

Outline of the Talk	
1. Abstract machines: Rule-based Models of bioch	emical systems
1. Syntax of molecules, compartments and reactions	
2. Hierarchy of semantics: stochastic, differential, discrete,	, boolean
3. Cell cycle control models	
2. Abstract behaviors: Temporal Logic formalizatio	n of biological properties
1. Computation Tree Logic CTL for the boolean semantic	CS
2. Linear Time Logic with constraints LTL(R) for the diffe	erential semantics
3. Probabilistic PCTL for the stochastic semantics	
3. Automated Reasoning Tools	
1. Rule learning from CTL specification	
2. Kinetic parameter inference from LTL(R) specification	
L. Calzone, F. Fages, S. Soliman. Bioinformatics 22. 2006	
L. Calzone, N. Chabrier, F. Fages, S. Soliman. Trans. Computational S	System Biology 6 2006
F. Fages, S. Soliman. Theoretical Computer Science. 2008. F. Fage	es, A. Rizk. Theor.Comp.Sc. 2008.
François Fages	Bertinoro, 3 June 08

The Theory of Abstract Interpretation

In this setting [Cousot Cousot 77], a domain is a lattice $\mathcal{D}(\sqsubseteq, \bot, \top, \sqcup, \sqcap)$ where \sqsubseteq is the "information loss" ordering.

A Galois connection $\mathcal{C} \to_{\alpha} \mathcal{A}$ between two lattices \mathcal{C} and \mathcal{A} is defined by two abstraction and concretization functions $\alpha : \mathcal{C} \to \mathcal{A}$ and $\gamma : \mathcal{A} \to \mathcal{C}$ that are monotonic:

• $\forall x, y \in \mathcal{C} \ x \sqsubseteq_{\mathcal{C}} y \Rightarrow \alpha(x) \sqsubseteq_{\mathcal{A}} \alpha(y),$

•
$$\forall x, y \in \mathcal{A} \ x \sqsubseteq_{\mathcal{A}} y \Rightarrow \gamma(x) \sqsubseteq_{\mathcal{C}} \gamma(y),$$

and are adjoint:

• $\forall c \in \mathcal{C}, \forall y \in \mathcal{A} : x \sqsubseteq_{\mathcal{C}} \gamma(y) \Leftrightarrow \alpha(x) \sqsubseteq_{\mathcal{A}} y.$

If $\gamma \circ \alpha$ is the identity, the abstraction α loses no information, and C and A are isomorphic from the information standpoint (although α may be not onto and γ not one-to-one).

Bertinoro, 3 June 08

François Fages

Def. 6 The universe \mathcal{D} of discrete transitions is the set of pairs of discrete states. The domain of discrete transitions is $\mathcal{D}_{\mathcal{D}} = (\mathcal{P}(\mathcal{D}), \subseteq)$.

The discrete semantics is the classical Petri net semantics of reaction models [RML93ismb,SHK06bmcbi,Chaouiya07bioinfo,GHL07cmsb].

Classical Petri net analysis tools can be used for the analysis of reaction For instance, the elementary mode analysis of metabolic networks [SPM02bioinfo] has been shown in [ZS03insilicobio] to be equivalent to the classical analysis of Petri nets by T-invariants.

Proposition 7 Let $\alpha_{SD} : \mathcal{D}_S \to \mathcal{D}_D$ be the function associating to a set of stochastic transitions the discrete transitions obtained by projection on the two first components, and $\gamma_{SD}(d) = \cup \alpha_{SD}^{-1}(\downarrow d)$. $\mathcal{D}_S \xleftarrow{\gamma_{SD}} \mathcal{D}_D$ is a Galois connection.

Bertinoro, 3 June 08

François Fages

Boolean Semantics

Def. 9 Let a boolean state be a vector of booleans of dimension $|\mathcal{M}|$ indicating the presence of each molecule in the state. The universe \mathcal{B} of boolean transitions is the set of pairs of boolean states.

The domain of boolean transitions is $\mathcal{D}_{\mathcal{B}} = (\mathcal{P}(\mathcal{B}), \subseteq).$

Let $\alpha_{\mathcal{NB}} : \mathbb{N}^{|\mathcal{M}|} \to \mathbb{B}^{|\mathcal{M}|}$ be the zero/non-zero abstraction (or threshold abstraction) from the integers to the booleans, and its pointwise extension from discrete states to boolean states.

Proposition 10 Let $\alpha_{\mathcal{DB}} : \mathcal{D}_{\mathcal{D}} \to \mathcal{D}_{\mathcal{B}}$ be the set extension of $\alpha_{\mathcal{NB}}$. Let $\gamma_{\mathcal{DB}}(b) = \cup \alpha_{\mathcal{DB}}^{-1}(\downarrow b)$. $\mathcal{D}_{\mathcal{D}} \xleftarrow{\alpha_{\mathcal{DB}}}{\gamma_{\mathcal{DB}}} \mathcal{D}_{\mathcal{B}}$ is a Galois connection.

Bertinoro, 3 June 08

Bertinoro, 3 June 08

François Fages

François Fages

BIOCHAM Boolean Semantics

Given a reaction model R, let us denote by S_{BB} the set of boolean transitions obtained by considering all pssible consumption of reactants.

For instance, a rule like A+B=>C+D is interpreted by four boolean transition rules :

- $\bullet \ A \wedge B \longrightarrow A \wedge B \wedge C \wedge D$
- $A \wedge B \longrightarrow \neg A \wedge B \wedge C \wedge D$
- $A \wedge B \longrightarrow A \wedge \neg B \wedge C \wedge D$
- $A \land B \longrightarrow \neg A \land \neg B \land C \land D$

Note that in Boolean Petri nets, or in Pathway Logic, complete consumption is assumed.

Proposition 11 For any reaction model R, $\alpha_{\mathcal{DB}}(\alpha_{\mathcal{SD}}(\alpha_{\mathcal{RS}}(R))) \subseteq S_{BB}$.

Differential Semantics ?

The differential semantics of reaction models interprets a set of reaction rules $\{e_i \text{ for } S_i => S'_i\}_{i=1,...,n}$ over molecular concentration variables $\{x_1,...,x_m\}$, by the following system of Ordinary Differential Equations (ODE):

$$dx_k/dt = \sum_{i=1}^n r_i(x_k) * e_i - \sum_{j=1}^n l_j(x_k) * e_j$$

where we recall that $r_i(x_k)$ (resp. l_i) is the stoichiometric coefficient of x_k in the right (resp. left) member of rule *i*.

Bertinoro, 3 June 08

- synchronous semantics (evolution of variables in parallel)
- deterministic semantics (average behavior)
- not compatible with the rule set inclusion ordering
- infinite number of molecules
- infinitesimal time steps

François Fages

	Syntactical	Influence Graph
	Syntaethear	initionee oraph
Let $\alpha_{\mathcal{RI}}(R) =$	$\{A \text{ activates } B \}$	$\exists (e_i \text{ for } l_i \Rightarrow r_i) \in x,$
		$l_i(A) > 0$ and $r_i(B) - l_i(B) > 0$
	$\cup \{A \text{ inhibits } B \}$	$B \mid \exists (e_i \text{ for } l_i \Rightarrow r_i) \in R,$
		$l_i(A) > 0$ and $r_i(B) - l_i(B) < 0$
We have $\alpha_{\mathcal{RI}}(\{$	$A+B => C\}) = \{$	A inhibits B, A inhibits A, B inhibits A,
		B inhibits B, A activates C, B activates C}
$\alpha_{\mathcal{RI}}(\{\mathbf{A}$	$= [C] => B\}) = \{$	C inhibits A, A inhibits A,
		A activates B, C activates B}
$lpha_{\mathcal{RI}}(\{\mathtt{A}$	$= [B] => _{-}) = \{$	B inhibits A, A inhibits A}
$\alpha_{\mathcal{RI}}(\{-$	$= [B] \Longrightarrow A\}) = \{$	B activates A}
Note that $\alpha_{\mathcal{RI}}$ i	s computable in (O(n) time
(0.2 sec. on the)	800 rules of Kohr	n's map in Biocham)
Francois Fages		7 RIA

[Thomas 81 $]$:	
The existence of nega	tive circuits is a necessary condition for oscillations.
The existence of posit multistationarity.	ive circuits is a necessary condition for
Proved for :	
ODE systems [Soulé (03] [Demonjeot et al. 03]
boolean networks [Ré	my Ruet Thieffry 05]
discrete networks [Ric	hard 06

Monotonic Kinetics

In a reaction model $R = \{e_i \text{ for } l_i = r_i \mid i \in I\}$, we say that a kinetic expression e_i is *monotonic* iff for all molecules x_k we have

1. $\partial e_i / \partial x_k \geq 0$ in all points of the space,

2. $l_i(x_k) > 0$ whenever $\partial e_i / \partial x_k > 0$ in some point of the space.

The mass action law kinetics, $e = k * \Pi x_i^{l_i}$, Michaelis-Menten and Hill's kinetics $e_i = V_m * x_s^n / (K_m + x_s^n)$ are monotonic.

Inhibitions with negative Hill kinetics of the form $e_i = V_m/(K_m + x_s^n)$ are not monotonic.

François Fages

11

MINRIA

Over-approximation Theorem Theorem 1 For any reaction model R with monotonic kinetics, $\alpha_{\mathcal{JI}}(R) \subseteq \alpha_{\mathcal{RI}}(R).$ PROOF: If (A activates B) $\in \alpha_{\mathcal{JI}}(R)$ then $\partial \dot{B}/\partial A > 0$. Hence there exists a term in the differential semantics, of the form $(r_i(B) - l_i(B)) * e_i$ with $\partial e_i / \partial A$ of the same sign as $r_i(B) - l_i(B)$. Let us suppose that $r_i(B) - l_i(B) > 0$ then $\partial e_i / \partial A > 0$ and since e_i is monotonic we get that $l_i(A) > 0$ and thus that $(A \text{ activates } B) \in \alpha_{\mathcal{RI}}(R)$. If on the contrary $r_i(B) - l_i(B) < 0$ then $\partial e_i / \partial A < 0$, which is not possible for a monotonic kinetics. Similarly for (A inhibits B). Strict inclusion for $R = \{k_1 * A \text{ for } A \Longrightarrow B. k_2 * A \text{ for } _ = [A] \Longrightarrow A\}$ as $\dot{A} = (k_2 - k_1) * A$ can be made always positive, null or negative. **Corollary 2** $\alpha_{\mathcal{JI}}(R, IC) \subseteq \alpha_{\mathcal{RI}}(R)$ in the phase space w.r.t. some initial conditions IC. **MINRIA** François Fages 12

	Mammalian Cell Cycle Control Benchmark 500 variables, 2 ⁵⁰⁰ states. 800 rules. BIOCHAM NuSMV model-checker time in sec. [Chabrier Chiaverini Danos Fages Schachter TCS 04]					
5						
	Initial state G2	Query:	Time:			
		compiling	29 s			
	Reachability G1	EF CycE	2 s			
	Reachability G1	EF CycD	1.9 s			
	Reachability G1	EF PCNA-CycD	1.7 s			
	Checkpoint for mitosis complex	→EF (→ Cdc25~{Nterm} U Cdk1~{Thr161}-CycB)	2.2 s			
	Oscillation	EG ((CycA => EF ¬ CycA) ^ (¬ CycA => EF CycA))	31.8 s			
Fr	ançois Fages	В	ertinoro, 3 June 08			

Influence Graph Abstraction from the Differential Semantics

Let us denote by β the mapping from $C_{\mathcal{R}}$ to $\mathcal{D}_{\mathcal{J}}$ that extracts $\dot{x_k}$ and hence the Jacobian from the kinetic expressions in the reaction rules.

Def. 14 The differential influence abstraction $\alpha_{\mathcal{JI}} : \mathcal{D}_{\mathcal{J}} \to \mathcal{A}_{\mathcal{I}}$ is the function

 $\alpha_{\mathcal{JI}}(x) = \{A \text{ activates } B \mid \partial \dot{x_B} / \partial x_A > 0 \text{ in some point of the phase space} \}$ $\cup \{A \text{ inhibits } B \mid \partial \dot{x_B} / \partial x_A < 0 \text{ in some point of the phase space} \}$

defined purely from the kinetic expressions... compatibility with the rules ?

