William J. Stewart Department of Computer Science N.C. State University

The Matrix Geometric/Analytic Methods for
Structured Markov Chains

Markov chains whose transition matrices have a special block structure.

Example:
(B Bn 0 0 0 0 -
Biw A1 Ay 0 0 O
0 Ay A1 Ay 0 O
0 0 Ay A1 Ay 0 (1)
\ /
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Each state can be written as {(n,k),7 > 0,1 <k < K}
— ordered by increasing value of 1 then by increasing value of k.

States are grouped into “levels” according to their n value.

The block tridiagonal effect: transitions are permitted

— between states of the same level (diagonal blocks),

— to states in the next highest level (super-diagonal blocks),

— and to states in the adjacent lower level (sub-diagonal blocks).

Called Quasi-Birth-Death (QBD) processes.
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Example:

TR C R Y
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Figure 1: State transition diagram for an M/M/1-type process.

N
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Transition rate matrix:

/ * 71 | A1
V2 * A2
Y1 A1
p/2 p/2 | y2 x 0m
Y2 ok A2
kY1 A1
M Y2 * 71
Yoo o A2
kY1 A1
M Y2 * 71
Yo oo % A2
1 A1
H 2 * ga!
Y2 * A2
\
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Block matrices:

O O O A0 0
Ap = 0 0 , Ag = O 0 O
0O 0 O 0O 0 Ao
—(71 + A1) Y1 0
Ay = V2 —(B+ 7+ 72) 71
0 V2 — (72 + A2)
and
— (71 + A1 Y1
Bog — ( ) |
V2 — (72 + A2)
0 0
B A 0 O B /2 /2
01 = ; 10 = L v
0O 0 Ao
0 0
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Most common extensions:

— block upper Hessenberg

(M /G /1-type, solved using the matrix analytic approach)

— block lower Hessenberg
G1/M /1-type, solved using the matrix geometric approach).

( Boo
Bio
Bao
Bso
Bao

Bo1 0 0
By Ao O
B21 A1 Ao
Bs1 Az Ay
By Az A

Ao
Ay

0
0
0
0
Ao

0
0
0
0
0

A
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‘ The Quasi-Birth-Death Case I

When the blocks of a QBD process are reduced to single elements:

(=2 A \

—(A+p) A
Q= 7 —(A+p) A
7 —(At+p) A

From 7Q) = 0, we may write —Amg + pum; =0, m1 = (A\/u)mo

In general
AT — ()\ + ,u)ﬂ'z' + umiv1 =0,

which gives
Ti4+1 :()\/,LL)T('Z 221,2,
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Proof by induction: Basis clause, my = (A\/u)mo.
From the inductive hypothesis m; = (A/u)m;—1 and hence

(5) == ()= ()
i1 = | ——— | T — | — | Ti—1 = | — | 7.
I I iz

A\ .
T = (—) T = p'mg  where p= \/p.
0

Once mg is known, the remaining values, m;, + = 1,2,..., may be

determined recursively.

A similar result exists when (Q is a QBD process:
— the parameter p becomes a square matrix R of order K

— the components m; become subvectors of length K.
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QBD process w() = 0 with

(B Bn 0 0 0 0
By A1 Ay O 0 0
0 Ay A Ay 0 0
=1 0 0 4y A A 0

\

Let m be partitioned conformally with @), i.e.
T = (7o, 1, T2, )

where
= (m(i, 1), 7(2,2), - 7(i, K))
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This gives the following equations

moBoo +m™Bio = 0

moBo1 + m A1 + 1Ay = 0

7T1A2 —|—7T2A1 —|—7TgAO = 0
7T¢_1A2—|—7TZ'A1 —'—7Ti_|_1A0 — 0, 1= 2,3,...

In analogy with the point situation, there exists a constant matrix R s.t.

705 :7T7;_1R, for 7,22,3, (2)

The subvectors m; are geometrically related to each other since

m=mR™Y, for i=2,3,... (3)

Given mg, m; and R, we can find all other ;.
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Substituting from Equation (3) into
7Tz'—1A2 + 7T'7;A1 + 7Tq;_|_1A0 =0

gives
7T1Ri_2A2 + WlRi_lAl + WlRiAO =0

7T1Ri_2 (AQ + RAl + R2A0) =0

So find R from
(A2 + RA, + R*Ap) = 0. (4)

The simplest way: successive substitution. Equation (4) gives

Ay AT+ R+ R?*AgAT =0

R=—AyAT' — RPAgAT = -V — R*W
Ry =0; Rygr=-V-RpW, k=12,... (5)
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Derivation of my and 71: The first two equations of 7() = 0 are

moBoo + mBip = 0
moBo1 + ™A1 +mAg = 0
Replacing mo with m R
Boo Bo1
(70, 1) = (0,0) (6)
Big A1+ RAg

which can be solved for w3 and m; with the condition me = 1.

oo
1l =me = 7T06+7T16+E ;€
i=2

00
= 7T()6—|—7Tl€—|—g 7T1RZ_1€
1=2

00 00
— 7T06—|— E 7T1RZ_1€ — 7T06—|— E 7T1RZ€.
1=1 =0

1=
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This implies the condition

7T0€—|—7T1 ZRZ e = 1.

1=0

The eigenvalues of R lie inside the unit circle which means that (I — R)
is nonsingular and hence that

ZR@ (I —R)™* (7)

Normalize the vectors my and m; by computing
Q= Tpe + T (I—R)_

and dividing the computed subvectors my and 7 by a.
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Ergodicity condition for QBD processes:
— the drift to higher numbered levels must be strictly less than the drift

to lower levels.

LetA:A0+A1+A2 and
T4 A = 0.

The following condition must hold for a QBD process to be ergodic
maAgse < maApe (8)

Elements of A move the process up a level while those of Ay move it

down a level.
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SUMMARY': Matrix geometric method:

1.

=~ W N

o

Ensure that the matrix has the requisite block structure.

Use Equation (8) to ensure that the Markov chain is ergodic.
Use Equation (5) to compute the matrix R.

Solve the system of equations (6) for my and 7.

Compute the normalizing constant « and normalize 7y and 7.

Use Equation (2) to compute the remaining components of the

stationary distribution vector.

For a discrete-time Markov chain, replace —A;* with (I — A;)7!.
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Example: We use the following values of the parameters:

)\1:1, )\2:.5, ,u:4, ’71:5, ’72:3.

The infinitesimal generator is then given by

[ -6 50| 1 )
3 —3.5 5
-6 5 1

2 2| 3 —12 5.0

0= 3 —3.5 5

-6 5 1
4 3 —12 5.0
3 —3.5 5

1. The matrix obviously has the correct QBD structure.
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2. We check that the system is stable by verifying Equation (8). The

infinitesimal generator matrix

-5 5 0
A=Ag+ A1 + Ay = 3 -8 5
0 3 -3

has stationary probability vector
w4 = (.1837, .3061, .5102)

and
4388 = mqAse < mpaApe = 1.2245
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3. We now initiate the iterative procedure to compute the rate matrix
R. The inverse of A; is

—.2466 —.1598 —.2283
AT = —.0959 —.1918 —.2740
—.0822 —.1644 —.5205

which allows us to compute
—.2466 —.1598 —.2283
V = AA7" = 0 0 0
—.0411 —-.0822 —.2603

0 0 0
W =AgA7' = | —.3836 —.7671 —1.0959
0 0 0
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Equation (5) becomes

2466 .1598 .2283 0 0 0
Rijt1) = 0 0 0 |+Rfy | 3836 .7671 1.0959
0411 .0822 .2603 0 0 0

and iterating successively, beginning with R, = 0, we find

2466 .1598 .2283 2689 .2044 2921
Ry = 0 0 0 , Rg) = 0 0 0
0411 .0822 .2603 0518 .1036 .2909

2793 2252 .2921
Ry = 0 0 0 :
0567 .1134 .3049

Observe that the elements are non-decreasing.
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After 48 iterations, successive differences are less than 10712, at which

point
2917 .2500
Rg) = 0 0
0625 .1250

4. Proceeding to the boundary conditions:

Boo Bo1
(7o, 1) = (mo, m1)

Bio A1+ RAo

3971

3214

[ -6 50| 1 0 0)
3 —35| 0 0 5
0 0|-6 60 0
2 2| 3 —120 50

\ 0 0| 0 35 —35 )

SMF-07:PE Bertinoro, Italy
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Solve this by replacing the last equation with 7y, =1,
I.e., set the first component of the subvector m to 1.

[ -6 50| 1 0 1)
3 —35| 0 0 0
(mo,m) | 0O 0/-6 60 0 [=(0,0]0,0,1)
2 2| 3 —120 0
\ o o]l 0 35 0

with solution

(mo,m1) = (1.0, 1.6923, | .3974, .4615, .9011)

Now on to the normalization stage.
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5. The normalization constant is

a = me+m(I—R) e
1.4805 .4675 .7792
— (1.0, 1.6923)e + (.3974, 4615, .9011) | 0 | 0

1364 2273 .15455
= 2.6923 + 3.2657 = 5.9580

which allows us to compute
o/ = (.1678, .2840)

and
m /o = (.0667, .0775, .1512)
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6. Subcomponents of the stationary distribution:
— computed from 7 = 1 R.

2917 .2500 .3571
my = m R = (L0667, .0775, .1512) 0 0 0
0625 .1250 .3214
= (.0289, .0356, .0724)
and
2917 .2500 .3571
w3 = mo R = (.0289, .0356, .0724) 0 0 0
0625 .1250 .3214

= (.0130, .0356, .0336)

and so on.
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Block Lower-Hessenberg Markov Chains

Transitions are now permitted from any level to any lower level.

Objective:compute the stationary probability vector © from 7w() = 0.

7 is partitioned conformally with Q, i.e. m = (7o, w1, 72, )

— ;= (m(i, 1), 7(3,2),---7(i, K)).
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A matrix geometric solution exists which mirrors that of a QBD process,.

There exists a positive matrix R such that
7TZ':7TZ'_1R, for 222,3,

l.e., that

m=mR™Y, for i=2,3,...

From () =0
Zﬂ-k—i_jAk:O’ j:1,2,...
k=0

and in particular,

m Ay + m AL + ZﬂkﬂAk =0
=2
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Substituting m; = T R*~! into

7T1A0 —|—7T1RA1 +Z7T1RkAk =0

k=2
gives
1 (Ao + RAl + ZRkAk> =0
k=2

So find R from
Ag+RA1+) RFA, =0 (9)

k=2

Equation (9) reduces to Equation (4) when Ax =0 for k > 2.
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Rearranging Equation (9), we find

R=—ApA7" = RFAAT!

k=2

R(O) = 0; R(H—l) = —AOAl_l — Z R?Z)AkAl_l, [=1,2,...

k=2

In many cases, the structure of the infinitesimal generator is such that
the blocks A; are zero for relatively small values of ¢, which limits the
computational effort needed in each iteration.
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Derivation of the initial subvectors 7y and 7.
From the first equation of 7() = 0,

i 7Tz'B'L'O =0
1=0

and we may write

oo

moBoo+ Y miBio = moBoo+» MR Big = moBoo+m | Y RT'Big | =0,
i=1 i=1 i=1
(10)
From the second equation of 7() = 0,

7T()B()1 + Zﬂ-iBil — 0, i.e., 7ToB()1 + 71 ZRi_lBﬂ = 0. (11)
1=1 1=1
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In matrix form, we can compute 7y and 7 from

Boo By
(70, 71) — (0,0).
>t R7'Byy Y2  R'By

Once found, normalize by dividing by

a = mpe + ZRk_l e =moe+m (I — R) ‘e
i=1

For discrete-time Markov chains, replace —A;* with (I — A;)~ .
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Same example as before, but with additional transitions
(£, = .25 and & = .75) to lower non-neighboring states.

Figure 2: State transition diagram for a GI/M/1-type process.
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Q =
[ —6 50| 1
3 —35 5
6 5 1
2.00 2.00| 3 -12 5
3 -35 5
25 625 5 1
4 3.00 —12  5.00
75 3 —4.25 5
25 —6.25 5
4 3.00 —12  5.00
75 3 —4.25
\
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The computation of the matrix R proceeds as previously:

—.2233 —.1318 —.1550
AT =] —.0791 —.1647 —.1938
—.0558 —.1163 —.3721

which allows us to compute

—2233 —.1318 —.1550 0 0 0
AgAT! = 0 0 0 . A ALY — 3163 —.6589 —.7752
—.0279 —.0581 —.1860 0 0 0

—.0558 —.0329 —.0388
AsAT = 0 0 0 ,
0419 —.0872 —.2791
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The iterative process is

2233 1318 .1550 0 0
Rjt1) = 0 0 0 + Rl | 3163 .6589
0279 0581 .1860 0 0

0558 .0329 .0388
+R 0 0 0
0419 .0872 .2791

lterating successively, beginning with R = 0, we find

2233 .1318 .1550 2370 .1593
Ry = 0 0 0 , Ry = 0 0
0279 .0581 .1860 0331 .0686

0
1752

1910

1999
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2415 .1684 .2031
Rz = 0 0 0 :
0347 .0719 .2043
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After 27 iterations, successive differences are less than 10712, at which
point
2440 1734 .2100
Rary) = 0 0 0
0356 .0736 .1669

The boundary conditions are now

Boo Bo1
(707771) 5 — (07 0)
Bio+ RByy Bi1+ RB21 + R*B3;
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[ —6.0 5.0 1 0 0 )
3.0 —3.5 0 0 5
= (mo,m) | .0610 .1575 | —5.9832 5.6938 0710 | = (0, 0).
2.0000 2.000 | 3.000 —12.0000  5.0000
\ 0089 1555 | 0040  3.2045 —3.4624

Solve this by replacing the last equation with w9, = 1.

[ —6.0 5.0 1 0 1)
3.0 —3.5 0 0 0
(mo,m) | .0610 .1575 | —5.9832 56938 0 | =(0,0]0,0,1)
2.0000 2.000 3.000 —12.0000 0
K 0089 .1555 .0040 3.2945 0 )

Solution
(mo,m1) = (1.0, 1.7169, | .3730, .4095, .8470)
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The normalization constant is

a = me+m(I—R) e

1.3395 .2584 .3546
= (1.0, 1.7169)e 4 (.3730, .4095, .8470) 0 1 0

0600 .1044 1.2764
= 2.7169 + 2.3582 = 5.0751

Thus:

w0/ = (1970, .3383), and /o = (.0735, .0807, .1669).

Successive subcomponents are now computed from 7, = 7.1 R.
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.2440

Ty = m R = (.0735, .0807, .1669) 0

and

.0356
= (.0239, .0250, .0499)

.2440

w3 = mo R = (.0239, .0250, .0499) 0

and so on.

.0356

= (.0076, .0078, .0135)

1734 .2100
0 0
0736 .1669
1734 .2100
0 0
0736 .1669
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Simplifications occur when the initial B blocks have the same
dimensions as the A blocks and when

(Boo Ao 0 0 O
Bio A1 Ay 0 O
Bag Az A1 Ap O
Q= Bz A3 Ay A1 Ay O
Bao As Az A2 A1 Ao

o O O
o o o o O

In this case

7T7;:7T0RZ, for ?::1,2,...,

> oo R"Byo is an infinitesimal generator matrix
o is the stationary probability vector of Y- R'Big
— normalized so that mo(I — R)"te = 1.
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Also, in some applications more than two boundary columns can occur.

/Boo Bo1  Boz2 Ao

Bio Bii Bz A1 Ao

Bag B21 B2z Az A1 Ao

Bsg Bs1 Bs2 Az Az A1 Ao

By Ba1 Bax Ay Az Az A1 Ag

Bso Bs1 Bsa As Ay Az Ax A1 Ao

Beéo Be1 Be2 As As As Az Az A1 Ao
Bro Brn B2 A7 As As Ay Az Ax A1 Ao
Bso Bsi Bs2 As A7 As As A4 0 0 Ay

\

At present, this matrix is not block lower Hessenberg.

SMF-07:PE Bertinoro, Italy
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Restructured into the form

(Boo Bo1  Boz2 | Ao \
Bio Bi1 Biz2 | A1 Ao
Bag B21 Baa | A2 A1 Ao
Bsg Bs31 Bs2 | A3 Az Ai | Ag
By B41 Ba2 | Ay Az Az | A1 Ao
Bso Bs1 Bs2 | A5 Ay A3z | A2 A1 Ap
Bso Be1 Be2 | As As Aq | A3 A2 A1 | Ao
B7zo B71i B2 | A7 As As | Ay Az A2 | A1 Ao
Bgo Bs1 Bsg2 | As A7 Ag | As A4 0 | 0 A1 Ao
\ )
Ao Az A2 A Boo Bo1  Bo2
Ao=| A1 Ao , Ai=| A4 A3 Ay |, Boo=| Big Bi1 B
Az A1 Ao As Ay As Bso B21 B2
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Block Upper-Hessenberg Markov Chains

For QBD and GI/M/1-type processes, we posed the problem in terms of
continuous-time Markov chains.
Discrete-time Markov chains can be treated if the matrix inverse A7 ' is

replaced with the inverse (I — A;)~ 1.

This time we shall consider the discrete-time case.

(Boo Bo1 Bo2 Boz -+ By \
Bio A Ay Ay - A
0 Ay A As - A,
=10 00 a0 A4 o A
0 0 0 Ay - Ajs
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A =>"",A; is a stochastic matrix assumed to be irreducible.
TAaA=my, and mwye=1.

P is known to be positive-recurrent if

oo

ma (D idie|=mab <1 (12)

i=1
We seek to compute m from P = mw. As before, we partition 7
conformally with P, i.e.

T = (7-‘-077-‘-177-‘-27"')

where
= (m(i, 1), 7(2,2), - -7(i, K))

The analysis of M/G/1-type processes is more complicated than that of
QBD or GI/M/1-type processes because the subvectors m; no longer
have a matrix geometric relationship with one another.
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The key to solving upper block-Hessenberg structured Markov chains is
the computation of a certain stochastic matrix G.

G5 Is the conditional probability that starting in state ¢ of any level

n > 2, the process enters level n — 1 for the first time by arriving at
state 5 of that level.

This matrix satisfies the fixed point equation

G=> AG
i=0
and is indeed is the minimal non-negative solution of
X =) AX"
i=0

It can be found by means of the iteration

G(O) — O; G(k+1) — ZA’I:G%]{) — O, k= 0, 1, “.
1=0
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Once the matrix GG has been computed, then successive components of
7 can be found. From 7P =n n(I — P) =0,

(mo, 71, -

,7'("7-,.-.

( I — Boo —Bo1 —Bo2 —Boj
—Big | I — A — Ao —A;

0 —Ag I — A, —A; 1

0 0 —Ay I—A; —A; 9

0 0 0 —A;_3

= (0, O, O, )
The submatrix in the lower right block is block Toeplitz.
There is a decomposition of this Toeplitz matrix into a block upper
triangular matrix U and block lower triangular matrix L.
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(A7 Ay Ay Ap ) (1 0 0 0 )
0 AY AL Ar ... G I 0
U= 0 0 A7 A3 .- and L = 0 -G 0
0 0 0 Af .. 0 0 -G I

Once the matrix G has been formed then L is known.

The inverse of L can be written in terms of the powers of G.

(1 0 0 \(1 o o o -\ (10 0 0
-G I 0 G I 0 0 0 1 0 O
0 -G 0 G2 G I 0 |1 0 0 1 0

0 0 -G I G G? G I 0 0 0 1
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From Equation (13),

(I—Boo —Bo1  —Bo2 —DBos —Bo; \
—Bio
0
(mo, m, o | UL
0
\ /

which allows us to write
7o (—Bo1, —Boz2, -+ )+ (71, m2, -+ )UL =0

or
mo (Bo1, Boz, --- ) L™' = (71, ma, -+ ) U,
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(I 0 0 0 - )
G I 0 O
o (Bo1, Boz, -+ ) G* G 1 0 = (m1, T2, YU
G G* G T
mo (Bo1s Bogs -+ ) = (m1, w2, -+ )U (14)
By = Boi + BoaG + BosG? + -+ = ZBOka_l
k=1
Byy = Boz+ BosG+ BoaG* + -+ = ZB%Gk—Q
k=2
BSZ — BOi+BO,i+1G+BO,i+2G2—|—"' — ZBOka—Z
k=i
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Can compute the successive components of m once mg and U are known:

(A Ay A5 A7 -
0 A A3 A3

7TO( 317 8(27"'):(77-17 7T27"') 0 0 AT AS

0O 0 0 A3

Observe that
m = moBg AT
T2 — WOBSQAl_l — W1A§A1_1

* —1 * —1 * Axk—1
Ty = 7TOB03A1 — 7T1A3A1 — 7T2A2A1

* *
7T0B01 = 7M1 Al

* * *
WOBQQ = 7T1A2 —|— 7T2A1

I

7TOB(>I)<3 = 7T1A§ + WQA; + 7'(‘3141<
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In general:
m = (moBy; — mA; —m Al — - —m_1AS) AT, i
i—1
—1
— WOBS@' — ZWRA:—I«H AT :
k=1
First subvector mo :  mo (B{1, Bgo, -+ ) = (w1, 72,
( I'—DBoo | —By; —Bpy,  —Bgg
~Bio | AT A} A
0 0 A A
(7‘-03 7‘-13"'771-]'3...) 0 0 0 AT
0 0 0 0
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First two equations:
o (I—Boo)—ﬂ'lBlozo, —7T0B81+7T1A* = 0.

Second gives
x Ax—1

Substitute into first
70 (I — Boo) — 7T0B81A>{_1B10 =0
or

0 (1 — By — glA;‘—le) — 0

Can now compute my to a multiplicative constant.
To normalize, enforce the condition:

o o
Toe + o E Bj; g A; e
i=1

1=1

I
=

(15)
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Computation of the matrix U from

UL =

(-4

— Ao —As
I— A —Asg

—Ag I - A
0 —Ap

—A; 4
—Aj o
—Aj_3
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(44w oa )
0  AY A Aj

0 0 A} A3

0 0 0 A

= 0 _AO I—Al _Aj—Q G2 G I 0
0 0 —Ap _Aj—3 G3 G2 G I
>{:I—A1—AQG—ASG’Q_A4Gr3_,,.:[_ZAkGl-c—l
k=1

A; = —As —AgG—A4G2 —A5G3 . = ZAka—Q
k=2
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AT = T—A1—AG - AsG? — AuG® — - = T AGH!
k=1

A; = —Ap— A3G— AuG® — AsGP — - = =) AGHT?

k=2
A§ — _AB _A4G—A5G2 —A6G3 R —ZAka_g

k=3
A = —Ai—Ai1G— Ai—|—2G2 — Ai+3GS s = = ZAka—i7 i > 2

k=i

We now have all the results we need.
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The basic algorithm is
e Construct the matrix G.

e Obtain my by solving the system of equations
mo (I — Boo — Bi1 A} ' Big) =0,
subject to the normalizing condition, Equation (15).

e Compute 7 from 7 = moBi A~

e Find all other required 7; from
—1 —1
T, = (7'('0362. — Zzl WkA:—k—i—l) AT :

where

By, = ZBOka_i, 1 > 1; 1=1— ZAka_l
k=1 k=1

and A = —ZAka_i, 1> 2.
k=i
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Computational questions:
(1) The matrix GG. The iterative procedure suggested is very slow:

G(O) — O; G(k+1) — ZAiGrék), k= 0, 1, “.
1=0

Faster variant from Neuts:

G(O) — 0; G(k—i—l) — (I — Al)_l (A() + ZAZG%IC)> ; k= 0, 1, ce

1=2

Among fixed point iterations, Bini and Meini has the fastest convergence

- 1
G(O) = 0; G(k—|—1) = ([ — ZAiGrék;) Ag, k=0,1,...
1=1

More advanced techniques based on cyclic reduction have been

developed and converge much faster.
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2) Computation of infinite summations:
Frequently the structure of the matrix is such that A, and Bj are zero

for relatively small values of k.

Since > ,—, Ak and >~ By, are stochastic Ay, and By, are negligibly
small for large values of ¢ and can be set to zero once k exceeds some
threshold k.

When kj,; is not small, finite summations of the type ZZZZ 7 Gk
should be evaluated using Horner's rule. For example, if kp; = 5

5%
P =) ZGFT = 240G+ ZoGP + Z3GP + Z4G + As
k=1

should be evaluated from the inner-most parenthesis outwards as

Zi =([(Z1G+ Z3)G+ Z3 |G+ Zy ) G+ Zs.
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Example:
Same as before but with incorporates additional transitions ((; = 1/48
and (s = 1/16) to higher numbered non-neighboring states.

Figure 3: State transition diagram for an M /G/1-type process.
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[ 23/48 5/12 | 1/12 1/48
1/4  31/48 1/24 1/16
23/48 5/12 1/12 1/48
1/3  1/3 | 1/4 1/12
1/4  31/48 1/24 1/16
23/48 5/12 1/12
b= 2/3 1/4 1/12
1/4  31/48 1/24
1/2  5/12
2/3 1/4 1/12
1/4  31/48
\
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0 0 0 23/48 5/12 0 1/12 0 0
Ao=| 0 2/3 0 |, A1 = 1/4 0 1/12 , Ao = 0O 0 0
0 0 0 0  1/4 31/48 0 0 1/24
1/48 0 0
23/48  5/12 1/12 0 0
Az = o 0 O , Boo = , Bo1=
1/4  31/48 0 0 1/24
0 0 1/16
0 0
1/48 0 0
Bo2 = and Bio=| 1/3 1/3
0 0 1/16 o
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First, using Equation (12), we verify that the Markov chain with
transition probability matrix P is positive-recurrent.

583333 .416667 0
A=Ag+ A1 +Ax + A3 = 250000 .666667 .083333
0 250000 .750000
ma = (.310345, .517241, .172414).
Also
708333 .416667 0 1 1.125000
b= (A1+2A24+3A3)e = 250000 0 .083333 1 | =1 0.333333
0 250000 .916667 1 1.166667
The Markov chain is positive-recurrent since
1.125000
wma b = (.310345, .517241, .172414) | 0.333333 | = .722701 < 1
1.166667
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Computation of the matrix G:

The 75 element of GG is the conditional probability that starting in state ¢
of any level n > 2, the process enters level n — 1 for the first time by

arriving at state j of that level.

For this particular example this means that the elements in column 2 of
G must all be equal to 1 and all other elements must be zero
—- the only transitions from any level n to level n — 1 are from and to

the second element.

Nevertheless, let see how each of the three different fixed point formula

actually perform.
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We take the initial value, G(O), to be zero.
Formula #1: Gg41) = > AiG%k), E=0,1,...
Ghr1) = Ao + A1Gr) + A2Glyy + A3Gly,

After 10 iterations, the computed matrix is

0 .867394 0
Gaoy=| 0 .937152 0
0 .766886 0

Formula #2:
G(k—H) == ([—Al)_l (A0+27(;)i2 AiG%k)) , k=0,1,...

Grosny = (I — Ap)~! (AO + A2G3 + A3G§k>)
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After 10 iterations:

0 .999844 0
Guoy=| 0 .999934 0
0 .999677 0

BN |
Formula #3:  G41) = (I — > AZ-G’E;;) Ag, k=0,1,...

—1
Gy = (1= A1 = 4Gy — A43G3y) Ao

This is the fastest of the three. After 10 iterations:

0 .999954 0
Gaoy= 1] 0 .999979 0
0 .999889 0
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We continue with the algorithm using the exact value of G.

In preparation, we compute the following quantities, using the fact that
A =0 for k > 3 and By = 0 for k& > 2.

520833  —.520833 0

AT =T1-3 " ApGP T = 1-A1-AG—A3G = | — 250000 1 —.083333
k=1 0 —.354167  .354167
- —.083333  —.020833 0
Ay = =3 ApGF 2 = (4 + AsG) = 0 0 0
h—2 0 —.062500 —.041667
_ —.020833 0 0
Ay == AG"P =-A3= 0 0 0
k=3 0 0 —.062500
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. = L1 .083333 .020833 0
By = g BorG = Bo1 + Bo2G =
k=1 0 062500 .041667

o0 020833 0 0
Bgo = ZBOka_Q = Bo2 =
P 0 0 .062500
2.640 1.50 .352941
A7 =1 720 150  .352941
720 1.50 3.176470

Now compute the initial subvector, 7y, from

468750 —.468750

0 = mo (I — Boo — B§1AT_1310) = o
—.302083 302083

gives (un-normalized)
w0 = (.541701, .840571).
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Normalization:

moe + 0 (B, + Bi) (A7 + A3 + A7) le =1

Evaluating
(Bo1 + Bga) (AT + A3 + A3) ™

416667  —.541667 0
104167 .020833 0
= —.250000 1 —.083333
0 062500 .104167
0 —.416667  .250000

424870 291451 .097150
264249 .440415 .563472
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1 424870 .291451 .097150
(.541701, .840571) + (.541701, .840571)
1 264249 440415 563472

= 2.888888

Finally, initial subvector is

mo = (.541701, .840571)/2.888888 = (.187512, .290967)

We can now find m; from the relationship m = woBa‘lA}‘_l =

2.640 1.50  .352941
083333 .020833 0
(.187512, .290967) 720 1.50  .352941

0 062500 .041667
720 1.50 3.176470

= (.065888, .074762, .0518225).
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Finally, all needed remaining subcomponents of m can be found from

7—1
L * * x—1
T, = (WOB()@' — E WkAikJrl) Al

k=1

T =
= (.042777, .051530, 069569)

T3 = (moBis — mAL —mAL) AT = (—m AL — ma AS) AT
= (0212261, .024471, .023088)

ma = (moBg, — mAL —m AL —m3AL) AT = (—ma AL — mg AS) AX T
— (.012203, .014783, .018471)
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The probability that the Markov chain is in any level i is given by ||m;]|1.

Thus the probabilities of this Markov chain being in the first 5 levels
H7TOH1 — 478479, Hﬂ'lHl — 192473, HT('QH;[ — 163876,

3]y = .068785, ||m4lly = .045457

The sum of these five probabilities is 0.949070.
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Phase Type Distributions

Goals:

(1) Find ways to model general distributions while maintaining the

tractability of the exponential.

(2) Find way to form a distribution having some given expectation and

variance.

Phase-type distributions are represented as the passage through a
succession of exponential phases or stages (and hence the name).

SMF-07:PE Bertinoro, Italy 71



William J. Stewart Department of Computer Science N.C. State University

The Exponential Distribution

— consists of a single exponential phase.

Random variable X is exponentially distributed with parameter 1 > 0.

0

The diagram represents customers entering the phase from the left,
spending an amount of time that is exponentially distributed with
parameter 1 within the phase and then exiting to the right.

Exponential density function:

dF(x)
dx

fX (SE) =

=pe " x>0

Expectation and variance, F[X]| = 1/u; 0% = 1/u?.
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The Erlang-2 Distribution

Service provided to a customer is expressed as one exponential phase
followed by a second exponential phase.

|
o=
-

y

Although both service phases are exponentially distributed with the same
parameter, they are completely independent — the servicing process
does not contain two independent servers.

Probability density function of each of the phases:

fy(y) =pe ", y>0

Expectation and variance, E[Y] =1/u; o2 = 1/u?.
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Total time in service is the sum of two independent and identically
distributed exponential random variables. X =Y +Y

Fx(z) = /_OO Fr () fy (@ — y)dy

_ / ﬂe—uyﬂe—u(w—y)dy
0

0

and is equal to zero for x < 0 — the Erlang-2 distribution: Fs

The corresponding cumulative distribution function is given by

Fx(zx)=1—e® —pre " =1—e" 1 +4+puzx), x>0.
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Laplace transform of the overall service time distribution:

Laplace transform of each of the exponential phases:

Ly (s) = / ey () dy.

Lx(s) = Ele™**] = Ele*W1H¥2)] = Ele ™Y |E[e™%Y2] = Ly (s)Ly (s)
(e Y
N (8 + u) ’

To invert, look up tables of transform pairs.
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1 x"
<— —ar, 16
(s +a)rtt e (16)

Setting a = p and » = 1 allows us to invert Lx(s) to obtain

fx(x) = pee ™ = p(px)e ™, >0

Moments may be found from the Laplace transform as

k
E[X*] = (-1 )kc;i Lx(s) for k=1,2,...
s=0
5 d _
E[X] = —gﬁx( N =) = 2+ p) =
s=0 s=0

Time spent in service is the sum of two iid random variables:

EX|=EY]+EY]=1/p+1/n=2/p

2 2
1 1 2
A= (0) < (3) -5
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Example:

Exponential random variable with parameter u;
Two phase Erlang-2 random variable, each phase having parameter 2.

Mean Variance
Exponential 1/p 1/p?
Erlang-2 1/p 1/2p2

An Erlang-2 random variable has less variability than an exponentially
distributed random variable with the same mean.
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The Erlang-r Distribution

A succession of r identical, but independent, exponential phases with
parameter L.

Y
o=
-

y

Probability density function at phase 1:
fr(y) =pe " y=>0
Expectation and variance per phase:

ElY|=1/pn, and 0% =1/u® respectively.
Y
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Distribution of total time spent is the sum of r iid random variables.
2
1 1
E[X]zr(—)zz; aggzr(—) :%.
n) p [ [

Laplace transform of the service time : Lx(s) = ( - )

S+ u
Using th f ir ! T et with o —
sing the transtorm pair : (5 faytl — We with a = u
r—1_—px
() = PR T (17)

(r—1)!

This is the Erlang-r probability density function.

The corresponding cumulative distribution function is given by
r—1

FX(a:):1—e—WZ(“Zf), r>0andr=1,2,... (18)
i=0 '
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Differentiating F'x () with respect to x shows that (18) is the
distribution function with corresponding density function (17).

o e )Y k)
fx(x) = —Fx(z) = pe D Ko © ) k!
k=0 k=0
r—1 r—1
i i N (p)” « N k(pa)*
k=1 k=1
r—1
Cwe k(pz)*=t (pa)”
r—1
_ (p)*=t (pa)”
- e ) _
He { ];((kl)' Kl

- o)
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The area under this density curve is equal to one. Let

o r.r—1 _ —px
Ir:/ Pz °© de, r=12,...
0 (7“—1)'

Iy = 1 is the area under the exponential density curve.

Using integration by parts:
([ udv =uv — [vdu with u = p" 12"t /(r — 1)! and dv = pe **dz)

c© r—1,.r—1 — U
oo [TEE e,
0 (r — 1)!
lur—lxr—l o0

— 6_,“33

(r—1)!

oo T—lxr—Z
" / lu(?“ 2)! e Mdr =0+ 14
0 0 e

It follows that I,, = 1 for all » > 1.
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Squared coefficient of variation, C%, for the family of Erlang-r
distributions.

2
1
—T/—'u——<1, for r > 2.

X T

“More regular” than exponential random variables.

Possible values:

DO | —
| =
N

Allows us to approximate a constant distribution.
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Mixing an Erlang-(r — 1) distribution with an Erlang-r distribution gives
a distribution with 1/r < C% < 1/(r —1).

For a given E[X] and C% € [1/r,1/(r — 1)] choose

1
1+ C%

r—

(TC@( — \/7“(1 +C%) — 7"203() and = EX (19)

O =
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The Hypoexponential Distribution

Y
=
=
-

Y

Two phases: exponentially distributed RVs, Y; and Y>: X =Y; + Y5,

@ = [ -y
— /me—ulyuze—uz(x—y)dy
0
= Ml,uze_”ﬁ/ 6_(M1—M2)ydy
0

. _HMR2 (€—M2fb‘ — e_’“x) : x > 0.

M1 — M2
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Corresponding cumulative distribution function is given by

2 — M1 2 — M1

Expectation, variance and squared coefficient of variation:

1 1 1 1 AT
and C% = M1+M2<1

EX]= +—, VarX]= — + —,
H1 o 2 M1 M3 p1 =+ 2

H1 2
Lx(s) = :
x(8) (8+M1) (S+M2)
The Laplace transform for an r phase hypoexponential random variable:

Lx(s)= <Sﬁlm> (SﬁQLQ) (siru) |

Y

Laplace transform
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The density function, fx (), is the convolution of r exponential
densities each with its own parameter u; and is given by

r

fx(z) = Zai,uie_”ix, x>0 where «; = H L,
i=1 j=1, g 19 T

Expectation, variance and squared coefficient of variation:

T Tr

_ i ar _ i an 2 _ Zil/ﬂg
E[X]_;m’ varlt ;ﬂ? ¢ ¢ @-1%-)231'

Observe that C% cannot exceed 1.
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Example:

Three exponential phases with parameters 1 =1, uo =2 and uz =3 .

3
1 1 1 1 11
BN = 2 =1%3t57%
1=1
3
1 1 1 1 49
VCLT[X] — ZE:I+Z+§:%
=1 "7
49/36 36
Cy = = —— =0.2975.
X 121/36 121

SMF-07:PE Bertinoro, Italy 87



William J. Stewart Department of Computer Science N.C. State University

Probability density function of X .

r

fX(ac):z:ozi,uz-e—llwi-’lf7 x>0 where o; = H Hi ,
i=1 j=1,jzi 9T
- 1 1 1
Qa1 = H 2 =M X s = - X - ==
iigwi TR p2—p ps—p L2002
- 2 2
A H 2 _ 2 y 2 :_1XI:_4
P e e A N
: 3 3 9
ISR | (N S S R
pj — M3 p3— M1 p3— e —2 —1 2

j=1,j#i

It follows then that

3
fx(x) = Z aipie M = (0.5)e” " + 8¢ %% 4+ (13.5)e %%, x>0
i=1
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The Hyperexponential Distribution

Our goal now is to find a phase-type arrangement that gives larger
coefficients of variation than the exponential.

y

y

The density function:
fx(z) =ajpure "% + asuge™ *2*, x>0
Cumulative distribution function:

Fx(z)=a1(1 —e M%)+ as(l —e #2*), x>0.
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Laplace transform:

s+ "5 o
First and second moments:
Q Q 200 200
E[X]=—+—= and E[X} ="+
M1 M2 M1 2

Variance:
Var|X| = E[XQ] — (E[X])2

Squared coefficient of variation:

, _ BIX?] - (E[X])*  E[X7]

2 _ _ g 2a0/pi 4200/ i
* (E1X])? (E[X])? (o1 /1 -|—042/,Mz)2

—1>1.
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Example:

Given a; = 0.4, u1 = 2 and po = 1/2.

0.4 N 0.6
2 0.5

0.8 1.2

E[X] = —
X 4+0.25

=140 E[X?] = 5

ox = Vb—142=+3.04=1.7436

5
Cyx = Tz — 1 =25510 - 1.0 = 1.5510
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With r parallel phases and branching probabilities > ', a; = 1:

SMF-07:PE Bertinoro, Italy 92



William J. Stewart Department of Computer Science N.C. State University

E[X]:Z% and E[XQ]:ZZ%
i=1 " i=1 "1

,  E[X?] 4 2> i i/ B
T

To show that this squared coefficient of variation is greater than or equal
to one, it suffices to show that

(Z Oéz'/uf@) <D ai/n

Use the Cauchy-Schwartz inequality: for real a; and b;

(£ =(24) (5%)
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Substituting a; = \/a; and b; = /o, /j; implies that

2 2
S I Vi
27;: fhi EZ: Ve [
2
= Z \/OT’L'Z Z (i@) ; using Cauchy — Schwartz
— Zoz@ Z% ZZ%, since Zaizl,

Therefore C% > 1.
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The Coxian Distribution

Y

With probability p; = 1 — «q, process terminates after phase 1.
With probability po = a1 (1 — «2), it terminates after phase 2.

With probability pr = (1 — ay) H,];:_ll o, it terminates after phase k.

A Coxian distribution may be represented as a probabilistic choice from
among r hypoexponential distributions:

SMF-07:PE Bertinoro, Italy 95



William J. Stewart Department of Computer Science N.C. State University

\j

\J

\J

\j

\J
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Phase 1 is always executed and has expectation E[X1] = 1/u;.
Phase 2 is executed with probability ai; and has E[Xs| = 1/us.
Phase k > 1 is executed with probability Hf;ll a; and E[X;] = 1/p.

Since the expectation of a sum is equal to the sum of the expectations:

1 o ] Q1 1 Qg+ O LA
E[X]:—+—1 L 2‘|“|‘ L2 . — —ka
M1 12 M3 oy kzlluk

where A1 =1 and, for k > 1, A, = H;:ll Q.

The case of a Cox-2 random variable is especially important.
1 1 H2 + oty

251 2 112

(20)
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Laplace transform of a Cox-2

251 25 2
Lx(s)=(1 -« + «
xls) = )3+M1 S+ 1S+ p2

o e d ((I=a)m QupLq Lo
EXT == d82( s+ i1 +(S+u1)(8+uz)>szo
d (—(1—a)m —1 —1 \
s ( T [(8+u1)(8+u2)2 N (8+u1)2(8+u2)]/

2(1 — o) 20011 o2 QUi 2
3 + 3 _|_ 2 2
(5 + p1) (s+p1)(s+p2)® (54 p1)?(s + p2)

2041 42 n QL 42

" (s+p1)(s+p2)  (s+ p1)*(s + p2)?

s=0
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2(1 —a) 22« Q 200 Q
— 2 5+ T+
Uy 25 L1 f2 251 fo1 2
2 2q0 2a0
= 3t 3
B Mgy H1p2
2
2 2q0 2a 1 Q
- o) (o
By My 2 M1 M2
_ o 2pF 2043 + 2010 (p2 + o)’
KK KK
_ M3 2opf —oPpi  p3+api(2-a)
KK KK
oo VarlX] _pptopi2-o) o pipy _ ppt+api(2-a)
t o E[X]? Hin3 (p2 +apn)? (g2 + )’
(21)
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Example:

Coxian-2 RV with parameters 111 = 2, us = 0.5 and a = 0.25,
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General Phase Type Distributions

Phase type distributions need not be restricted to linear arrangements.

Define a phase type distribution on k£ phases with parameters u;:
— distribution of the total time spent moving in some probabilistic

fashion among the k different phases.

It suffices to specify:

the initial probability distribution: ¢;, 1 =1,2,...,k
Zf:l o; =1

the routing probabilities 7;;, %, =1,2,...,k; j # 1
— Z§:1 ri; < 1.

the terminal probability distribution: n;, 1 =1,2,...,k
—foralli=1,2,...,k, 771'—|—Z§:1'rij = 1:

SMF-07:PE
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Figure 4: The Coxian Distribution, again.

Example: Coxian distribution:

Initial distribution: ¢ = (1,0,0,...,0).

Terminal distribution: n = (1 —a1,1 —as, ..., 1 —ag_1,1).

Probabilities 7;;:

[0 a1 0 -+ 0 )

0 0 ay -~ 0
R =

0 0 0 ap_1

\ o0 0 0 -~ 0 )
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Y

Figure 5: A General Phase Type Distribution.

Example: General phase type distribution:

Initial distribution: ¢ = (0, .4, 0, .6)

Terminal distribution: n = (0,0, 1,0)
Routing probability matrix:

(0 5 5 0 )

0 0 1 0
R =

2 0 0 .7

\1 0 0 0 )
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Appended an extra phase to represent the exterior
— called a sink or an absorbing phase

Now combine the parameters of the exponential distributions of the
phases and the routing probabilities into a single matrix @)

— @;; is the rate of transition (on exiting phase ¢) from phase i to some
other phase j, i.e., q;; = (;7i;.

Associated Markov chain has a single absorbing state and an initial
probability vector.
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Example: Coxian distribution:

Initial distribution: (1,0,0,...,0|0) = (¢ | 0).

)

( 0 pion 0 Ml(l—al)
0 0 U2 p2(l — az)
Q =
0 0 0 Pr—10k—1 | pr—1(1 —ar_1)
0 0 0 J7ps
\ o0 o0 0 0

General phase type distribution:
Initial distribution: (0,.4,0,.6 | 0) = (¢ | 0).

[0  5um Sur 0O 0 )
0 0 p2 O 0
203 0 0 Tus | lps
pa 0 0 0 0

\ 0 0 0 0 0 )
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Fitting Phase Distributions to Means and Variances

Use Coxian distributions.

One criterion: use the smallest number of phases possible.

We differentiate between C'xy < 1 and C'x > 1, when constructing
Coxian distributions to match a given expectation E[X] and a given C%.

\J

Figure 6: Suggestion Coxian for C% < 1

What values do we assign to ¢ and to a?
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Laplace transform:

Lx(s)=(1—-a«) a +04H a = (1 —«) N

stp o Atsdp s+u (s4+p)
Then
E[X] = —i<(1—a) h gt )
ds s+u (s+1)" ) |—
Y pr
— ]_—Q{ @
(- ot )|
T
= (l—-a)—+a— 22
( )u P (22)
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E[X?] = d—2<(1—a) H ot )

|
E
/|\\
=
|
L
o
+ | =
=
\W)
|
o
o
+ =
Bl
3
+
N—

+a——— (23)

21 —a)+ar(r+1)— (1 —a+ ar)?
e

2 _ Var X] 2(1—a)+ar(r+1)—(1—04—|—ow“)2.

E[X]2 (1 —a+ ar)? (24)
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We choose r, a and p to satisfy (22) and (24).

Also choose r to be greater than 1/C%:
1
r=|—=51-
Ck

Now use Equation (24) (which involves only r, C% and a) to find «.

7“—20?(—#\/7“2—#4—47“03(
2(C% +1)(r — 1) '

o =

Finally, compute i from Equation (22):

14 a(r—1)
- BlX]

L
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Example: Phase-type distribution withE[X]| = 4 and Var|X]| = 5.
Then C% =5/16 =0.3125 < 1 .

"= {%w - {0.3125} = [32]
4

r—20% +\/r2+4—4rC% 4 —2(0.3125) + /16 + 4 — 16(0.3125)
O = —
2(C% +1)(r — 1) 2(0.3125 + 1)(3)

= (0.9204.

14+ a(r—1) 1+ 3(0.9204)

- — 0.94
10 ] y 0.9403
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Check:
1 r
E[X] = (1—a)—4a— = (0.0796 0.9204 — 0.084743.9153
(X]=(-a)7+ar = )o.0103 ) 9.9203 i
= 4.0.
VarlX] — 2(1 — a) + ar(r —|—Mi) — (1 —a+ar)?
~2(0.0796) + (0.9204)20 — [0.0796 + 4(0.9204)]>  4.4212
- (0.9403)2 ~0.8841
— 5.0.
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A two-phase Coxian is sufficient. for C% > 1.

Y

Figure 7: Suggested Coxian for C% > 0.5

Need to find p1, o and « from E[X] and C% where

E[X] _ 2 + i
o1 2
2 _ Mt an(2-a)
P

(p2 + oprr)?
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Infinite number of solutions possible:
The following yields particularly simple forms.

2 1 1

= — p— d p—
:ul E[X]7 04 20%( al :u2

— valid for values of C% that satisfy C% > 0.5.
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Example: E[X] = 3 and ox = 4. This means that C% = 16/9 so

2 2 1 9 1 1 3
= —— ==, a= = — an = = —
M= Fx]~ 3 202~ 32 2T EX]CZ T 16
Check:
po+apr %Jr??—g%:%:?)
11 142 23 x
U%+&M%(2_O‘) _ fgfi+39_2%3_g: 0.25 — 1.7778 = ——
(12 + aupig)? (2 +22)°  0.1406
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Alternative: a two-phase hyperexponential distribution.

Y

Y

Add an additional balance condition:

a 1l —«
251 2
This leads to the formulae
1 C2 —1 200 2(1 — «)
““o\"TVWeryr ) MTER] MY 2T TR
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Example: E[X]| =3 and C% = 16/9:

1 C—1 1 | 7/9
“ 2( i C+1> 2( T 25/9) 07640

2(1 —a)  0.4709
E 3

20 1.5292
@ _ 1.529 — 0.1570

[ = = 0.5097 and o =

Q 1 — « B 0.7646  0.2354

- — 1.50 + 1.50 = 3.0.
o 05097 T 0.1570 i

2c/ 1 4+ 2(1 — )/ 3 ~1.5292/0.2598 4 0.4708,/0.0246

Cx = —1

(af/ur+ (1 —a)/u)?  (0.7646/0.5097 + 0.2354/0.1570)%

2
_ »_,_16
9 9
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Queues with Phase-Type Laws:
Neuts’ Matrix-Geometric Method

Beyond Birth-Death processes and tridiagonal transition matrices.

Phase-type arrival or service mechanisms have block tridiagonal

transition matrices

— Quasi-Birth-Death (QBD) processes.
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The Erlang-r Service Model — The M/FE, /1 Queue

Queue oo et !
Service Facility

a(t) = e M, t>0

)7“—1 —TruT

() — (7 px e

(r —1)! 220

State descriptor: (k, %)
— k (k > 0), is the number of customers in the system,
— 4 (1 < <), denotes the current phase of service.
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e
\

A TH A\)‘ A
\
e e e
A TH )\\A A
OO ey

T
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States that have exactly k customers constitute level k.

Transition rate matrix has the typical block-tridiagonal (QBD) form:

(Boo Bos

Bio Ay

0 Ap

“=1 0 o
0 0

\

0
A
Ay
Ao

0

0
0
A
Ay
Ag

0 \

0
0
A
Ay

Matrices Ag represent service completions at rate ru

Matrices A5 represent arrivals at rate .

Super-diagonal elements A; represent service completion at rate ru.

The matrices B represent initial conditions.
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(0 0 0 0 0 )
0 0 0 0 0
0 0 0 0 0
Ao— y AQZ)\[ and
0 0 0 0 0
\ e 0 0 0 0
(—)\—T;L T 0 o --- 0 \
0 —A =T T o --- 0
0 0 —A—rp TR - 0
A; =
0 0 0 0 g
\ 0 0 0 0 - —A—rp )
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Example: The M/FE,./1 queue with A =1, = 1.5 and r = 3.

Q =

(-1 1 0 0 0 0 0 0 0 0
0 | =55 45 0 1 0 0 0 0 0
0| 0 —55 45 0 1 0 0 0 0
45| 0 0  —55 0 0 1 0 0 0
0| o 0 0 | -55 45 0 1 0 0
0| o 0 0 0 —55 45 0 1 0
0 | 45 0 0 0 0  —55 0 0 1
0| o0 0 0 0 0 0 | -55 45 0
0| o0 0 0 0 0 0 0 —55 45
0| o 0 0 4.5 0 0 0 0  —55

\
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0 0 0 —5.5 4.5 0 1 O
Ap = 0 0 O , A1 = 0 —5.5 4.5 , Ao=| 0 1
4.5 0 0 0 0 —5.5 0O O
0
Boo = —1, Bo1 = (1,0,0), Bio = 0
4.5
We seek 7 from 7@ = 0 with m = (7g, 71, T2, ..., TG, .. ).

Successive subvectors of 7 satisfy ;.1 =m,Rfori=1,2,....

Compute R from
Rii1=—(V+ RW)
with V = A, AT, W = AgA;* and Ry = 0.
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The 75 element of the inverse of M:

(d a 0 0 - 0)
0O d a 0 --- 0
0O 0 d a --- 0
M = ,
0O 0 0 O
\0 00 0 - d)
-1 '—il a\J—* cp : .
M~ = (1) g(&) , it e < g <y 0 otherwise  (25)

M/E,./1 queue: d = —(A+ru) and a = rp.

W = AgA;" and Ag has a single nonzero element 7 in position 71.
= W has only one nonzero row, the last, with elements given by
ru X first row of Al_l.
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W, = — ( il ) for 1 <1 <r; otherwise 0.
A4

V = A3A7! and Ay = A = multiply each element of A" by ).

Example: M/FE3/1 queue continued

—2/11 —18/121 —162/1331

At = 0 —2/11  —18/121
0 0 —92/11
—2/11 —18/121 —162/1331 0 0 0
V= 0 —92/11  —18/121 |. W= 0 0 0
0 0 —2/11 ~9/11 —81/121 —729/1331

Begin iterating with
Rii1 = -V — RW.
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Ry =0,
2/11 18/121 162/1331 0.236136 0.193202 0.158075
Ry = 0 2/11 18/121 , R2= 1 0.044259 0.218030 0.178388
0 0 2/11 0.027047 0.022130 0.199924

0.331961 0.271605 0.222222
Rso = | 0.109739 0.271605 0.222222 | = R.
0.060357 0.049383 0.222222
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Next step: computation of initial vectors for w11 = mR, i =1,2,...

[ Boo Ban O 0 0 - )
Bio A1 Az O 0
0 Ay A1 Ay 0
, 1, T2, , T, = (0,0,0,...,0,...
(o, ™1, 2, ..., 0 0 Ay A A, (
0 0 0 Ao A
moBoo + m1B1o =
moBo1 + m A1 +mA0 =
Writing w5 as w1 R, we obtain
Boo Bo1
(0, 1) = (26)
Bio A1+ RAo
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There is no unique solution so the computed m must be normalized.

1 =my+ Zﬂke = T + ZmRke =719 +m( —R) e
k=1 k=0

Thereafter:

Tk+1 — 7TkR.

Example, continued:

To find my and 71: Observe that 4.5 x 0.222222 = 1 and so

1 0 O —4.5 4.5 0
RAp = 1 0 0 and A; + RAo = 1 —5.5 4.5
1 0 O 1 0 —5.9
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[ -1| 1 0 0
0 | —4.5 4.5 0
(0, 1)
0 1 —9.9 4.5
\ 45| 1 0 —55 )

Coefficient matrix has rank 3, so arbitrarily setting mp =

<7T07 1y, T1g, 7T13)

Solution

(1] 1 0 1)
0 | —45 45 0
0] 1 =55 0

\ 45| 1 0 0 )

= (0,0).

= (0,0,0,1).

(7T0, 11,71, 7T13) — (1, 0331962, 0271605, 0222222)
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This solution needs to be normalized so that
To + 7'('1(] — R)_le = 1.

Substituting, we obtain

1.666666 0.666666 0.666666 1

1+(0.331962,0.271605,0.222222) | 0.296296 1.518518 0.518518 1
0.148148 0.148148 1.370370 1
= 3.

Thus, the normalized solution is given as

(o, 71, M, T1,) = (1/3,0.331962/3,0.271605/3,0.222222/3)

= (1/3, 0.110654, 0.090535, 0.0740741)
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Additional probabilities may now be computed from ;.1 = 71 R.

m=m R = (0.051139,0.058302,0.061170)
3 =moR = (0.027067,0.032745,0.037913)
s =m3R = (0.014867,0.018117,0.021717)
s =m4R = (0.008234,0.010031,0.012156)

The probability of having 0,1, 2, ... customers is found by adding the
components of these subvectors. We have

po =1/3, p1 =0.275263, ps = 0.170610, ps = 0.097725,

SMF-07:PE Bertinoro, Italy 131



William J. Stewart Department of Computer Science N.C. State University

The Erlang-r Arrival Model — The E,./M/1 Queue

G llfOS
"""""" Amval Process Quee B
T)\(r)\t)r_le_Mt
alt) = , t > O,
(t) (r —1)! -

b(t) = pe ", x>0.
Before actually appearing in the queue proper, an arriving customer
must pass through r exponential phases each with parameter r\.

State descriptor: (k, %)
— arranged into levels according to the number of customers present.
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The transition rate matrix:

[ Boo A2 0 0
Ao A1 As 0
Q= 0 Ao A1 A
0 0 Ao A

0 —l—TA

0 0
AOZILLI, Al —

0 0

0

0

0
As

)
—U—TA )
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[0 0 0 0 0 )

0 0 0 0 0

0 0 0 0 0
andAgz

0 0 0 0 0

\ A 0 0 0 - 0

Matrices Ag represent service completions at rate p,
Matrices A, represent an actual arrival to the queue.

Super-diagonal elements of the matrices A; represent the completion of
one arrival phase ¢« < r, at rate r\.
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Example: An E,./M/1 queue with parameters A = 1.0, = 1.5, r = 3.

[ -3 3 0 0 0 0 0 0 0

0 -3 3 0 0 0 0 0 0

0 0 -3 3 0 0 0 0 0

1.5 0 0 | —4.5 3 0 0 0 0

0 1.5 0 0 —4.5 3 0 0 0

Q= 0 0 1.5 0 0 —4.5 3 0 0

0 0 0 1.5 0 0 —4.5 3 0

0 0 0 0 1.5 0 0 —4.5 3

0 0 0 0 0 1.5 0 0 —4.5
\

1.5 0 0 —4.5 3 0 0 0
Ag = 0 15 0 , A1l = 0 —4.5 3 , Ao=1 0 ©
0 0 15 0 0 —4.5 3 0
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Find 7 from 7Q = 0, m = (7o, 71, T2, « -, Thy - - -).

Successive subvectors of 7 satisfy m;,1 =m,Rfori=1,2,....

R is obtained from
Rii1 = —(V + RIW)

with V = A A7 and W = AgAT

A\ i
Vii = — ( r ) for 1 <7 <r; otherwise 0.
w4 rA

Since Ag =l , W = AoAl_l Is easy to find:
— multiply each element of A" by .
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Example continued:

—92/9  —4/27 —8/81
ATt = 0  —2/9 —4/27
0 0 —2/9

~1/3

0
0
—92/3 —4/9 _8/27

—1/3 —2/9  —4/27
W = AgA] " = —1/3 —2/9 |,
VAQAll(

Rij1=-V — RW:
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Ry =0,
0 0 0 0 0 0
Ry = 0 0 0 , Ro = 0 0 0
2/3 4/9 8/27 0.732510 0.532236 0.3840878
0 0 0
Rso = 0 0 0 = R.

0.810536 0.656968 0.532496
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The boundary equations are different in the E,./M /1 queue from those
in the M/FE, /1 queue.

Only a single subvector, 7, needs to be found
Tip1 = mR=mR'™ for i=0,1,2,...
From

[(Boo A2 0 0 0 .- )
Ao A1 A2 O 0
0 Ao A1 Ay 0 .-
(00, TT1, T2,y e v vy iy - -) 0 0 A A A, ... =(0,0,0,...,0,...),

0 0 0 Ay A

o Boo + m1 Ao = moBoo + moRAo = mo(Boo + RAp) = 0.
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A unique solution is found by enforcing the constraint
1= Zﬂke = ZWORke = 7mo(I — R) e
k=0 k=0

Example, continued:

—3 3 1
m0(Boo + RAo) = (o1, mo2, To3) 0 —3 0 | =(0,0,0).
1.215803 0.98545 0

Solution: my = (1, 1.810536, 2.467504).

Now normalize so that mo(I — R) " te = 1.

1 0 0 1
(1, 1.810536, 2.467504) 0 1 0 1 | = 15.834116
—0.810536 —0.656968 0.467504 1
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Divide each component of my by 15.834116:

o = (0.063155, 0.114344, 0.155835).

The remaining subvectors of 7 found from 7, = m,_1 R = moR”.

m =mR = (0.126310, 0.102378, 0.082981)
T =mR = (0.067259, 0.054516, 0.044187)
m =mR = (0.035815, 0.029030, 0.023530)
m=mR = (0.019072, 0.015458, 0.012529)

etc.

Probability of having 0,1, 2, ... customers:

po =1/3, p1 = 0.311669, p, = 0.165963, p; = 0.088374,
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The M/H>/1 and Hy/M/1 Queues

The M/H5/1 queue.

———————————

oo i
Queue : @

Service Facility

Arrivals are Poisson at rate .
With probability a,, a customer receives service at rate (.
With probability 1 — «, this customer receives service at rate us.
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Transition rate diagram for the M/H5/1 queue:
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The transition rate matrix for the M/H5/1:

Y a (1— )X 0 0 0 0
1 — (A4 p1) 0 A 0 0 0
12 0 —(\ + p2) 0 A 0 0
0 Y751 (1—a)pr | —( A+ p1) 0 A 0
0 o2 (1 —a)pz 0 —(A + p2) 0 A
0 0 0 ap (1—a)pr | —(A 4 p1) 0
0 0 0 QL2 (1 —a)us 0 — (A =+ p2)
1 — —(A 0 A0
Ay = | oM (I — o) A - (A + p1) A, —
apz (1 —a)p2 0 —(A+p2) 0 A
p1
Boo ( —A >, 3012( ad (1 —a)X ), Bio =
M2
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The Hy /M /1 queue:

————————————————

NCNE—

Service Facility

Arrival process

The instant a customer enters the queue, a new customer immediately
initiates its arrival process.

With probability o this exponentially distribution has rate Aq,
— while with probability 1 — « it has rate As.

Service is exponentially distributed with rate .
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@ (032
OA 2

OA1
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Transition rate matrix:

[ =X 0 al (1— )1 0 0 0 0
0 — A9 2% (1 — ()4))\2 0 0 0 0
o 0 —()\1 + ,u) 0 a1l (1 — Oz))\l 0 0
0 7 0 — (A2 4+ ) a2 (1 — a)A2 0 0
0 0 1 0 —(A1 +p) 0 ai (1 —a)A;
0 0 0 7’ 0 — (A2 + ) N2 (1 — a)A2
0 0 0 0 7 0 —(A1 +p) 0
0 0 0 0 0 I 0 — (A2 + )
—(A 0 A 1 —a)A
Ag= | " A = A1+ 1) T B
i 0 —()\2 + ,u) o9 (1 — O&))\Q
— A1 0 Al 1 —a)\ 7
Boo = , Bo1 = ( ) = A2, Bip = = Ap.
0 — A2 aly (1 —a)A 0
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Automating the Analysis of Single Server Phase-Type Queues

The procedure for solving phase-type queueing system by means of the
matrix-geometric approach has four steps, namely

1. Construct the block submatrices

2. Form Neuts’ R matrix

3. Solve the boundary equations

4. Generate successive components of the solution

Possible to write (Matlab) code for each of these four steps separately;
— complete program obtained by concatenating these.

In moving from one phase-type queueing system to another only the first
of these sections should change.
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The Hy/FE5/1 Queue and General Ph/Ph/1 Queues

Service Facility

Arrival process

State descriptor needs 3 parameters:
— k, the number of customers actually present,
— a, the arrival phase of the “arriving” customer,

— s, the current phase of service.
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States first ordered according to the number of customers present.
Within each level, k, states are ordered first according to the arrival
phase and secondly according to the service phase (k,a, s).

Transitions generated by arrivals:

us \“3

M1
S e

2
HS \

=
[N
=
N

<
i
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Transitions generated by service completions:
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—A1 0 a1 0 0 a2A1 O 0 0 0 0 0 0 0
0 —A2 | atAa 0 0 a2X2 O 0 0 0 0 0 0 0
0 0 * 751 0 0 0 0 | a1\ 0 0 o\ 0 0
0 0 0 x U9 0 0 0 0 Q11 0 0 a1 0

43 0 0 0 * 0 0 0 0 0 Q11 0 0 a1
0 0 0 0 0 * w1 0 | ai)e 0 0 a2 A2 0 0
0 0 0 0 0 0 x U9 0 Q1A 0 0 Q2 A2 0
0 7% 0 0 0 0 0 * 0 0 a1 A2 0 0 a2\
0 0 0 0 0 0 0 0 * 1 0 0 0 0
0 0 0 0 0 0 0 0 0 * (42 0 0 0
0 0 U3 0 0 0 0 0 0 0 * 0 0 0
0 0 0 0 0 0 0 0 0 0 0 * 41 0
0 0 0 0 0 0 0 0 0 0 0 0 * 42
0 0 0 0 0 43 0 0 0 0 0 0 0 *
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Can construct the block submatrices Ay, A1, Aa, Boo, Bo1 and Big
from the diagrams and then apply the matrix-geometric approach.

However, it is evident that this can become quite messy.

An arbitrary Markov chain with a single absorbing state and an initial
probability distribution contains the essence of a phase-type distribution.

A phase-type distribution is defined as the distribution of the time to
absorption into the single absorbing state when the Markov chain is
started with the given initial probability distribution.
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Examples:
Three stage hypoexponential distribution with parameters (11, s and ps:

(—ul p1 0 0 \
o 0 — 42 (42 0 _ S Ss° |
0 0 — U3 U3 0 O
\ 0 0 0 | o )

o=(100flo)=(0 0)

Two stage hyperexponential distribution with branching probabilities a4
and as (=1 — 1) and exponential phases with rates A\; and As:

—A1 0 A1
, T T°
T = 0 —)\2 )\2 —
0O O
0 0 0

£’=(a1 042‘0)2(5 o).
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A Ph/Ph/1 queue with r, phases in the description of the arrival process
and rg phases in the description of the service process:

Ag=1.,2(8°0), Ai=T®IL_ +I,®S and Ay =(T"-¢)®I,,

Bow=T, By =(T"¢®0c and By=1I, ®@S5°
I,, is the identity matrix of order n.

The symbol ® denotes the Kronecker (or tensor) product.

( ainB  ap2B  aisB -+ a1,B \

a1 B axB axsB - a,DB

AR B = az1B a3 B assB -+ a3, B
K amlB amQB amSB T amnB )
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For example, the Kronecker product of

a b c a [ :
A= and B = 1S
d e f v o0

( ace af | ba bB | ca cf \
Ao B — aB bB c¢B _ | o ad | by bd | ¢y c¢o
dB eB fB da df |ea eB | fa f[fB3

Kd”y dd | ey ed | fv f5)
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Block submatrices for the Hy/FE3/1 queue :

0 0 0 0
AOIIQ(X)(SO'U):IQ@ 0 (1 0 O):IZ® 0 0 O
U3 pus 0 0
[0 000 0 0 0)
0 00 0 0 0
| w00 0 00
1 o o0 0o o0 0|
0 00 0 0 0
\ 0 0 0 p 0 0
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—H1 0
— A1 0
Al =TRIz+ 1205 = R I3+ 1o ® 0 —l2 2
0 — A2
0 0 — U3
( ~2x 0 0 0 0 0 \ ( —u1 0 0 0 0
0 -\ 0 0 0 0 0 —ps po | O 0 0
B 0 0 -\ | 0 0 I T 0 —us| O 0 0
0 0 0 | =X 0 0 0 0 0 | =1 m O
0 0 0 0 —X 0 0 0 0 0 —ps  po
\ 0 0 0 o 0 -x/) \ o 0 0 0 0 —us )
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Ay = (T - ) @I = M ( a1 Qo ) ® I3 = AL ez ® I3
A2 Q12 Q22
[ 0 0 |azd 0 0 )
0 Q1A 0 0 Q21 0
B 0 0 Q11 0 0 Q21
] ax 0 0 |axe 0 0
0 Q12 0 0 Q22 0
\ 0 0 ade| 0O 0 as
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— A1 0
Boo = :

0 — Ao

0 A1
301=(T°f)®0'= (al 042)®(1 0 0)
A2
041)\1 042)\1 041)\1 0 0 042)\1 0 0
= ®( 1 0 O ) = ;

C\(l)\z 0 0 042)\2 0 0

[0 0 )
0 0
) 0
Bio=L®S"=L® 0 ="
0 0
143
0 0
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YAAA H_2 Arrival Process:
alphal = 0.4; alpha2 = 0.6; lambdal = 1.9; lambda2 = 2;
T = [-lambdal, 0 ; 0, -lambda2];
TO [lambdal;lambda2] ;
xi = [alphal, alpha2];

%hh  E_3 Service Process:
mul = 4; mu2 = 8; mu3 = 8;
S = [-mul, mul, 0; O, -mu2, mu2; 0,0, -mu3];
SO = [0;0;mu3];
sigma = [1,0,0];

%kt Block Submatrices for all types of queues:
ra = size(T,2); rs = size(S,2);
A0 = kron(eye(ra), SOxsigma);
Al
A2 = kron(TO*xi, eye(rs));
BOO = T;
BO1 = kron(TO*xi,sigma) ;
B10 = kron(eye(ra),S0);
1 = size(B00,2); r = size(A0,2);

kron(T, eye(rs)) + kron(eye(ra), S);
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Stability Results for Ph/Ph/1 Queues. I

Stability condition for M/M /1 queue: A < p.

—— < —— or FE[S] < FE[A]

A similar condition holds for other Ph/Ph/1 queues.

Example: The expectation of a two-phase hyperexponential:
E[A] = &1/)\1 -+ ()42/)\2.

Expectation of a three-phase Erlang: E[S] = 1/u1 + 1/pus + 1/ 3.
(041:0.4, 042:0.6, )\1:1, )\2:2, ,u1:4, ,u2:8and ,u3:8)

1 1 1 0.4 0.6
ElS]= 7+ 5+ 5 =05 4= =

7= FE|A]|.
3 <1+2 0.7 |A]

oo
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For a general phase-type distribution, with

Z 7
= "] amd ¢'=(¢,0)
0 O
Expected time to absorption:
E[Al = —¢Z .

Example: Average interarrival time in the Hy/F5/1 queue:

—1

1
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The same stability condition may be derived from Ay, A; and As.

A= Ag+ A1 + As is an infinitesimal generator matrix
vA =~v(Ap+ A1 + A2) = 0.

Non-zero elements of Ag move the system down a level
— relates to service completions in a Ph/Ph/1 queue.

Non-zero elements of A5 move the system up a level [
— the number of customers in the queue increases by one.

For stability, the effect of As must be less than the effect of the Ay.

The condition for stability becomes

|vAz|l1 < |[vAoll1-
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Example:

Same Hy/FE3/1 queue:

((—46 40 0 06 0 0
0 -86 80 0 06 0
80 0 -86 0 0 06
08 0 0 —48 40 0
0 08 0 0 -88 80
\ 0 0 08 80 0 -88 |

Stationary probability vector, obtained by solving yA = 0 with ||v]|; = 1:
v = (0.285714, 0.142857, 0.142857, 0.214286, 0.107143, 0.107143).

Computing |[vAz[[1 and ||y Ag]l::
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A= |vAz2|1 =

[ 0.4
0

0

0.8

0

o

0 0 06 0 0)
04 0 0 06 O

0 04 0 0 06

0 0 12 0 0
08 0 0 12 0

0 08 0 0 12 /|

= |/(0.285714, 0.142857, 0.142857, 0.428571, 0.214286, 0.214286)||, = 1.428571

p=lyAol =

[ 0
0
8
0

0

\ 0

0
0
0
0
0
0

o O o o o O
co O o o o O

o O o o o O

0
0
0
0

0

0 )

1

(1.142857, 0, 0, 0.857143, 0, 0)||, = 2.0
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A1 p SS LR
0.1 0.1163 28 5
0.5 0.4545 50 6
1.0 0.7143 98 6
1.5 0.8824 237 38
1.6 0.9091 303 38
1.7 0.9341 412 3
1.8 0.9574 620 9
1.9 0.9794 1197 10
1.95 0.9898 2234 11
2.0 1.0 00 00

Table 1: Effect of varying Ay on p and convergence to R.
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Performance Measures for Ph/Ph/1 Queues

1) Probability that there are k£ customers present:
(1) y p
pr = ||mklli = ||moR"||1.

(2) Probability that the system is empty py = ||7o||1-
(3) Probability that the system is busy is 1 — py.

(4) Probability that there are k or more customers present :

i=0

Prob{N >k} = |mlls = ||m Y R7'| =|mR"") ocoR
j=k j=k

1

~ [mB (- B,
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Mean number of customers in a Ph/Ph/1 queue:

=) klmli=) kllmR"h =
k=1 k=1

d
m o ((

d (= .
1 ﬁ <Z R >
k=1 1

[-R)™ —1)

=, d
™2 gt

k=1

1

= [ = B)=, .

1

— mean number of customers waiting in the queue, E[N,]|;

— average response time, F[R];

— average time spent waiting in the queue, E[W,]

can now be obtained from the standard formulae.

EINg] = E[N]—-XMp
E[R] = E[N]/\
E[Wq: — E:Nq]/)‘
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Matlab code for Ph/Ph/1 Queues

Yoo oo 1o 1o oo 1o oo oo oo o To o o To o To o o To o To o foTo o To o o To o ToTo o 1o o To o FoFo o To o To Fo o Fo o To o To o o T o To o

%h%k Example 1: M/E_4/1 Queue

%%% Exponential arrival:

A lambda = 4;

% T = [-lambda]; TO=[lambdal; xi = [1];

%kt  Erlang-4 Service (use mu_i = r*mu per phase)

% mul = 20; mu2 = 20; mu3 = 20; mud = 20;

% S = [-mul, mul, 0,0; 0, -mu2, mu2,0; 0,0 -mu3,mu3;0,0,0, -mu4];
% SO = [0;0;0;mu4];

% sigma = [1,0,0,0];

%h/%h  Example 2: H_2/Ph/1 queue:

%h'%h  H_2 Arrival Process:
alphal = 0.4; alpha2 = 0.6; lambdal = 1.9; lambda2 = 2;
T = [-lambdal, 0 ; 0, -lambda2];
TO = [lambdal;lambda2];
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xi = [alphal, alphaZ2];

%%t  Hypo-exponential-3 Service Process:
mul = 4; mu2 = 8; mu3 = 8;
S = [-mul, mul, 0; 0, -mu2, mu2; 0,0, -mu3];
SO = [0;0;mu3];
sigma = [1,0,0];

Thhtteththlsls Block Submatrices for all types of queues: %kkhlhhh
ra = size(T,2); rs = size(S,2);
AO
Al kron(T, eye(rs)) + kron(eye(ra), S);
A2 = kron(TO*xi, eye(rs));
BOO = T;
BO1 = kron(TO*xi,sigma) ;
B10 = kron(eye(ra),S0);
1 = size(B00,2); r = size(A0,2);

kron(eye(ra), SO*sigma);
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hlohhotohtehts Check stability  %hlhletslotsstotolotlotletslotslotslotstotstotototsotsolh

meanLambda = 1/norm(-xi* inv(T),1);
meanMu = 1/norm(-sigma * inv(S),1);

rho = meanlLambda/meanMu

Dbt hhthdh  Alternatively: — hhhhhhhhsh
A = AO+A1+A2;
for k=1:r
Alk,r) = 1;
end
rhs = zeros(1l,r); rhs(r)= 1;
ss = rhs*inv(A);
rho = norm(ss*A2,1)/norm(ss*xA0,1);

o1 1o1o1ooTootototo oo 1o 1o o 1o o o To o To o ToTo 1o 1o oo o To o To ToTo o o o

if rho >=0.999999

error (’Unstable System’);
else

disp(’Stable system’)

end
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Yototo oo oo o oo Form Neuts’ R matrix  %htthiehlehlehlehlehlshltlotslototots
Yo totototo oo o oo by Tototototo oo oo o 1o 1o o oo oo oo oo ToTo Yo o
hthhthhohdohlhh  Successive Substitution  hhhhhhhhhhhhhhhhhhhhhhh k%

V = A2 % inv(Al); W = A0 * inv(Al);

R = -V; Rbis = -V - R*R * W;

iter = 1;

while (norm(R-Rbis,1)> 1.0e-10 & iter<100000)
R = Rbis; Rbis = -V - R*R * W;
iter = iter+1;

end

iter

R = Rbis;

16116116 o 1o oo o o or by T 1ot 161161016 o %o To o To 1o 1o o 16 /o 7o FoTo To o To o
Wl hththhihdh  Logarithmic Reduction %h%hhhlhhllhlhlettstshtstotstesith

A Bz = -inv(A1)*A2; Bt = -inv(A1)=*AQ;
b T = Bz; S = Bt;
A iter = 1;
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o
T
o
o
o
T
o
o
o
T
o

while (norm(ones(r,1)-S*ones(r,1) ,1)> 1.0e-10 & iter<100000)
D = Bz*Bt + Bt*Bz;
Bz = inv(eye(r)-D) *Bz*Bz;
Bt = inv(eye(r)-D) *Bt*Bt;
S =S + T*Bt;
T = T*Bz;
iter = iter+1;

end

iter

U = A1l + A2xS;

R = -A2 *x inv(U)

Tolotototohohtotototehehete  Solve boundary equations  %hhhltetststeletetotststetotololels

N = [BO0,BO1;B10,A1+R*xA0]; 7 Set up boundary equations

N(1,r+1) = 1; % Set first component equal to 1
for k=2:r+l
N(k,r+l) = O;
end
rhs = zeros(1l,r+l); rhs(r+l)= 1;
soln = rhs * inv(N); % Un-normalized pi_O and pi_1
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pi0 = zeros(1,1); pil = zeros(l,r);
for k=1:1
piO(k) = soln(k); % Extract pi_0
end
for k=1:r
pil(k) = soln(k+l); % Extract pi_1
end
e = ones(r,1);
sum = norm(piO,1) + pil * inv(eye(r)-R) * e; % Normalize solution

pi0 = piO/sum; pil = pil/sum;

Tolotolotolotolotofotofotoototete ~ Print results %hihltslotshotslotslotstotstolotoletolotstolototolotste

max = 10; % maximum population requested
pop = zeros(max+1,1);

pop(1) = norm(pi0,1);

for k=1:max

pi = pil * R™(k-1); % Get successive components of pi
pop(k+1) = norm(pi,1);

end

pop
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Nolotototolohtototoloels Measures of Effectiveness  %h/hlhlototolotolotolololstototolotels
EN = norm(pil*inv(eye(r)-R)"2,1)

A ENq = EN-meanLambda/meanMu

A ER = EN/meanlLambda

yA EWq = ENg/meanLambda

161161 1o1otoTotooto oo 1o 1o 1o oTo oo otototoTo 1o o oo o To o To o to o foTo o To o To Toto To o To o To o o To o To o To o Fo o o o
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