival Queue CPU
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Gate Functions for SAN

Gate Definition
Guard Predicate
MARK(Queue) < GLOBAL_S(Nc)
Function
Gate Definition
Route Function

if MARK(D1) == GLOBAL_S(Nf) &&
MARK(D2) == GLOBAL_S(Nf) &&
MARK(D3) == GLOBAL_S(Nf))
return;
if (MARK(D1) < MARK(D2)) {
if (MARK(D1) < MARK(D3)) {

MARK(D1)++;

}else {
MARK(D3)++;

}

}else {

if (MARK(D2) < MARK(D3)) {
MARK(D2)++;

}else {
MARK(D3)++;

}

}
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A Summary of PEPA

» PEPA stands for “Performance Evaluation Process Algebra”
[Hillston 96]

* Primitive process algebra actions become timed PEPA activities:

enter.exit.Spec <«---»> (enter,r).(exi1t,s).Spec

e rand s are the parameters of exponentially distributed random
variables which determine the time it takes for each activity to
complete

« What are the primitives for building PEPA models?
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PEPA Combinators

1. Prefix: given an activity (a,r), and a process P, (a,r).Pisa
process which performs the activity (a, r) and then becomes P

2. Choice: P + Qs aprocess which expresses competition
between P and Q

3. Cooperation: given processes P and Q, and a set of activity
names L, the process P <L> Q expresses the parallel
composition of P and Q with synchronization on L activities; c.f.
Increasing the number of tokens in a SAN place

4. Hiding: given a process P, and a set of activity names L, the
process P/L hides those names in L from further interaction
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Incorporating PEPA into Mébius

Due to the Mdbius AFI, incorporating PEPA as an atomic model
formalism requires identifying the following:

— A useful notion of state variable
— A notion of action for changing state

We would like PEPA to be useful with respect to current
composed model formalisms, so state variables should

e Be meaningful to a model with which the PEPA model is
composed (partner model), and

* \When changed, effect an understandable change in the state
of the PEPA model

State Based Model Composition:
» Actions seem straightforward... (PEPA activities)

e ... buthow can a partner model cause a meaningful change in the
state of a PEPA model?
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Parameterized PEPA (PEPAk)

o “Extend” PEPA to explicitly include process parameters in the syntax

 Employs a well-understood theory that dates back to the 1980s (e.qg.
[Milner 89]). The theory is not new, but the application is!

For example —a M/M/s/n queue:

Queue[m,s,n] = [m < n] => (in,lambda).Queue[m+1l,s,n]

+ [m > 0] => (out,mu*min(s,m)).Queue[m-1,s,n]

e For modeling convenience, we also include guards (and variable
communication via cooperating activities, not shown here)

« But have we invented a new stochastic process algebra?
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PEPA Semantics for PEPAX

* Not really a new process algebra — we can translate a PEPAk
process definition into a set of indexed PEPA process definitions

— Process parameters become instantiated as indices to the
defining variable

— Evaluate guards; eliminate subsequent behavior from definition
If guard is false

— Evaluate expressions used In activity rates

— Use Milner’s construction to turn output activities into sums
over activities with indexed types (rates need no modification!)

 The behavior of a PEPAK model in Mdbius iIs the same as the
behavior of the PEPA model to which its semantics translate It.
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The Mapping

« The state variables available for sharing with a partner model are
(approximately) the process parameters used in the definitions of
the PEPAK processes

— When the process algebra model consists of the parallel
cooperation of several sequential components, we provide the
union of the process parameters (with some scoping
technicalities employed)

* The overall state of the process algebra model is the state of the
process parameters, and the symbolic state of each sequential
component

* The M0Gbius actions are taken to be the individual unsynchronized
activities of each PEPAk component, along with every possible
combination of synchronized activities
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Implications for the Process Calculus

« The ability of a partner model to unilaterally change some shared state
has consequences for the process algebra — consider the following

example:
S[x] := [xI=1] => (al,r).(b,s)-S[1] S[x] := [xI=1] => (al,r).S’[1]
+ [x1=2] => (a2,r).(b,s).S[2] + [xI=2] => (a2,r).S7[2]
+ [x1=3] => (@3,r).(b,s)-S[3] + [xI=3] => (a3,r).S7[3]
S7[x] := (b,s).-S[x]

« Furthermore, equivalence relations may not be employed for aggregation
of parameterized definitions — although they be used for non-
parameterized components (e.g., (P[2] || P[3]) may not be reduced).
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What does Mébius use and generate?

» For example, every Mébius action must implement a method to determine whether it
enabled to later “fire”. For a PEPA model, the method below is always used, and

provided in the PEPA base classes:

bool PEPAActivity::Enabled(){
OldEnabled=NewEnabled;
NewEnabled=(EnabledByCurrent Terms() && GuardSatisfied());
return NewEnabled;

}

* MODbius generates C++ code for each specific PEPA model — for example, to
determine if a guard is satisfied in the current state, or to determine the effect of
firing an activity:

#include "PAPM-presentation/Atomic/Example/ExamplePEPA.h"

inline bool ExamplePEPA::out_Act:: GuardSatisfied() {
return (! (m—>getValue() <= 0));

}

BaseActionClass *ExamplePEPA::out_Act::Fire() {
UpdateCurrentTerms();
m—>setValue((m—>getValue() — 1));
s—>setValue(s—>getValue());
n—>setValue(n—>getValue());
return this;
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Reward Variables in Mobius

Reward variables are a way of measuring performance- or
dependability-related characteristics about a model.

Examples:
— Expected time until service
— System availability
— Number of misrouted packets in an interval of time
— Processor utilization
— Length of downtime
— Operational cost
— Module or system reliability
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Reward Structures

Reward may be “accumulated” two different ways:

— A model may be in a certain state or states for some period of
time, for example, “CPU idle” states. This is called a rate
reward.

— An activity may complete. This is called an impulse reward.

The reward variable is the sum of the rate reward and the impulse
reward structures.
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Reward Structure Example

A web server failure model is used to predict profits. When the web server is fully
operational, profits accumulate at $N/hour. In a degraded mode, profits accumulate

at ¢+ N/hour. Repairs cost $K.

‘N m is a fully functioning marking
R(m)=<iN m is a degraded-mode marking
0 otherwise
-K a IS an activity representing repair
C(a)= _ y rep g rep
0 otherwise

By carefully integrating the reward structure from 0 to t, we get the profit at time t.
This is an example of an “interval-of-time” variable.
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Reward Variables

A reward variable is the sum of the impulse and rate reward
structures over a certain time.

Let [t, t + I] be the interval of time defined for a reward variable:

— If l'is O, then the reward variable is called an instant-of-time
reward variable.

— If | > 0, then the reward variable is called an interval-of-time
reward variable.

— If 1 > 0, then dividing an interval-of-time reward variable by |
gives a time-averaged interval-of-time reward variable.
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Reward Variable Specification

Reward Structure

_— T

Interval-of-Time
Instant-of-Time

v

Time-Average Interval-of-Time

,L tt+1] [t t+
| [t, t+ 1] lim as |
t limast limast 90810
_goc?s_to el ' goes to Infinity
infinity [t t+1] [t,t+1] [f[’ t+1] infinity
lim as t lim as |
goes to goes to

infinity infinity
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Specifying Reward Variables in Mébius

» When specifying a rate portion of a reward structure in Mébius, you must define
a predicate and function.

— predicate: while true (i.e., integer greater than 0 in C), accumulate the
reward

— function: the value (i.e., double in C) to accumulate
* Note that both the predicate and function may be any C statement or expression.

Queue Length

Rate rewards
subnet = database
Predicate:
1
Function:
MARK(Queue)
Impulse reward
none
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Model Composition Basics

* Model composition formalisms permit the construction of models from
other models by sharing state variables or actions between models

 New model implements AFlI, just like an atomic model
 State variable sharing can be of two types:

— Equivalence sharing, where a state variable or “part” of state variable
from one model is identified with a state variable or “piece” of state
variable in another model (information flow is bi-directional)

— Functional sharing, where the state of a state variable in one model is
defined to be a function of another submodel’s state (information
flow is one-direction)

« Two complete or partial state variables can be equivalently shared if:

— Their structure is the same (as defined by the state variable
specification syntax presented earlier - in short, they are of the same

type).
— They have the same initial value
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Model Composition in Mobius

» Hierarchical model construction

— System model constructed by assembling multiple component models.

— Can combine models built with different formalisms
» Rapid model development

— Simple initial component models can be swapped out later for more complex ones.
o  Multiple composition technigues provide flexibility in model construction

— Rep / Join Graph Composition (state sharing)

— General Grap Composition (State sharing)

— General Graph composition (action syncronization)

& dpasa-dy-latest: dpasa_dv_v2

File Edit Wiew Ohjects Help
~
________ IG set_component_i0 O  Compenent_|
= I
B i o N iy - B | N Y [prog
NI e e e o b timelness ohedk 18 atiness ohed timeliness_check_0G
! L . S il E e " '
Publient SubTlient Path Core MESSUrEs nes_attacks B
e 1ol ALK 1
P - - i d ma_to_I0_IG
brnnd
FUBGIiEht_main SubClight_main Guan | datato_I0, 406
AL ACK timeo
-~ Pup| 5e o ... ... e A
Fuly_Ac Suly Ac sl lete_{fblish
. Publ Lo LSub| LT -
: Pub_attack o 'Suhcllemt_attack """"
<
e, MODIUS Repdloin Model Editor 1.4.0-Devs ?,R,e
Mibiu ) 2
dpasa_thv_v2 Version Nurmber 68
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Basic Model State-Space Generation in Mobius

If the activity delays are exponential, it is straightforward to convert a SAN to a
CTMC. We first look at the simple case, where there is no composed model.

ﬂ cPUBoards 1
Enabled1 :
CPUfail1 1

Catastrophic1

o,

CPUfail2 =1a

Al

\

Enabled?2

y

Catastrophic2 CPUBoards2
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State Space (Generated by Mdbius)

State No.

CPUboards1

CPUboards2

NumComp

(Next State, Rate)

(2,.p11),(3,p21),(4,P31),(5,p11),(6,p21,),(7,p31)

(8,p11),(3,p21),(4,p31),(9,p11),(10,p21),(11,p31)

(12,p1A),(13,(p2+p3) 1)

(9,p11),(12,p21),(14,p34A),(15,p11),(6,p21),(7,p31)

(10,p14),(13,(p2+p3) 1)

(3,(p1+p2) A),(4,p31),(16,p11),(17,p21A),(18,p3A)

OO | N[O~ |lWIN|F

(16,p12),(12,p21),(14,p31),(19,p1),(10,p21),(11,p31)

(BN
o

(17,p1A),(13,(p2+p3) 1)

[N
[N

[N
N

(20,p1A),(13,(p2+p3) 1)

[N
w

[EEN
SN

[ERY
(6]

(19,p14),(20,p21),(21,p31),(6,(p1+p2) 1),(7,p31)

[N
»

(12,(p1+p2) A),(14,p31),(22,p11),(17,p21),(18,p31)

-
~

(13, 2)

[N
(o]

[N
©

(22,p11),(20,p21.),(21,p31),(10,(p1+p22),(11,p31)

N
o

(13, 2)

N
-

N
N

P OOIN|PIPIP[WOIOC([OINININIPIWWIW|IO|OIN|W

PP PIPRP[OOINPINDNOINOIOIN|W|IO|OIN|W|IWw|Iw|w

NOFRPINI[OIFRPININ[OO(FRP|OIFRL,ININ|IOIFR,IN|IOIFLIN|IN

(20,(p1+p2) 1),(21,p31),(17,(p1+p2) 1),(18,p3%)
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Underlying Markov Model (State Transition Rates Not Shown)

‘ \/
18)< 22 21
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Reduced Base Model Construction in Mobius

* “Reduced Base Model” construction techniques make use of composed model
structure to reduce the number of states generated.

« A state in the reduced base model is composed of a state tree and an impulse
reward.

» During reduced base model construction, the use of state trees permits an
algorithm to automatically determine valid lumpings based on symmetries in the
composed model.

* The reduced base model is constructed by finding all possible (state tree,
impulse reward) combinations and computing the transition rates between states.

 Generation of the detailed base model is avoided.
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Example Reduced Base Model State Generation

Composed Model

Rﬁm

Submodel
Computer

computer

.Boards1
Enabled? _ ’
CPU
Catastr

NumComp
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Example Reduced Base Model States and Transitions

R (NumComp = 2)

5 (state 1)

computer (CPUboards = 3)

covered
uncovered
R (NumComp = 2) R (NumComp = 1) R (NumComp =0)
1 1 1 1 1 1
computer computer computer computer computer computer
(CPUboards = 3) (CPUboards = 2) (CPUboards = 3) (CPUboards = 0) (CPUboards = 3) (CPUboards = 0)
(state 2) (state 3) (state 4)
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Markov Chain of Reduced Base Model
(State Transition Rates not Shown)
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State-Space Generation in Madbius
(For generating random process representations of models with all
exponential or exponential/deterministic timed activities)

Print out states

HighAvailComp: Gen
File Edit Help

Skudy Mame: availahility

Experiment List;  [Experiment_1

and reward — Tace Level:

variables

d

Place comments, as

Run Mare: TeskGen
Build Type: Cptimize
Hash ‘alue: 0.5

[ ] Flag Absarbing States

Place Comments in Qukpuk

Browse

[ Experiment Activator ]

W

/

[ Edit Comments ]

/:l Skart Skate Space Generation ]

Mabius
!p..'. iZen “ersion Mumber: 1

specified by edit

Mahius Flat State Space Generator 1.8.0-D

— Print out absorbing
states. Useful to
detect problems
when attempting a
steady-state
solution.

comments, In file.

State-space generation must be done before all analytic/numerical solutions are done.
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MDD Representation of State-sharing Composed Models
(NSMC '03)

Join and Replicate operators

Join

N

V1

e

M2

Join

M1

M1

M1

Any atomic model formalism that can share state variables
— E.g., SAN, PEPA,, and Buckets and Balls

Replicate induces symmetry
Global and local actions

Rep (3)

M1
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MDD Data Structure by Example

« Partitioning SVs based on
composition structure
— Maximizing efficiency of
local SS exploration
— Simplifying global
SS exploration
» Dependability model

of spacecraft flight control
system

Rep? (N)
[
Join
/
Rep! (M) || cpu || error handler || 10 port
|
memory
MDD level e =3 o
aSS|gnment Join :r 1
Rep? [ 1|2
mem ] >3outer replicate
inner replicate E E
mem [ 1]2+M
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Composed-Model Induced Lumping of CTMC
Rep X X
* Redundant states (paths) T y
e Rep node c implies AM | 1|2 1
equivalence relation R, S m—
AM [ 1|2]]1 1
i —= !
AM | 2 1 2

AN

o

("U,'U ) € R, <
v; =v; forall i € {1,...,c—1,c+ncle+1,...,m}
dp:{0,...,nc—1} —-{0,...,nc— 1} s.t.

v(c,i) =v'(c,p(2)) forall i =0,...,nc—1
where v(c, i) = (Veil41) - - - 5 Verile+ie)

« Overall equivalence relation R = U is replicate R
« Canonical representative state in each class min(v)

« R may become exponentially large = break it up Sjymped iNto many
extremely smaller MDDs = faster computation of
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SS6 and Lumping Performance

unlumped SS (MDD) lumped SS (MDD) generation | lumping

7 # mem # final # | mem (KB) time time

N states nodes | (KB) states nodes | final | peak (sec) (sec)
1| 4.14x10% 14| 1.46 | 1.16x102 18| 2.06 | 15.0 0.027 ~0
2 | 2.57x10° 43| 4.54 | 1.01x10% 340 | 44.9| 118 1.30 | 0.0078
3| 1.24x108 99| 10.3|4.63x10° 1494 | 194 | 441 25.1 0.06
4 | 5.50x1010 167 | 17.3]1.48x107 3395 | 424 | 1050 200 0.42
5| 2.35x10%3 247 | 25.5| 3.67x10° 5724 | 705 | 2050 1310 1.45
6 | 9.9x10%° 339 | 34.8|7.53x10° 8481 | 1040 | 3560 5250 2.38

This is a worst case example: No local behavior
Drastic decrease in number of states in the lumped SS (up to 6 orders of

magnitude)

Increase in number of nodes in the lumped state space but still small

compared to other entities
Very small unlumped and lumped SS representation
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CTMC Enumeration Performance

sorting MDD time/iteration (sec)
N # # # mem gen. time | matrix sparse | Slowdown
states transitions nodes (KB) (sec) diagram matrix factor
2 11.01x10%| 5.51x10%|1.50x103 | 1.56x107 0.066 | 1.39x1072 | 2.83x1073 4.91
3 | 4.63x10° | 3.51x10° | 3.47x10% | 4.00x103 4.8119.59x10°1 | 1.75x10°! 5.48
4 | 1.48x107 | 1.43x10% | 6.91x10° | 8.38x10% 235 | 4.42x101 — —
SS SSG | transient solution
TWS 7 final mem (KB) time (sec/iteration) | slowdown
states # nodes | final peak (sec) | MxD APNN
3 |2.38x10° 23|13.3]2.24x10%2| 1.07| 1.26 0.885 1.42
4 |9.71x10° 29 |1 31.0|7.25x10%2 | 4.76 | 5.54 3.76 1.47
5 |3.24x10’ 35| 67.61.97x103| 21.0| 19.15 12.76 1.50
6 | 9.33x10" 41| 135|4.76x103| 85.4 - - -
7 | 2.40x10°8 47 | 254 | 1.06x10% | 325.3 - - -
8 5.62x10°% 53| 453 ]2.19x10%| 1020 - - -

Fairly fast iteration: Slowdown of 1 to 5 times, relative to direct sparse
matrix access

Solve dramatically larger larger CTMCs
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Model Connection

* Model connection formalisms permit the construction of model
solutions from a set of models by exchanging “results” between the

models
* The abstract functional interface provides the infrastructure necessary
to build connection formalisms
e “Results” can be:
— The mean and/or variance of a the a performance variable
— The density or distribution function of a performance variable
(e.g. exponential-polynomial distribution)
— Some automatically-constructed more-abstract model
representation, e.g.,
e Hidden Markov model
» Markov-modulated Poisson processes
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General Connection Formalism

A connected model is a set of solvable models, and a diagram for passing
results between those models

— Heterogeneous submodels
— General graph structure (cyclic or acyclic) submodels

= B

Submodel D CE 3 Submodel E

Submodel B Submodel C
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Connection Solver
e The connection solver defines a multi-step solution process
— Solution from one model become inputs to a subsequent model.
— Perform fixed point iteration by defining a starting point and ending

condition on a cyclical graph.

e Four connected model elements:
— Solver nodes define a sol. step

— Connection function nodes
combine multiple results using
mathematical and logical
expressions.

— Database nodes import
previously computed solution
results from the results database.

— Conduits connect nodes In the
graph and represent data passing
between the nodes.

Multi-Pruc: conn
File Edit Wiew Elements Help

SolveComputer FetchDiskSubsystemParams

SolverComputer?  CalcCompuerF ailureRates
SolverComputerF ailureModel

SolverComputers

PrepareFinalinputs simulation

<...

® oo Simple Connection Formalism Editor 2.0.0-A
Mdbius

ey, Model conn Version: 4 (Modified)
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Outline

Motivation: Dependability, Performance, and Performability
Evaluation

The need for multi-formalism, multi-solution evaluation frameworks
— The M0bius modeling framework

Model Specification Methods

— Atomic Models (e.g. SANs and PEPA)

— Reward Variable Specification

— Model Composition (and state space generation)
— Model Connection

Model Solution Methods

— Simulation

— Analytic Methods

Putting it all together
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Types of Discrete-Event Simulation in Mobius

 Basic simulation loop specifies how the trajectory is generated, but does not
specify how measures are collected, or how long the loop is executed.

» How measures are collected, and how long (and how many times) the loop is
executed depends on type of measures to be estimated.

» Two types of discrete-event simulation are implemented in Mobius. The choice
of which one to use depends on what type of measures are to be estimated.

— Terminating - Measures to be estimated are measured at fixed instants of
time or intervals of time with fixed finite point and length.

— Steady-state - Measures to be estimated depend on instants of time whose
starting points are taken to be t — oo.

Copyright © 2007 William H. Sanders. All rights reserved. Do not duplicate without permission of the author. Slide 82



Support for Generally Distributed Action
Timings in Mobius

e Mobius supports use of the following activity time distributions:

 exponential e normal e gamma  binomial
 deterministic  lognormal * beta * negative binomial
e geometric  erlang o uniform < hyperexponential
« weibull  cond weibull

« Parameters for distributions are as given in the manual, and are
described in detail in [Law 91]

* Note that all distributions are truncated at zero (since time does not
flow backwards) and hence a distribution’s mean (or other
characteristics) may not be as specified.
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Simulator Statistics Editor

Multi-Proc: MultiProc_PY

EBX

File Edit Help

Performance Yariables | mModel

| (Enker new vatiable name) |

‘ariable Mame:

Submodels | Rate Rewards | Impulse Rewards | Simulation

unreliability

Type |Estimatiun Confidence

Yariable Lisk

unreliability
unreliability _10
unreliability_15
unreliability 20
unreliability _25
unreliabilicy _30
unreliability _100
unreliabilicy _200
num_cpu_Failures1
num_cpu_failuresz
nurm_cpu_Failures3

L~

Type |Interval aof Time /

Stark

5.0

v
o ]
o ]

N

Stop | 10f0

N

Apply Changes ko unreliability l [ Discard Changas to unreliabilicy ]

Mobius
H MU|tiF’I’DE_F’V YWersion Mumber: S

Mabius Performance Yariable Editor 1.5.0-D

Variable Type and Times
for Terminating
Simulation

Batch Size and
Initial Transient in
Steady-State Simulation
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Simulator Statistics Editor

Multi-Proc: MultiProc_PV M=
File Edit Help

Performance ariables | Model Yariable Name:  unreliability

| (Enter new variable name) |

submodels | Rate Rewards | Impulse Rewards | Simulatian

Type | Estimation | Confidence

varicble st — Estimator Types

unreliability
unreliability_10
unreliability_15 -«

unreliability_20 Estimate Mear: Estimate Variance
unreliability_2Z5

unreliability_30
unreliahility_100 Estimate Interval
unreliability_200

rum_cpu_failurest
rum_cpu_Failuresz
rum_cpu_Failuress

Estimate Distribution

Lower Bound | 0.0 Lower Bound | 0.0 |

Include Lower Bound Upper Bound | 0.0 |
Upper Bound | 0.0 Step Size | 0.0 |
Include Upper Bound Estimate out of range probabilities
Apply Changes to unreliability ] [ Discard Changes to unreliability

. Wabius Ferformance Variable Editor 1.58.0-D

Mdabius
H MUltiF‘I’DE_F’V Yersion Mumber: &
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Simulator Statistics Editor

Multi-Proc: MultiProc_PV M(=1[e3
File Edit Help

Performance Variables | Model VYariable Mame:  unreliability

| (Enker new variable name) |

Submodels || Rate Rewards | Impulse Rewards | Simulation

Type || Estimation | Confidence

Wariable Lisk

unreliabilicy

elabity_15 /Confidence Interval
unreliability_20 I Width and Leve|

unreliability 25

unreliability 30

unreliability 100
unreliability_200
rum_cpu_Failures1 Confidence Level
num_cpu_failuresz
num_cpu_failuress

Confidence Inkerval | 0.05

(¥ Relative Confidence Interval () Absolute Canfidence Interval

Apply Changes to unreliabilicy ] [ Discard Changes to unreliability

, Mahius Performance Yariable Editor 1.8.0-D
Maobius
l-..’ MUItiFroc_PY wersion Mumber, S
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Simulator Editor

Multi-Proc: sim
File Edit Help Visual Simulation

{ Simulation Parameters {| Metwork Setup | Run Simulation || Simulation Info

Current Study wary _nurm_comnp

[ Experiment Activator ]

Simulation Type: (%) Terminating Simulation

Maximum and Minimum
" Number of Replications to Run

Randarn Murber Generakor Lagged Fibonacci

Random Mumber Seed 31415

Number of Batches between
_—" each calculation of the variance

Maximum Batches 10000

Minimurn Bakches 1000

Build Tvpe Cpkimize
Trace Level 0: Mo Trace Oukpuk

Mumber of Batches per Data update 1000 / .
Murnber of Batches per Display update | 1000 / / Trace' Leve I fOr Deb U g g I n g
/

— File Name of Output File

Run name: sim
[] stare simulator console output to file [ ] Use Jackknife Yariance Calculation
[] store observations ko ASCIL .csv file

[] stare observations ko binary .dat File

’ Madhius Simulator 1.8.0-D
Mobius
M todel sim “ersion: 1
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Numerical/Analytical Solution Techniques

1) Transient Solution
— Standard Uniformization (instant-of-time variables)
— Adaptive Uniformization (instant-of-time variables)

— Interval-of-time Uniformization (expected value, interval-of-
time variables)

2) Steady-state Solution
— Direct Solution (instant-of-time steady-state variables)
— Iterative Solution (instant-of-time steady-state variables)
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Mobius Analytical Solvers

Analytic Solvers (for reward variables only)
Steady- Instant-of-time Mean, Applicable
Model Class state or or Variance, or Analytic
Transient | Interval-of-time | Distribution Solver
All activities Steady- Instant-of-time® Mean, dss and iss
exponential state Variance, and
Distribution
Transient Instant-of-time Mean, trs and atrs
Variance, and
Distribution
Interval-of-time Mean ars
Exponential and Steady- Instant-of-time” Mean, diss and
Deterministic state Variance, and adiss
activities Distribution

2 if only rate rewards are used, the time-averaged interval-of-time steady-state measure is
identical to the instant-of-time steady-state measure (if both exist).

b provided the instant-of-time steady-state distribution is well-defined. Otherwise, the time-
averaged interval-of-time steady-state variable is computed and only results for rate
rewards should be derived.
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Transient Uniformization Solver
(for transient solution of instant-of-time variables)

HighAvailComp: trs
File Edit Help

Skate Space Mame:
Murnber OF Time Points
Time 1

Time 2

Time 3

ACcuracy

Werbosity

Cukput File Mame
Debug File Mame

[ Edit Comments ]

Mobius

zen

10.0
20.0

Resulks

[ ] Plat Complementary Distribution
[ ] Run In The Background
|:| Place Comments in Gutput

bohius Transient Sokver 1.8.0-D

*""!' trs “ersion Number: 1

V

i
| Solve || Close

Instant-of-time variable time

~ points of interest. Multiple time
points may be specified,
separated by spaces.

Number of digits of accuracy in
the solution. Solution reported is
a lower bound.

\Volume of intermediate results
reported. “1” gives the greatest
volume, greater numbers less.
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Adaptive Uniformization Solver (atrs)
(for transient solution of instant-of-time variables)

HighAvailComp: trs

File Edit Help

Input | Qukput

State Space Mame: Gen E

Murmbet OF Time Poinks 3

Tirme 1 5.0 4/
Time 2 10,0

Tirne: 3 2p.o

Bccuracy

Werbosity
Cukput File Mame Resulks

Dehug File Marme

[] Plat Complementary Distribution
[] R In The Backaround

EI Flace Comments in Sukput

Edit Comments

[ Solve ” Close l

/

u\\

Mdbius
Py, lMotEltrs

Mabius Transient Soker 1.8.0-D

N\

Instant-of-time variable time
points of interest. Multiple time
points may be specified.

Number of digits of accuracy iIn
the solution. Solution reported Is
a lower bound.

Volume of intermediate results
reported. “1” gives the greatest
volume, greater numbers less.
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Accumulated Reward Solver (ars)
(solves for expected values of interval-of-time and time-averaged interval-
of-time variables on intervals [#,, #;] when both 7, and 7, are finite)

Number of digits of
accuracy in the
solution. Solution
reported is a lower

bound. —

4
Volume of /

Intermediate results
reported. “1” gives th
greatest volume, great
numbers less.

HighAvailComp: ars
File Edit Help

Input | Cukpuk

Skate Space Mame:
Murnber of Inkervals
Tirme Inkerval 1
Time Interval 2

> AcCcuracy

Werbosiky

Cutput File Mame

2) [ Edit Comments ]
4

Mdobius

GEn

0.0:10.0
10.0:20.0]

Resulks

[ ] Run In The Background

[ ] Place Camments in Oukput

2T
. hobius Accumulated Feward Sokver 1.8.0-D

Ty Model ars Yersion: 1

[ Solve H Close ]

Series of time
intervals for which
solution is desired.
Intervals are
separated by spaces.
Each interval can be
specified as t,:t,.

The accumulated reward solver is based on uniformization,
so the hints given for the transient solver apply here as well.
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results reported.
“1” gives the
greatest volume,
greater numbers
less.

Direct Steady-State Solver (dss)

HighAvailComp: dss

File Edit Help

Skate Space Mame:

Stopping Criterion
Rows
Skability
Tolerance
Volume of N verbosity
i nte m ed iate Dukput File Mame

Debug File Mame

Gen

L=
E\

0.0010

1]

Resulks

[] Plot Complementgry Distribution
[]Run In The Background
[ Place Commentdin Cukput

[ Edit Comments

]

[ Solve H Close ]

Mdbius

hGbius

T, Modeldss

(for steady-state solution of instant-of-time variables)

Stopping criterion used in
_ iterative refinement
phase, after direct
solution is done.

~ Number of rows to search
for the “best” pivot when
performing LU
decomposition

“Grace” factor by which
elements may become

Direct Steadfy State Solver 1.8.0-D

i

pivots

Value that, when multiplied by smallest matrix element, is
threshold at which elements may be dropped in LU
decomposition.
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Iterative Steady-State Solver (iss)
(for steady-state solution of instant-of-time variables)

HighAwvailComp: iss
File Edit Help

bt | cutput Stopping criterion,

_X :
State Spacs Name: | Gen ] __— expressed as 10, where x Is

Type soR v / given. The criterion used is
Stapring Criterion ? the infinity difference norm.
Weight 1.0

Max Ikerations 300000 \

Verbosty 0 —————— SOR weight factor.
Oull;put Flile Marme Resulks Val ues < 1 g uarantee
Debug File Marme -
convergence, but slow it.
[] Plat Complementary Distribution _
[ ] Run In The Background Val ues >= 1 Speed
] Place Comments in Output conve rg ence, but may not
[ Edit Comments ] [ Solve ] [ Close ] CO nve rg e .

, Mibius Iterative Steady State Solver 1.8.0-D
Maobius

T, liDdElisS

Maximum number of
iterations allowed.
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Outline

Motivation: Dependability, Performance, and Performability
Evaluation

The need for multi-formalism, multi-solution evaluation frameworks
— The M0bius modeling framework

Model Specification Methods

— Atomic Models (e.g. SANs and PEPA)

— Reward Variable Specification

— Model Composition (and state space generation)
— Model Connection

Model Solution Methods

— Simulation

— Analytic Methods

Putting it all together
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Design of Experiments

* Models of complex systems contain many
input parameters that define the behavior
of the system.

— Desire to know which parameter values
optimize specific output measures.

— Exhaustive exploration of the parameter
space of a large model is
computationally expensive.

* Design of Experiments techniques:

— Determine the degree of sensitivity
each response (output measure) has for
the various factors (input parameters) in
the model.

— Build a regression model of the
response and generate a response
surface to predict system behavior.

— Guide the user toward the factors that
optimize the desired response.

 Results imported from database.

nli.?»

P
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Archiving and Visualization of Analysis Results

Integrated results database stores
results produced by solution techniques
within Mdbius.

Share results between modules in
Mobius
and third-party SQL applications.
Multiple plot types are supported:
— reward value vs. experiment
— reward value vs. time
— probability distributions

Compare results from different model
configurations and input values

Export plot data to external graphing
software.

Built on Postgres open-source SQL
database system and JFreeChart plotting
library.

File Edit Help Plot

Simulation Parameters | Metwork Setup | Run Simulation | Simulation Info | Results | Graphs

Unreliability vs. Runtime

Linreliability
o o
o o

Q ([=] 20 30 40 a0 oo 70 20 =[x} 190 11 120 130 1490 190 160 10 180
Time

-=- unreliability: Mean: Experiment 1 - unreliability: Mean: Experiment 2

unreliability: Mean: Experiment 3

Hide:

Edit Show

Delete

, Mohius Simulator 2.0.0-D
Mabius

Teap

s
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Mdbius Users
e (Government:
— Used by multiple DARPA projects for probabilistic quantification of security:
* OASIS ITUA - Intrusion Tolerance By Unpredictable Adaptation

* OASIS Demo/Val — DPASA — Designing Protection and Adaptation into a
Survivability Architecture

— NSF research projects on Next Generation Systems
 Academia:
— Site licenses at hundreds of academic sites for teaching and research.
— Used in graduate level system analysis course at Univ. of Illinois.
— Many others have used Mdbius and developed materials in their classes.
— World-wide research community: Collaboration and with other researchers to
further develop new capabilities: Univ. of Dortmund, Univ. of Edinburgh,
Univ. of Erlangen, Univ. of Twente, Carleton University, and many others
e Industry:
— Corporate licenses to a range of industries:
» Defense/Military, satellites, telecommunications, biology/genetics
— Adopted as one of three Motorola corporate-wide “Availability Evaluation
Tools”.
— Biologists and chemists use it to model genetic and chemical reactions
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Next Steps

e For more information:

— MoObius Software Web pages
(www.mobius.uiuc.edu)

— Performability Engineering Research Group Web
pages (www.perform.csl.uiuc.edu)

 Mobius is available free for academic use

 \We welcome others to work with us and become Mobius
developers
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