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To deal with the complexity of biological systems, investigate
* Programming Theory Concepts

* Formal Methods of Circuit and Program Verification

e Automated Reasoning Tools

Software Implementation in the Biochemical Abstract Machine BIOCHAM

modeling environment available at http://contraintes. inria.fr/BIOCHAM
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Systems Biology ?

“Systems Biology aims at systems-level understanding which
requires a set of principles and methodologies that links the
behaviors of molecules to systems characteristics and functions.”

H. Kitano, ICSB 2000

Analyze (post-)genomic data produced with high-throughput
technologies

Databases and ontologies like SwissProt, GO, KEGG, BioCyc, etc.

Systems Biology Markup Language (SBML) : exchange format for
reaction models

Integrate heterogeneous data about a specific problem

Understand and Predict behaviors or interactions in large networks of
genes and proteins.
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Issue of Abstraction in Systems Biology

Models are built in Systems Biology with two contradictory perspectives :
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Issue of Abstraction in Systems Biology
Models are built in Systems Biology with two contradictory perspectives :
1) Models for representing knowledge : the more concrete the better
2) Models for making predictions : the more abstract the better !

These perspectives can be reconciled by organizing formalisms and
models into a hierarchy of abstractions.

To understand a system is not to know everything about it but to know
abstraction levels that are sufficient for answering questions about it
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Semantics of Living Processes ?

Formally, “the” behavior of a system depends on our choice of observables.

Mitosis movie [Lodish et al. 03]
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Boolean Semantics

Formally, “the” behavior of a system depends on our choice of observables.

Presence/absence of molecules

Boolean transitions
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Continuous Differential Semantics

Formally, “the” behavior of a system depends on our choice of observables.

Concentrations of molecules

o048

Rates of reactions
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Stochastic Semantics

Formally, “the” behavior of a system depends on our choice of observables.

Numbers of molecules
Probabilities of reaction
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Temporal Logic Semantics

Formally, “the” behavior of a system depends on our choice of observables.

Presence/absence of molecules

GO

Temporal logic formulas

Francois Fages @ Bertinoro, 3 June 08

Constraint Temporal Logic Semantics

Formally, “the” behavior of a system depends on our choice of observables.

Concentrations of molecules
Constraint LTL temporal formulas

F (x>0.2 A F (x<0.1 ~ y>0.2))

FG (x>0.2 v y>0.2)
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A Logical Paradigm for Systems Biology

Biological process model = Transition System
Biological property = Temporal Logic Formula
Biological validation = Model-checking

[Lincoln et al. PSB’02] [Chabrier Fages CMSB’03] [Bernot et al. TCS’04] ...

Model: <4p BIOCHAM <= Biological Properties:

- Boolean - simulation - Temporal logic CTL

- Differential - query evaluation - LTL with constraints

- Stochastic - rule learning - PCTL with constraints
(SBML) - parameter search

Types: static analyses
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Outline of the Talk

Abstract machines: Rule-based Models of biochemical systems
Syntax of molecules, compartments and reactions
Hierarchy of semantics: stochastic, differential, discrete, boolean

Cell cycle control models

Abstract behaviors: Temporal Logic formalization of biological properties
1. Computation Tree Logic CTL for the boolean semantics

2. Linear Time Logic with constraints LTL(R) for the differential semantics

3. Probabilistic PCTL for the stochastic semantics

Automated Reasoning Tools

1. Rule learning from CTL specification

2. Kinetic parameter inference from LTL(R) specification

L. Calzone, F. Fages, S. Soliman. Bioinformatics 22. 2006
L. Calzone, N. Chabrier, F. Fages, S. Soliman. Trans. Computational System Biology 6 2006
F. Fages, S. Soliman. Theoretical Computer Science. 2008.  F. Fages, A. Rizk. Theor.Comp.Sc. 2008.
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Syntax of proteins

Cyclin dependent kinase 1 Cdk1l
(free, inactive)

Complex Cdk1-Cyclin B Cdk1-CycB
(low activity)

Phosphorylated form Cdk1~{thr161}-CycB
at site threonine 161

(high activity)

mitosis promotion factor
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Elementary Reaction Rules

Complexation: A + B => A-B Decomplexation A-B => A + B
cdkl+cycB => cdkl-cycB
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Elementary Reaction Rules

Complexation: A + B => A-B Decomplexation A-B => A + B
cdkl+cycB => cdkl-cycB

Phosphorylation: A =[C]=> A~{p} Dephosphorylation A~{p} =[C]=> A
Cdk1-CycB =[Mytl]=> Cdkl~{thrl161}-CycB
Cdkili~{thrl14,tyr15}-CycB =[Cdc25~{Nterm}]=> Cdk1l-CycB
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Elementary Reaction Rules

Complexation: A + B => A-B Decomplexation A-B => A + B
cdkl+cycB => cdkl-cycB

Phosphorylation: A =[C]=> A~{p} Dephosphorylation A~{p} =[C]=> A
Cdk1-CycB =[Mytl]=> Cdkl~{thrl161}-CycB
Cdki~{thrl14,tyr15}-CycB =[Cdc25~{Nterm}]=> Cdk1l-CycB

Synthesis: =[C]=> A. Degradation: A =[C]=> _.
_ =[#E2-E2f13-Dpl12]=> CycA cycE =[@UbiPro]=> _
(not for cycE-cdk2 which is stable)
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Elementary Reaction Rules

Complexation: A + B => A-B Decomplexation A-B => A + B
cdkl+cycB => cdkl-cycB

Phosphorylation: A =[C]=> A~{p} Dephosphorylation A~{p} =[C]=> A
Cdk1-CycB =[Mytl]=> Cdkl~{thrl161}-CycB
Cdkili~{thrl14,tyr15}-CycB =[Cdc25~{Nterm}]=> Cdk1l-CycB

Synthesis: _=[C]=> A. Degradation: A =[C]=> _.
_ =[#E2-E2f13-Dp12]=> CycA cycE =[@UbiPro]=> _
(not for cycE-cdk2 which is stable)
Transport: A::L1 => A::L.2
Cdkl~{p}-CycB: :cytoplasm => Cdkl~{p}-CycB::nucleus
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From Syntax to Semantics

S = _ | molecule + S
R ::= S=>S | kinetics for S=>S

Example k*[A]*[B] for A+B => C
SBML (Systems Biology Markup Lang.): import/export exchange format
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From Syntax to Semantics

S = _ | molecule + S
R ::= S=>S | kinetics for S=>S

Example k*[A]*[B] for A+B => C
SBML (Systems Biology Markup Lang.): import/export exchange format
BIOCHAM : three abstraction levels
1. Stochastic Semantics: number of molecules Py = Tig
¢ Continuous time Markov chain Z(S,.Sk.r,“e s Tik
2. Differential Semantics: concentration
* Ordinary Differential Equations (hybrid system)

3. Boolean Semantics: presence-absence of molecules

e Asynchronuous Transition System A, B> (A/I-A), (B/-B), C
Francois Fages @ Bertinoro, 3 June 08

Budding Yeast Cell Cycle Control Model [Tyson 91]

MA(k1) for _ => Cyclin.
MA(k2) for Cyclin => _
MA(K7) for Cyclin~{pl} => _

MA(k8) for Cdc2 => Cdc2~{pl}.
MA(k9) for Cdc2~{pl} =>Cdc2.

MA(k3) for Cyclin+Cdc2~{pl} => Cdc2~{pl}-Cyclin~{pl}.

MA(k4p) for Cdc2~{pl}-Cyclin~{pl} => Cdc2-Cyclin~{pl}.

k4*[Cdc2-Cyclin~{pl1}]"2*[Cdc2~{pl}-Cyclin~{pl}] for
Cdc2~{p1}-Cyclin~{pl} =[Cdc2-Cyclin~{p1}] => Cdc2-Cyclin~{pl}.

MA(k5) for Cdc2-Cyclin~{pl} => Cdc2~{pl}-Cyclin~{pl}.
MA(k6) for Cdc2-Cyclin~{pl} => Cdc2+Cyclin~{pl}.
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Reaction Hypergraph
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Activation/Inhibition Influence Graph
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Mammalian Cell Cycle Control Map [Kohn 99]
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Transcription of Kohn’s Map

| _ =[ E2F13-DP12-gE2 |=> cycA.

S cycB =[ APC~{p1} |=>_.
e ? ':T:ISLT-H;- cdk1~{p1,p2,p3} + cycA => cdk1~{p1,p2,p3}-cycA.
ne(ey el | 4 cdk1~{p1,p2,p3} + cycB => cdk1~{p1,p2,p3}-cycB.
r cdk1~{p1,p3}-cycA =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycA.
{ ! cdk1~{p1,p3}-cycB =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycB.
' Ui @D cdk1~{p2,p3}-cycA =[ Myt1 1=> cdk1~{p1,p2,p3}-cycA.
i cdk1~{p2,p3}-cycB =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycB.

= 5 4 CE

N cdk1~{p1,p2,p3} =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}.
cdk1~{p1,p2,p3}-cycA =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycA.
cdk1~{p1,p2,p3}-cycB =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycB.

165 proteins and genes, 500 variables, 800 rules [Chiaverini Danos 02]
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Hierarchy of Semantics

abstraction Theory of abstract Interpretation

[Cousot Cousot POPL'77]
[Fages Soliman TCSc’08]

Stochastic model

Syntactical

concretization
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Type Inference / Type Checking

abstraction

_7 Protein influence graph 2

A
I
I
I
_ v Protein influence graph 1

(activation/inhibition)
_ — => Protein functions
- (kinase, phosphatase,...)
T - <> Compartments topology
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Type Inference / Type Checking

abstraction i .
Positive circuits are a necessary

condition for multistability
[Thomas 73] [Soulé 03] [Remy Ruet Thieffry 05]

_7 Protein influence graph 2

A
I
I
I
_ v Protein influence graph 1

(activation/inhibition)
_ — => Protein functions
- (kinase, phosphatase,...)
~ = ~ sCompartments topology
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The Theory of Abstract Interpretation

In this setting [Cousot Cousot 77], a domain is a lattice D(C, L, T,L, 1)
where C is the “information loss” ordering.
A Galois connection C —,, A between two lattices C and A is defined by
two abstraction and concretization functions o : C — A and ~ : A — C that
are monotonic:

e Vo, yelCrley = a(r)Cha(y),

eVayeAdrTay = y(x)Ce vy
and are adjoint:

7

e Veel,WVyed:xLlevyy) < alr)ay.

If v o« is the identity. the abstraction a loses no information, and C and A

are isomorphic from the information standpoint (although o may be not

onto and ~ not one-to-one).
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Properties of Galois Connections

1. voais extensive (i.e. x Ce v o afr)) and represents the information

lost by the abstraction:
2. a o~y is contracting (i.e. aovy(y) C4 y):
3. 7o« is the identity ff ~ is onto #ff a is one-to-one.
.« preserves LI, and ~ preserves 7
. v(a) = mazx o 1(] a) = la"1(] a)
caley=min YT e) =T )
where [a={b|bCa} and [ a={b|aCb}.

Tt is equivalent in the definition of Galois connections to replace the

condition of adjointness by conditions 1 and 2,

or by condition 5 which also entails the monotonicity of ~.
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Systems Biology Markup Language SBML Models

Formally, the concrete domain of reaction models is the powerset of all

possible reaction rules ordered by set inclusion :
Def. 1 Given a finite set M of molecule names. the universe of reactions
is the set of rules
R ={e for S=>5"| e is a kinetic expression,
and S and S' are solutions of malecules in M}.

The dorain of SBML reaction models is Cr = (P(R),C).
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Stochastic Semantics.

For a given volume Vi, of the location where the compound xy, resides, a
concentration Cy, for a molecule is translated into a number of molecules

Np = |[Cr x Vi, x Na|, where N4 is Avogadro’s number.

The kinetic expression e; for each reaction 7 evaluates on numbers of
molecules for each compound, instead of concentrations, in a (positive)
reaction weight 7;.

An element s of the domain precisely defines a Markov chain, where the
probability p;; of transition from state S; to S; is obtained by normalizing

7 in

Jes

the reaction rate 7; ; = Z(SZ‘SJ‘T

Francois Fages @ Bertinoro, 3 June 08




Stochastic Semantics Domain.

Def. 3 Let a discrete state be a vector of integers of dimension |[M|. The
universe S of stochastic transitions is the set of triplets (S;, 95, 7;;) where

S; and S; are discrete states and i; € RT.
The domain of stochastic transitions is Dg = (P(8), C).

Discrete states and solutions in reaction rules have the same mathematical
structure, and can both he represented by |[M]-dimensional vectors of
integers.

Proposition 4 Let ars : Cr — Dg be the function associating to a

reaction model the state transition graph labelled with thte 7 ;s. Let
——aRs . . .
yrs(s) = Uars (] s). Cr —~rs Ds is a Galois connection.
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Discrete Semantics.

Def. 6 The unwerse D of discrete transitions ws the set of pairs of discrete
states. The domain of discrete transitions is Dp = (P(D), C).

The discrete semantics is the classical Petri net semantics of reaction
models [RMTL93ismb, SHK06bimcebi,ChaouiyaO7bioinfo, GHLO7cmsh].

Classical Petri net analysis tools can be used for the analysis of reaction
For instance, the elementary mode analysis of metabolic networks
[SPMO02bioinfo] has been shown in [ZS03insilicobio] to be equivalent to the
classical analysis of Petri nets by T-invariants.

Proposition 7 Let asp : Ds — Dp be the function associating to a set of
stochastic transitions the discrete transitions obtained by projection on the

SD
two first components, and ysp(d) = Uasp~ (] d). Ds —sp Dp is a

<

Glalois connection.
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Boolean Semantics .

Def. 9 Let a boolean state be a vector of booleans of dimension | M|
imdicating the presence of ecach molecule in the state. The universe B of

boolean transitions is the set of pairs of boolean states.

The domain of boolean transitions is Dy = (P(B),C).

Let ap : NPMI— BIMI be the zero/non-zero abstraction (or threshold
abstraction) from the integers to the booleans. and its pointwise extension
from discrete states to boolean states.

Proposition 10 Let app : Dp — Dy be the set extension of anp. Let

L ODRE
vpi(b) = Uaps™' (| b). Dp —ps Pp is a Galois connection.
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BIOCHAM Boolean Semantics.

Given a reaction model R, let us denote by Sgpg the set of boolean

transitions obtained by considering all pssible consumption of reactants.

For instance, a rule like A+B=>C+D is interpreted by four boolean transition
rules :

« ANB—AABACAD
¢ ANB— —AABACAD
e ANB—+AAN-BACAD
e ANB— —AA-BACAD

Note that in Boolean Petri nets, or in Pathway Logic, complete
consumption is assumed.

Proposition 11 For any reaction model R, apg(asp(ars(R)))
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Differential Semantics ?'

The differential semantics of reaction models interprets a set of reaction
rules {e; for S;=>8!},_1 ., over molecular concentration variahles
{21, ...,2m }, by the following system of Ordinary Differential Equations
(ODE):

T T

dry /dt = Z ri(ag) * e; — Z L) + e

i=1 j=1
where we recall that r;(x) (resp. ;) is the stoichiometric coefficient of x,
in the right (resp. left) member of rule i.

e synchronous semantics (evolution of variables in parallel)
e deterministic semantics (average behavior)
e not compatible with the rule set inclusion ordering

e infinite number of molecules

e infinitesimal time steps

Francois Fages @ Bertinoro, 3 June 08

Type Checking/Inference by Abstract Interpretation

A type system A4 for a concrete domain C' is a Galois connection C —, A.
The type inference problem is
PUT a concrete element @ € C (e.g. a reaction model)
PUT its typing a(x) (e.g. the protein functions of the model).
The type checking problem is,
PUT x € C (e.g. a reaction model)
and a typing y € A (e.g. a set of protein functions),

PUT determine whether =z Ce v(y)
(i.e. whether the reactions are compatible with the protein functions)

or equivalently a(z) C 4 y (the typing contains the inferred types)

Algorithms in Q(n) if the abstractions can be computed rule per rule.
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Protein Functions as Types

Abstract domain Ar = P({kinase(A)|A € M} U {phosphatase(A)|A € M})
The typing of reactions by protein functions is defined hy the abstraction :
ar(A =[B]=> C) = {kinase(B)} if C is strictly more phosphorylated than A
ar(A =[B]l=> C) = {phosphatase(B)} if C is strictly less phosphorylated
ar(A + B => A-B, A-B => C + B) = { kinase(B)}

if C is strictly more phosphorylated than A
ar(A + B => A-B, A-B => C + B) = { phosphatase(B)}

if C is strictly less phosphorylated than A

__.aF
Proposition 12 Let v (f) = Uar (| f). Cr —, Ar is a Galois

connection.
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|Evaluati0n Results in BIOCHAI\“I.

e MAPK model [Levehenko et al. 00]
the kinase function of RAFK, RAF {p1} and MEK™{p1,p2} is inferred;
the phosphatase function of RAFPH, MEKPH and MAPKPH is inferred;
the kinase function of MAPK™{p1,p2} is not visible and not inferred.

e Model of the mammalian cell cycle control after [Kohn 99] 165 proteins
and genes, 500 variables and 800 rules. Type inference in < lsec CPU :
— No compound is both a kinase and a phosphatase;

— cdc25A and ¢de25C are the only phosphatases found together with
the deacetylase HDAC1.

— The cdk are inferred to be kinases only in complexes with cyelins;

— the acetylases pCAF, p300 are identified to kinases.
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Differential Influence Graph as Types'

The Jacobian matrix J is formed of the partial derivatives J;; = d2;/9z;.

The differential influence graph is defined by
agz(R) = {4 activates B | d2'g/dz4 > 0 in some point of the space}
U{A inhibits B | dr'p/dxz4 < 0 in some point of the space}

Not immediate to compute.

e B inpia

Syntactical Influence Graph'

Let arz(R) = {A activates B | J(e; for [; = r;) € x,
li(A) > 0 and r;(B) —

U{A inhibits B | d(e; for l; = r;) € R,
l;(A) > 0 and r;(B) — [;(B) < 0}

EI(B) = 0}

We have arz({A+B =>C})={ A inhibits B, A inhibits A, B inhibits A,
B inhibits B, A activates C, B activates C}
arz({A=[C] =>B})={ C inhibits A, A inhibits A,
A activates B, C activates B}
arz({A=[B]=> _})={ B inhibits A, A inhibits A}
arz({-=[B] => A}) ={ B activates A}

Note that arz is computable in O(n) time

(0.2 sec. on the 800 rules of Kohn's map in Biocham)
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René Thomas’s Conditions Apply on Influence Graphs'

[Thomas 81] :

The existence of negative circuits is a necessarv condition for oscillations.

The existence of positive circuits is a necessary condition for

multistationarity.

Proved for :
ODE systems [Soulé 03] [Demonjeot et al. 03] ...
boolean networks [Rémy Ruet Thieffry 05]

discrete networks [Richard 06]

Frangois Fages 8
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MAPK Signalling Cascade'

1 AES
1 i ~
MAIKK = MAPKEF | == - APKK-PF
- .
S 7 o
A

MAPKEK Plise
. .
. a
i v
MAPK = -\if\l'ﬁ—i' = nark-re

[

MAPK P asc

Purely directional cascade of reactions: no negative teedback
oscillations observed [Qiao et al. 07)

violation of René Thomas’s rule [Kholodenko et al. 06] !
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MAPK Reaction and Influence Graphs in BIOCHAMI

Negative feedback by sequestration [Sepulchre et al. 08]
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Monotonic Kinetics I

In a reaction model R ={e; for l;=>r; | i € I}, we say that a kinetic

expression e; is monotonic iff for all molecules z; we have
1. de;/dxy = 0 in all points of the space,

2. l;(z;) > 0 whenever de;/Ox), > 0 in some poiut of the space.

The mass action law kinetics, e = k * [Lr;%, Michaelis-Menten

and Hill's kinetics e; = Vi, * x,"/(K,,, + 2:™) are monotonic.

Inhibitions with negative Hill kinetics of the form e; = V. /(K + x5™) are

not monotonic.
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Over-approximation Theorem I

Theorem 1 For any reaction model R with monotonic kinetics,

HJI(R) Q GRI(R)-

PROOF: 1If (A activates B) € az(R) then dB/3A > 0. Hence there exists a
term in the differential semantics, of the form (r;(B) — I;(B)) * e; with de; /OA of
the same sign as r(B) — Li(B).

Let us suppose that r;(B) — l;(B) > 0 then de;/dA > 0 and since e; is monotonic
we get that [;(A) > 0 and thus that (A activates B) € agz(R). If on the contrary
ri(B) —1;(B) < 0 then de; /dA < 0, which is not possible for a monotonic kinetics.

Similarly for (A inhibits B). a
Strict inclusion for R = {ky #+ A for A => B. ky* A for _= [4] => A} as
A= (ko — k1) * A can be made always positive, null or negative.

Corollary 2 ay7(R,IC) C arz(R) in the phase space w.r.t. some initial
conditions IC.

Frangois Fages 12 QIN RTA




Strongly Monotonic Kinetics'

In a reaction model R ={e; for l;=>r; | i € I}, a kinetic expression e; is

strongly monotonic iff for all molecules x; we have
1. de; /0wy = 0 in all poiuts of the space,
2. l;(xz) > 0 iff there exists a point in the space s.t. de;/day, > 0

Proposition 3 Mass action law, Michaelis Menten, and Hill kinetics are

strongly monotonic.

Lemma 4 Let R be a reaction model with strongly monotonic kinetics.
If (A activates B) is in agz(R) but (A inhibits B) is not in arz(R)
then (A activates B) is in a77(R).

If (A inhibits B) is in agz(R) but (A activates B) is not in arr(R)
then (A inhibits B) is in agz(R).
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Equivalence Theorem I

Theorem 5 Let R be a reaction model with strongly monotonic kinetics
and where no molecule is at the same time an activator and an inhibitor of

the same target molecule, then agr(R) = a77(R).

Corollary 6 The graph of differential influences of a reaction model of n
rules with strongly monotonic kinetics is computable in time O(n) if no

molecule is at the same time an activator and an inhibitor.

Corollary 7 The graph of differential influences of a reaction model is
independent of the kinetic expressions as long as they are strongly

monotonic, if no molecule is at the same time an activator and an inhibitor.

Frangois Fages 14 EIN RTA




Budding Yeast Cell Cycle Control Model [Tyson 91]

MA(k1) _ => Cyclin.
MA(k2) Cyclin => _
MA(K7) Cyclin~{pl} => _

MA(k8) Cdc2 => Cdc2~{p1l}-
MA(k9) Cdc2~{p1} =>Cdc2.

MA(k3) for Cyclin+Cdc2~{pl} => Cdc2~{pl}-Cyclin~{pl}.

MA(k4p) for Cdc2~{pl}-Cyclin~{pl} => Cdc2-Cyclin~{pl}.

k4*[Cdc2-Cyclin~{pl1}]"2*[Cdc2~{pl}-Cyclin~{pl}] for
Cdc2~{p1}-Cyclin~{pl} =[Cdc2-Cyclin~{p1}] => Cdc2-Cyclin~{pl}.

MA(k5) for Cdc2-Cyclin~{pl} => Cdc2~{pl}-Cyclin~{pl}.
MA(k6) for Cdc2-Cyclin~{pl} => Cdc2+Cyclin~{pl}.

Francois Fages @ Bertinoro, 3 June 08
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Mammalian Cell Cycle Control Map [Kohn 99]

e 1113

i Chromatin &
; 1 aceiylare box
= (DPLE H ae

—i | G
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Transcription of Kohn’s Map

_ =[ E2F13-DP12-gE2 ]=> cycA.

cycB =[ APC~{p1} |=>_.
cdk1~{p1,p2,p3} + cycA => cdk1~{p1,p2,p3}-cycA.
cdk1~{p1,p2,p3} + cycB => cdk1~{p1,p2,p3}-cycB.

1
]
F 5
. A cdk1~{p1,p3}-cycA =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycA.
! | APC)earp - ' cdk1~{p1,p3}-cycB =[ Wee1 ]=> cdk1~{p1,p2,p3}-cycB.
E i — &7 IR, i) cdk1~{p2,p3}-cycA =[ Myt1 1=> cdk1~{p1,p2,p3}-cycA.
! , cdk1~{p2,p3}-cycB =[ Myt1 ]=> cdk1~{p1,p2,p3}-cycB.
)

I

!

i

oL &

(el iyt cdk1~{p1,p2,p3} =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}.
cdk1~{p1,p2,p3}-cycA =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycA.
cdk1~{p1,p2,p3}-cycB =[ cdc25C~{p1,p2} ]=> cdk1~{p1,p3}-cycB.

T |
eyrhm, pol ot —}

165 proteins and genes, 500 variables, 800 rules [Chiaverini Danos 02]
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Computation Tree Logic CTL Properties

Ei (reachable(Cyclin))) reachable(P) = EF(P)
Eigreacr;zzblef! (%;l i) steady(P)  =EG(P)
Ai(oscil(Cyclin _

Ei (reachable(Cdc2~{p1}))) stable(P) = AG(P)
Ei(reachable(! (Cdc2~{p1})))) checkpoint(P,Q) = 'E('P U Q)
Ai(oscil(Cdc2~{p1}))) oscil(P) =EG(FPAFIP)
Ei (reachable(Cdc2-Cyclin~{pl,p2}))) ~ EG(EF P A EF IP)
Ei (reachable(!(Cdc2-Cyclin~{pl1,p2}))
Ai(oscil(Cdc2-Cyclin~{pl1,p2})))

Ei (reachable(Cdc2-Cyclin~{pl1})))

Ei (reachable(!(Cdc2-Cyclin~{p1}))))

Ai(oscil(Cdc2-Cyclin~{p1})))

AT (AG(1 (Cdc2~{p1})->checkpoint(Cdc2,Cdc2~{p1}))))

Aié f'(Cch C cI|n~{p1}) >checkpoint(Cdc2-Cyclin~{pl,p2},Cdc2-
in~{pl})
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Cell Cycle Model-Checking (with BDD NuSMV)

biocham: check_reachable(cdk46~{p1,p2}-cycD~{p1}).
Ei(EF(cdk46~{p1,p2}-cycD~{p1})) is true
biocham: check_checkpoint(cdc25C~{p1,p2}, cdk1~{pl,p3}-cycB).
Ai(I(E(!(cdc25C~{p1,p2}) U cdk1~{p1,p3}-cycB))) is true
biocham: nusmv(Ai(AG(!(cdk1~{p1,p2,p3}-cycB) -> checkpoint(Weel, cdk1~{pl,p2,p3}-cycB))))).
Ai(AG(!(cdk1~{p1,p2,p3}-cycB)->I(E(!(Weel) U cdkl~{p1,p2,p3}-cycB)))) is false
biocham: why.
-- Loop starts here
cycB-cdk1~{p1,p2,p3} is present
cdk7 is present
cycH is present
cdkl is present
Mytl is present
cdc25C~{p1} is present
rule_114 cycB-cdk1~{p1,p2,p3}=[cdc25C~{p1}]=>cycB-cdk1~{p2,p3}.
cycB-cdk1~{p2,p3} is present
cycB-cdk1~{p1,p2,p3} is absent
rule_74 cycB-cdk1~{p2,p3}=[Myt1]=>cycB-cdk1~{pl,p2,p3}.
cycB-cdk1~{p2,p3} is absent
cycB-cdk1~{p1,p2,p3} is present
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Mammalian Cell Cycle Control Benchmark

500 variables, 259 states. 800 rules. BIOCHAM NuSMV model-checker
time in sec. [Chabrier Chiaverini Danos Fages Schachter TCS 04]

N . R 223
Reachability G1 EF CycE
Reachability G1 | EF CycD
Reachability G1 | EF PCNA-CycD

Checkpoint —EF (- Cdc25~{Nterm} 22s
for mitosis complex U Cdk1~{Thr161}-CycB)
Oscillation EG ( (CycA => EF — CycA) 31.8s
(- CycA => EF CycA))
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Learning Model Revision from Temporal Properties

» Theory T: BIOCHAM model
* molecule declarations
* reaction rules: complexation, phosphorylation, ...
* Examples ¢@: CTL specification of biological properties
» Reachability
» Checkpoints
» Stable states
+ Oscillations
* Bias R: Rule pattern
+ Kind of rules to add or delete

Find a revision T’ of T such that T’ |= ¢
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Complexity of Model-checking and Satisfiability

Model-checking Satisfiability
given an explicit Kripke structure K given a formula ¢, does there exist

and a formula ¢, does K;s |= ¢ ? a structure K;s such that K;s |= ¢ ?
LTL, LTL(U) : Pspace complete Pspace complete

LTL(F) : NP-complete NP-complete

CTL : Ptime DetExpTime complete

CTL*: Pspace complete DetExpExpTime complete
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Simple Model of Cell Cycle Control

[Tyson et al. 91] model over 6 variables,
initial state present(cdc2).

_=>Cyclin.
Cyclin=>_.

Cyclin+Cdc2~{p1}=>Cdc2-Cyclin~{p1,p2}.
Cdc2-Cyclin~{p1,p2}=>Cdc2-Cyclin~{p1}.
Cdc2-Cyclin~{p1,p2}=[Cdc2-Cyclin~{p1}]=>Cdc2-Cyclin~{p1}.
Cdc2-Cyclin~{p1}=>Cdc2-Cyclin~{p1,p2}.
Cdc2-Cyclin~{p1}=>Cyclin~{p1}+Cdc2.

Cyclin~{p1}=>_.

Cdc2=>Cdc2~{p1}.

Cdc2~{p1}=>Cdc2.
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(Aut. Generated) CTL Specification of the Model

biocham: add_genCTL.
reachable(Cyclin).
reachable(!(Cyclin)).
oscil(Cyclin).
reachable(Cdc2~{p1}).
reachable(!(Cdc2~{p1})).
checkpoint(Cdc2, Cdc2~{p1}).

oscil(Cdc2).

reachable(Cyclin~{p1}).
reachable(!(Cyclin~{p1}))

oscil(Cyclin~{p1}).
checkpoint(Cdc2-Cyclin~{p1}, Cyclin~{p1}).
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Model Compression

biocham: reduce_model.
1: deleting Cyclin=>_
2: deleting Cdc2-Cyclin~{p1,p2}=[Cdc2-Cyclin~{p1}]=>Cdc2-
Cyclin~{p1}
3: deleting Cdc2-Cyclin~{p1}=>Cdc2-Cyclin~{p1,p2}
4: deleting Cdc2~{p1}=>Cdc2
After reduction, 6 rules remain corresponding to the bias ? => ?
Deletion(s):
Cyclin=>_.
Cdc2-Cyclin~{p1,p2}=[Cdc2-Cyclin~{p1}]=>Cdc2-Cyclin~{p1}.
Cdc2-Cyclin~{p1}=>Cdc2-Cyclin~{p1,p2}.
Cdc2~{p1}=>Cdc2.
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Theory Revision

biocham: delete_rules(Cdc2=>Cdc2~{p1}).
Cdc2=>Cdc2~{p1}

biocham: revise_model.

: adding Cdc2-Cdc2~{p1}=>Cdc2+Cdc2~{p1}

: adding Cdc2=>_

: backtracking on previous add -> deleting Cdc2=>_
: adding Cdc2=[Cyclin]=>_

: backtracking on previous add -> deleting Cdc2=[Cyclin]=>_
: adding Cdc2=[Cdc2-Cdc2~{p1}]=>_

: adding Cdc2=>Cdc2~{p1}

: deleting Cdc2=[Cdc2-Cdc2~{p1}]=>_

: deleting Cdc2-Cdc2~{p1}=>Cdc2+Cdc2~{p1}
Modifications found:

Deletion(s):
Addition(s): Cdc2=>Cdc2~{p1}.

Francois Fages @ Bertinoro, 3 June 08

OB WNNNNDN =

Search for all Solutions

biocham: learn_one_addition(elementary_interaction_rules).
Time: 5.00 s
Rules tested: 112
Good rules to be added: 2
Cdc2=>Cdc2~{p1}
Cdc2=[Cyclin]=>Cdc2~{p1}
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Theory Revision Algorithm

General idea of constraint programming: replace a generate-and-test
algorithm by a constrain-and-generate algorithm.

Anticipate whether one has to add or remove a rule?

» Positive ECTL formula: if false, remains false after removing a rule
* Reachability, stability
* Need to add rules
* Negative ACTL formula: if false, remains false after adding a rule
» Checkpoints
» Need to remove a rule on the path given by the model checker
* Unclassified CTL formulae
 oscil(a)= AG((a = EF—a)*(—a = EFa))

Francois Fages @ Bertinoro, 3 June 08

Optimisations

Restrict the search space for rules to add by:
» Considering type information on molecular species
* Kinase(A) B=[A]=>B~{p}. foranyB
* Phosphatase(A)  B~{p}=[A]=>B. forany B
* Kinase(A,B)
e Phosphatase(A,B)
» Considering the influence graph between molecular species
* Activates(A,B) _=[A]=>B. A+B’=>B. B~{p}=[A]=>B. B=[A]=>B.
* Inhibits(A,B) B=[A]=>_. A+B=>A-B. B=[A]=>B~{p}. B=[A]=>B"
+ Considering the topology of locations
e Neighbor(L,L) A:L+...=>B:L’+...
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LTL(R) with Constraints for the Differential Semantics

» Constraints over concentrations and derivatives as FOL formulae over
the reals:

* [M]>0.2
* [M]+[P] > [Q]
» d([M])/dt< O
* Linear Time Logic LTL operators for time X, F, U, G
* F([M]>0.2)
* FG([M]>0.2)
* F ([M]>2 & F (d([M])/dt<0 & F ([M]<2 & d([M])/dt>0 & F(d([M])/dt<0))))
« oscil(M,n) defined as at least n alternances of sign of the derivative
» Period(A,75)=3 t3v F(T =t & [A] = v & d([A])/dt > 0 & X(d([A])/dt < 0)
& F(T=t+75 &[A] = v & d([A])/dt > 0 & X(d([A])/dt < Q)))...
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Inferring Parameters from LTL(R) Specification

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3),150).
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Inferring Parameters from LTL(R) Specification

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3),150).

First values found :
parameter(k3,10).
parameter(k4,70).

s s a8 s o e iea 1
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Inferring Parameters from LTL(R) Specification

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).
First values found :
parameter(k3,10).
parameter(k4,120).

2 3 -
o ea 4o 68 ss  too  ies 148
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Inferring Parameters from LTL(R) Specification

biocham: learn_parameter([k3,k4],[(0,200),(0,200)],20,
period(Cdc2-Cyclin~{p1},35), 150).

First values found:
parameter(k3,10).
parameter(k4,280).

o ] ‘
o s 4 co s o8 ies  1a0
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LTL(R) Satisfaction Degree and Bifurcation Diagram

L

Satisfaction degree of LTL(R) formulas Bifurcation diagram on k4, k6

for oscillation with amplitude constraint [Tyson 91]
[Rizk Batt Fages Soliman 08]
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Linking the Cell and Circadian Cycles through Weel

[L. Calzone, S. Soliman 2006]
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" | BMALL/CLOCK

EEE

Parameters———————

ol ]
kdmpfp | 0.25
L -
i ]
T
besn | o6
e —
kweem g1
kwpen [ 10
Yac

kaczs

Kic2s

Initial Concentrations:

WPE | nraranane? |
<25 | pgag5s994s |
Weel [0.002239725 |
westP | (132059534
APC | 0.030350440;
E | na18sees |

Simulation |

Weelm [ 0141160132 |

crmand: |

ARG | ng73282401
WP [ 280754078

mc | 4 sen3se5
[ = /]

MB

iocham:
iocham: hide molecules (ABC).

iocham: plot.

iocham:




Condition on Weel/Cdc25 for the Entrainment in Period

Entrainnent linit +
2.44032%1+2 0871

all

8,5 1 1,5

Entrainment in period constraint expressed in LTL with the period formula
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Conclusion

* New focus in Systems Biology: formal methods

* Beyond diagrammatic notations: formal syntax, semantics, abstract interpretation

eyond cutrve fitting: formalization of biological experiments in Temporal Logic
* Beyond fitting: formalizati f biological iments in T ral Logi

* Model-checking, parameter search from temporal properties

* New focus in Programming Theory: numerical methods
* Beyond discrete machines: continuous dynamics, hybrid systems
* Quantitative transition systems

e Temporal logic with numerical constraints

» “Computer” Science as science of complexity

* Beyond tools: concepts and methods applicable to other sciences
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Collaborations

EU STREP APriIL2 : Stephen Muggleton, IC, Luc de Raedt, U. Freiburg, ...
» Learning in a probabilistic logic setting (finished)

EU NoE REWERSE : semantic web, Frangois Bry, Miinich, R. Backofen,
» Connecting Biocham to gene and protein ontologies/types (finished)

EU STREP TEMPO : Cancer chronotherapies, INSERM Villejuif, F. Lévi;
» Coupled models of cell cycle, circadian cycle, cytotoxic drugs.

INRA Tours : E. Reiter, D. Heitzler, INRIA F. Clément

» Models of Angiotensine and FSH signaling.

Evry Epigenomic project, AlV “Frontieres du vivant” (ENS, Necker)

* New tools for synthetic biology
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Language-based Approaches to Cell Systems Biology

Qualitative models: from diagrammatic notation to
Boolean networks [Kaufman 69, Thomas 73]
Petri Nets [Reddy 93, Chaouiya 05]
Process a/gebra m—calculus [Regev-Silverman-Shapiro 99-01, Nagasali et al. 00]
Bio-ambients [Regev-Panina-Silverman-Cardelli-Shapiro 03]
Pathway |OgiC [Eker-Knapp-Laderoute-Lincoln-Meseguer-Sonmez 02]
Reaction rules [Chabrier-Fages 03] [Chabrier-Chiaverini-Danos-Fages-Schachter 04]
Quantitative models: from ODEs and stochastic simulations to
» Hybrid Petri nets [Hofestadt-Thelen 98, Matsuno et al. 00]
» Hybrid automata [Alur et al. 01, Ghosh-Tomlin 01] HCC [Bockmayr-Courtois 01]
» Stochastic TT—calculus [priami et al. 03] [Cardelli et al. 06]
* Reaction rules with continuous time dynamics [Fages-Soliman-Chabrier 04]
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Influence Graphs as Types'

Let arz(R) = {A activates B | d(e; for I; = r;) €
[;(A) > 0 and r;(B) — [;(B) > 0}
U{A inhibits B | 3(e; for l; = r;) € R,
I;,(A) > 0 and r;(B) — l;(B) < 0}
We have arr({A+B=>C})={ A inhibits B, A inhibits A, B inhibits A,
B inhibits B, A activates C, B activates C}
arr({A=[C] =>B}) =4 C inhibits A, A inhibits A,
A activates B, C activates B}
arr({A=[B] =>_})={ B inhibits A, A inhibits A}
arr({-=[B] => A})={ B activates A}

Note that arz is computable in O(n) time
(0.2 sec. on the 800 rules of Kohn's map in Biocham)

Francois Fages 7 W{N RFIA

MAPK model: Reaction Graph —, Influence Graph

Thomas’s conditions

for multistationarity

and oscillations apply here : e
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Influence Graph Abstraction from the Differential Semantics

Let us denote by 3 the mapping from Cr to D7 that extracts xp and hence
the Jacobian from the kinetic expressions in the reaction rules.
Def. 14 The differential influence abstraction agr : Dy — Az is the
function
agr(x) ={A activates B | Or'’g/0x 4 > 0 in some point of the phase space}
U{A anhibits B | dx'g/Oxra < 0 in some point of the phase space)

defined purely from the kinetic expressions... compatibility with the rules 7
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Kripke Semantics of CTL*

Kripke structure K=(S,R) where S is a set of states and RcSxS is total.
s |= ¢ if propositional formula ¢ is true in s,

s |= E ¢ if there is a path © from s such that = |= ¢,

s |= A ¢ if for every path = from s, = |= ¢,

7 |= ¢ if s |= ¢ where s is the starting state of =,

n|=X¢ifnt|= ¢,

n |= ¢1 U ¢2 iff there exists k = 0 such that =k |= ¢2 for all j < k ©l |= 1.
n|= ol Wiff Vi |[=dl orTIk 20 nk|= ¢plA ¢2 and Vj <k 7l |= §1.

F ¢ = (true U ¢) n |= F ¢ if there exists k = 0 such that =¥ |= ¢,
Go=(pWfalse) n|=G¢ifforeveryk=20, n|=¢
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Duality in CTL*

—-Ed¢=A=0¢
- Xo=X=1¢
— (61 U $2) == 2 W — ¢1

-F¢=G-¢
CTL*(X) : fragment of CTL* without U, W, F, G
CTL*(U) : fragment of CTL* without X
CTL : fragment of CTL* with E, A immediately before X, F, G, U , W

¢ can be identified to the set of states where it is true ¢ ~{seS:s|=¢ }

LTL : fragment of CTL* without E, A
LTL(V) : fragment of LTL without X
LTL(F) : fragment of LTL without X, U, W
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Positive and Negative CTL Formulae
Let K= (S,R,L) and K’ = (S,R’,L) be two Kripke structures such that RcR’

Def. An ECTL (positive) formula is a CTL formula with no occurrence of A
(nor negative occurrence of E).

Ex. : reachability EF(¢), steady EG(¢)

Def. An ACTL (negative) formula is a CTL formula with no occurrence of

(nor negative occurrence of A).

Ex. : checkpoint —E(—¢,U ¢), stable AG()
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Monotonicity of Positive ECTL Formulae
Let K= (S,R) and K’ = (S,R’) be two Kripke structures such that RcR’.
Proposition For any ECTL formula ¢, if K’;s |# ¢ then K,s |# ¢.

Proof We show that K;s |= ¢ implies K’,s |= ¢ by induction on the proof of ¢
If ¢ is propositionnal, s |= ¢ hence K’;s |= ¢ ;
If p=01&92 (resp. ¢1|$2) then by induction K’,s|=¢1 and (resp. or) K’,s|=¢2.

If $=EX ¢1 then K,z |= X ¢1 for some path zin K, hence in K’, so K,z !|=
¢1 and by induction K’,z '|= ¢1 hence K, z|= X ¢1

If o=E(¢1 U $2) then K,z |= ¢1 U ¢2 for some path = in K, hence in K’, so
there exists k K, z¥|= ¢2 and for all j<k K, z/|= ¢1. By induction K’, 7 X|=
¢2 and for all j<k K’,z!|= 1 hence K,z |= ¢1 U ¢2.
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Anti-monotonicity of Negative ECTL Formulae
Let K= (S,R) and K’ = (S,R’) be two Kripke structures such that RcR’.
Proposition For any ACTL formula ¢, if K,s |# ¢ then K',s |# ¢.

Proof If K,s |# ¢ then K,s |= —¢ where —¢ is an ECTL formula.
By the previous proposition, K’,s |= —¢ hence K’,s |# ¢.
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Theory Revision Algorithm Rules

Initial state: <(0, 0, 0), (E,U,A), R>
E transition: <(E,U,A), (Eu{e},U,A), R> > <(Eu{e},U,A), (E,UA),R>ifR|=e

(
f

E’ transition: <(E,U,A), (E U{e},U,A), R> > <(E U{e},U,A), (E,U,A)R U {r}>

ifR[#eand Vfefe) UEUUUA Ku{r}|
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Theory Revision Algorithm Rules

Initial state: <(0, 0, 0), (E,U,A), R>

E transition: <(E,U,A), (Eu{e},U,A), R> > <(Eu{e},U,A), (E,U,A),R>ifR|=e

E’ transition: <(E,U,A), (E W{e},U,A), R> > <(E W{e},U,A), (E,U,A),R U {r}>
ifR[ZeandVfe{ef VEUUUA Ku{r}|=f

U transition: <(E,U,A), (0,U U{u},A), R > > <(E,U U {u},A), (0,U,A),R>ifR |=u

U’ transition: <(E,U,A), (0,U U{u},A), R > 2> <(E,U U{u},A), (0,U,A),R U {r}>
if RFuand Vfe {ufUEUUUA RU{r}|=f

U” transition: <(E,U,A), (0,U U {u},A), R U Re > > <(E,U U{u},A),(0,U,A), R
ifK,silfuand Vfe{fufpUEUU UA R|=f
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Theory Revision Algorithm Rules

Initial state: <(0, 0, 0), (E,U,A), R>

E transition: <(E,U,A), (Eu{e},U,A), R> > <(Eu{e},UA), (E,U,A),R>ifR |=e

E’ transition: <(E,U,A), (E U{e},U,A), R> > <(E U{e},U,A), (E,U,A),R U {r}>
ifR[ZeandVfe{ef UEUUUA Ku{r}|=f

U transition: <(E,U,A), (0,U U{u},A), R > 2> <(E,U U {u},A), (0,U,A),R>if R |=u

U’ transition: <(E,U,A), (0,U U{u},A), R > 2> <(E,U U{u},A), (0,U,A),R U {r}>
ifRZuand Vfe {ufUEUUUA RU{r}|=f

U” transition: <(E,U,A), (0,U U {u},A), R U Re > > <(E,U WU{u},A),(0,U,A), R
ifK,silfuand Vfe{fuf UEUU UA, R|=f

A transition: <(E,U,A), (0, 0,A U{a}), R > = <(E,U,A U{a}), (Ep,Up,A),R>ifR |=a

A’ transition: <(EUEp,UuUp,A),(0,0,Aufa}), RURe>><(E,U,Aufa}),(Ep,Up.A),R>
ifR#a, Vfe{ul[ELWUUA, R|=fand Ep u Up is the set of formulae no
longer satisfied after the deletion of the rules in Re.
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Termination

Proposition The model revision algorithm terminates.

Proof

The termination of the algorithm is proved by considering the lexicographic
ordering over the couple < a, n >

where a is the number of unsatisfied ACTL formulae,

and n is the number of unsatisfied ECTL and UCTL formulae.

Each transition strictly decreases a,
or lets a unchanged and strictly decreases n.
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Correctness

Proposition If the terminal configuration is of the form < (E,U,A), (0,0,0), R > then
the model R satisfies the initial CTL specification.

Proof
Each transition maintains only true formulae in the satisfied set,

and preserves the complete CTL specification
in the union of the satisfied set and the untreated set.
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Incompleteness
Two reasons:

1) The satisfaction of ECTL and UCTL formula is searched by adding
only one rule to the model (transition E’ and U’)

2) The Kripke structure associated to a Biocham set of rules adds loops
on terminal states. Hence adding or removing a rule may have an
opposite deletion or addition of those loops.
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